Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2015, Vol. 9 Issue (6) : 1096-1107    https://doi.org/10.1007/s11783-015-0804-z
RESEARCH ARTICLE
Combination of the direct electro-Fenton process and bioremediation for the treatment of pyrene-contaminated soil in a slurry reactor
Wendi XU1,2,Shuhai GUO1,*(),Gang LI1,Fengmei LI1,Bo WU1,Xinhong GAN1,2
1. Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
 Download: PDF(743 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A combined treatment technology (DEF-BIO) using the direct electro-Fenton (DEF) process and bioremediation (BIO) was established in this study. The performance of the DEF-BIO process on the remediation of a pyrene (PYR)-contaminated soil was evaluated in a slurry reactor. The appropriate order of application was to conduct the DEF process followed by BIO, evaluated through analysis of the degradation characteristics of each process individually. In addition, the application time of the DEF process affected the efficiency of the combined process. The optimum time to apply the DEF process was determined through an analysis of the induced changes in PYR intermediates, pH, soil organic matter (SOM) and bacteria. The optimum application time of the DEF process was 6 h. All the induced changes were beneficial for the BIO phase. The removal of PYR was 91.02% for DEF–BIO after 72 h, and the efficiency was almost 50% increased, compared with the individual DEF and BIO treatments. Therefore, the combined process of DEF–BIO process may be an efficient and promising method for the remediation.

Keywords direct electro-Fenton      bioremediation      slurry reactor      combined process      pyrene     
Corresponding Author(s): Shuhai GUO   
Online First Date: 17 July 2015    Issue Date: 23 November 2015
 Cite this article:   
Bo WU,Xinhong GAN,Wendi XU, et al. Combination of the direct electro-Fenton process and bioremediation for the treatment of pyrene-contaminated soil in a slurry reactor[J]. Front. Environ. Sci. Eng., 2015, 9(6): 1096-1107.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-015-0804-z
https://academic.hep.com.cn/fese/EN/Y2015/V9/I6/1096
Fig.1  Degradation ratios (a), residual concentrations (b) and degradation rates (c) of PYR during the DEF (test B) and BIO (test A) processes; insert in (c): fitting models for the DEF and BIO tests
Fig.2  Concentrations of ·OH during the DEF process (test B) and total microbial 16S rRNA gene copy numbers during the BIO process (test A)
Fig.3  Change in pH during the DEF process. Insert: the buffering capacity of the soil
Fig.4  PYR degradation ratio (a) and the residual PYR concentration (b) during the DEF–BIO experiments and the effect of the DEF process time period (D1: DEF 6 h, D2: DEF 12 h, D3: DEF 18 h, D4: DEF 24 h). Inserts to (a): degradation rates of PYR and the fitting model for each BIO phase
Fig.5  Temporal changes of the total microbial 16S rRNA gene copy numbers in the DEF–BIO slurry reactor
strain accession No. homologous bacterial sequence similarity /%
1 KR673362 Lysinibacillus fusiformis strain BCH540 (KM983010) 99
2 KR673363 Pseudomonas stutzeri strain CQ25 (JX122550) 99
3 KR673364 Bacillus cereus partial (LN831988) 99
4 KP823405 Bacillus sp. H78 (KJ867068) 99
5 KP823407 Hydrogenophaga pseudoflava strain PBR-28 (KJ806225) 100
6 KP823408 Bacteroidetes bacterium 6E (AB623231) 100
Tab.1  Sequences of prominent bands in the DGGE gels
observed main intermediates during the DEF process monocyclic and acyclic intermediates / PYR %
6 h 12 h 18 h 24 h
15.63±1.31b) 20.63±2.02 b) 27.90±1.52 b) 33.30±1.14 b)
Tab.2  Main intermediates and the percentages of intermediates (monocyclic and acyclic) and PYR
Fig.19  Changes of SOM (a) and residual PYR in the solid- and aqueous-phases (b) during the DEF process
1 Qiao  J, Zhang  C, Luo  S, Chen  W. Bioremediation of highly contaminated oilfield soil: Bioaugmentation for enhancing aromatic compounds removal. Frontiers of Environmental Science & Engineering, 2013, 8(2): 293–304
https://doi.org/10.1007/s11783-013-0561-9
2 Li  X J, Li  P, Lin  X, Zhang  C G, Li  Q, Gong  Z Q. Biodegradation of aged polycyclic aromatic hydrocarbons (PAHs) by microbial consortia in soil and slurry phases. Journal of Hazardous Materials, 2008, 150(1): 21–26
https://doi.org/10.1016/j.jhazmat.2007.04.040 pmid: 17512657
3 Mohan  S V, Prasanna  D, Reddy  B P, Sarma  P N. Ex situ bioremediation of pyrene contaminated soil in bio-slurry phase reactor operated in periodic discontinuous batch mode: influence of bioaugmentation. International Biodeterioration & Biodegradation, 2008, 62(2): 162–169
https://doi.org/10.1016/j.ibiod.2008.01.006
4 Di Gennaro  P, Franzetti  A, Bestetti  G, Lasagni  M, Pitea  D, Collina  E. Slurry phase bioremediation of PAHs in industrial landfill samples at laboratory scale. Waste Management (New York, N.Y.), 2008, 28(8): 1338–1345
https://doi.org/10.1016/j.wasman.2007.06.021 pmid: 17851065
5 Collina  E, Bestetti  G, Di Gennaro  P, Franzetti  A, Gugliersi  F, Lasagni  M, Pitea  D. Naphthalene biodegradation kinetics in an aerobic slurry-phase bioreactor. Environment International, 2005, 31(2): 167–171
https://doi.org/10.1016/j.envint.2004.09.011 pmid: 15661278
6 Juwarkar  A A, Singh  S K, Mudhoo  A. A comprehensive overview of elements in bioremediation. Reviews in Environmental Science and Biotechnology, 2010, 9(3): 215–288
https://doi.org/10.1007/s11157-010-9215-6
7 Rosales  E, Pazos  M, Sanromán  M A. Advances in the electro-Fenton process for remediation of recalcitrant organic compounds. Chemical Engineering & Technology, 2012, 35(4): 609–617
https://doi.org/10.1002/ceat.201100321
8 Kao  C M, Wu  M J. Enhanced TCDD degradation by Fenton’s reagent preoxidation. Journal of Hazardous Materials, 2000, 74(3): 197–211
https://doi.org/10.1016/S0304-3894(00)00161-8 pmid: 10794914
9 Oonnittan  A, Isosaari  P, Sillanpää  M. Oxidant availability in soil and its effect on HCB removal during electrokinetic Fenton process. Separation and Purification Technology, 2010, 76(2): 146–150
https://doi.org/10.1016/j.seppur.2010.09.034
10 Weeks  K R, Bruell  C J, Mohanty  N R. Use of Fenton’s reagent for the degradation of TCE in aqueous systems and soil slurries. Soil & Sediment Contamination, 2000, 9(4): 331–345
https://doi.org/10.1080/10588330091134284
11 Moussavi  G, Bagheri  A, Khavanin  A. The investigation of degradation and mineralization of high concentrations of formaldehyde in an electro-Fenton process combined with the biodegradation. Journal of Hazardous Materials, 2012, 237−238: 147–152
https://doi.org/10.1016/j.jhazmat.2012.08.022 pmid: 22975256
12 Ferrag-Siagh  F, Fourcade  F, Soutrel  I, Aït-Amar  H, Djelal  H, Amrane  A. Tetracycline degradation and mineralization by the coupling of an electro-Fenton pretreatment and a biological process. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2013, 88(7): 1380–1386
https://doi.org/10.1002/jctb.3990
13 Harimurti  S, Dutta  B K, Ariff  I, Chakrabarti  S, Vione  D. Degradation of monoethanolamine in aqueous solution by Fenton’s reagent with biological post-treatment. Water, Air, and Soil Pollution, 2010, 211(1−4): 273–286
https://doi.org/10.1007/s11270-009-0298-z
14 Yuan  Y. Coordinated effect of electrokinetics on the biodegradation of alkanes in soil. Shenyang: Institute of Applied Ecology, Chinese Academy of Sciences, 2013 (in Chinese)
15 Aburto-Medina  A, Adetutu  E M, Aleer  S, Weber  J, Patil  S S, Sheppard  P J, Ball  A S, Juhasz  A L. Comparison of indigenous and exogenous microbial populations during slurry phase biodegradation of long-term hydrocarbon-contaminated soil. Biodegradation, 2012, 23(6): 813–822
https://doi.org/10.1007/s10532-012-9563-8 pmid: 22684213
16 Nasseri  S, Kalantary  R R, Nourieh  N, Naddafi  K, Mahvi  A H, Baradaran  N. Influence of bioaugmentation in biodegradation of PAHs-contaminated soil in bio-slurry phase reactor. Iranian Journal of Environmental Health Sciences & Engineering, 2010, 7(3): 199–208
17 D.Or  B F S. Physical constraints affecting bacterial habitats and activity in unsaturated porous media – a review. Advances in Water Resources, 2007, 30(6−7): 1505–1527
18 Huang  D N, Guo  S H, Li  T T, Wu  B. Coupling interactions between electrokinetics and bioremediation for pyrene removal from soil under polarity reversal conditions. Clean—Soil, Air. Water (Basel), 2013, 41(4): 383–389
19 Jen  J F, Leu  M F, Yang  T C. Determination of hydroxyl radicals in an advanced oxidation process with salicylic acid trapping and liquid chromatography. Journal of Chromatography. A, 1998, 796(2): 283–288
https://doi.org/10.1016/S0021-9673(97)01019-4
20 Ren  X R, Shao  K S, Tang  X Y. Determination of salicylic acid and its hydroxylated products using high performance liquid chromatography and fluorescence detection. Chinese Journal of Chromatography, 2001, 19(2): 191–192 (in Chinese)
pmid: 12541674
21 Guo  S H, Fan  R J, Li  T T, Hartog  N, Li  F M, Yang  X L. Synergistic effects of bioremediation and electrokinetics in the remediation of petroleum-contaminated soil. Chemosphere, 2014, 109: 226–233
https://doi.org/10.1016/j.chemosphere.2014.02.007 pmid: 24613072
22 Sun  H W, Yan  Q S. Influence of Fenton oxidation on soil organic matter and its sorption and desorption of pyrene. Journal of Hazardous Materials, 2007, 144(1−2): 164–170
https://doi.org/10.1016/j.jhazmat.2006.10.005 pmid: 17118546
23 Dong  Y C, Dong  W J, Cao  Y N, Han  Z B, Ding  Z Z. Preparation and catalytic activity of Fe alginate gel beads for oxidative degradation of azo dyes under visible light irradiation. Catalysis Today, 2011, 175(1): 346–355
https://doi.org/10.1016/j.cattod.2011.03.035
24 Zhen  G Y, Lu  X Q, Wang  B Y, Zhao  Y C, Chai  X L, Niu  D J, Zhao  T T. Enhanced dewatering characteristics of waste activated sludge with Fenton pretreatment: effectiveness and statistical optimization. Frontiers of Environmental Science & Engineering, 2014, 8(2): 267–276
https://doi.org/10.1007/s11783-013-0530-3
25 de Luna  M D, Veciana  M L, Su  C C, Lu  M C. Acetaminophen degradation by electro-Fenton and photoelectro-Fenton using a double cathode electrochemical cell. Journal of Hazardous Materials, 2012, 217−218: 200–207
https://doi.org/10.1016/j.jhazmat.2012.03.018 pmid: 22480705
26 Flotron  V, Delteil  C, Padellec  Y, Camel  V. Removal of sorbed polycyclic aromatic hydrocarbons from soil, sludge and sediment samples using the Fenton’s reagent process. Chemosphere, 2005, 59(10): 1427–1437
https://doi.org/10.1016/j.chemosphere.2004.12.065 pmid: 15876386
27 Wang  A M, Li  Y Y, Ru  J. The mechanism and application of the electro-Fenton process for azo dye Acid Red 14 degradation using an activated carbon fibre felt cathode. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2010, 85(11): 1463–1470
28 Wang  Y J, Li  X Y, Zhen  L M, Zhang  H Q, Zhang  Y, Wang  C W<?Pub Caret?>. Electro-Fenton treatment of concentrates generated in nanofiltration of biologically pretreated landfill leachate. Journal of Hazardous Materials, 2012, 229−230: 115–121
https://doi.org/10.1016/j.jhazmat.2012.05.108 pmid: 22749970
29 Moscoso  F, Teijiz  I, Deive  F J, Sanromán  M A. Efficient PAHs biodegradation by a bacterial consortium at flask and bioreactor scale. Bioresource Technology, 2012, 119: 270–276
https://doi.org/10.1016/j.biortech.2012.05.095 pmid: 22738812
30 Liang  Y N. Pyrene degradation by mycobacterium SP.KMS: Biochemical-pathway, enzymatic mechanisms, and humic acid effect. USA: Utah State University, 2006
31 Zeng  Y, Hong  P K A, Wavrek  D A. Chemical-biological treatment of pyrene. Water Research, 2000, 34(4): 1157–1172
https://doi.org/10.1016/S0043-1354(99)00270-5
32 Liang  Y, Britt  D W, McLean  J E, Sorensen  D L, Sims  R C. Humic acid effect on pyrene degradation: finding an optimal range for pyrene solubility and mineralization enhancement. Applied Microbiology and Biotechnology, 2007, 74(6): 1368–1375
https://doi.org/10.1007/s00253-006-0769-8 pmid: 17216450
33 Chamarro  E, Marco  A, Esplugas  S. Use of Fenton reagent to improve organic chemical biodegradability. Water Research, 2001, 35(4): 1047–1051
https://doi.org/10.1016/S0043-1354(00)00342-0 pmid: 11235870
34 Bogan  B W, Trbovic  V. Effect of sequestration on PAH degradability with Fenton’s reagent: roles of total organic carbon, humin, and soil porosity. Journal of Hazardous Materials, 2003, 100(1−3): 285–300
https://doi.org/10.1016/S0304-3894(03)00134-1 pmid: 12835029
35 Gryzenia  J, Cassidy  D, Hampton  D. Production and accumulation of surfactants during the chemical oxidation of PAH in soil. Chemosphere, 2009, 77(4): 540–545
https://doi.org/10.1016/j.chemosphere.2009.07.012 pmid: 19695666
[1] Karla Ilić Đurđić, Raluca Ostafe, Olivera Prodanović, Aleksandra Đurđević Đelmaš, Nikolina Popović, Rainer Fischer, Stefan Schillberg, Radivoje Prodanović. Improved degradation of azo dyes by lignin peroxidase following mutagenesis at two sites near the catalytic pocket and the application of peroxidase-coated yeast cell walls[J]. Front. Environ. Sci. Eng., 2021, 15(2): 19-.
[2] Ling Huang, Syed Bilal Shah, Haiyang Hu, Ping Xu, Hongzhi Tang. Pollution and biodegradation of hexabromocyclododecanes: A review[J]. Front. Environ. Sci. Eng., 2020, 14(1): 11-.
[3] Lifeng Cao, Weihua Sun, Yuting Zhang, Shimin Feng, Jinyun Dong, Yongming Zhang, Bruce E. Rittmann. Competition for electrons between reductive dechlorination and denitrification[J]. Front. Environ. Sci. Eng., 2017, 11(6): 14-.
[4] Qingliang Zhao, Hang Yu, Weixian Zhang, Felix Tetteh Kabutey, Junqiu Jiang, Yunshu Zhang, Kun Wang, Jing Ding. Microbial fuel cell with high content solid wastes as substrates: a review[J]. Front. Environ. Sci. Eng., 2017, 11(2): 13-.
[5] Ying Xu, Ning-Yi Zhou. Microbial remediation of aromatics-contaminated soil[J]. Front. Environ. Sci. Eng., 2017, 11(2): 1-.
[6] Mary Beth LEIGH,Wei-Min WU,Erick CARDENAS,Ondrej UHLIK,Sue CARROLL,Terry GENTRY,Terence L. MARSH,Jizhong ZHOU,Philip JARDINE,Craig S. CRIDDLE,James M. TIEDJE. Microbial communities biostimulated by ethanol during uranium (VI) bioremediation in contaminated sediment as shown by stable isotope probing[J]. Front. Environ. Sci. Eng., 2015, 9(3): 453-464.
[7] Jun QIAO, Chengdong ZHANG, Shuiming LUO, Wei CHEN. Bioremediation of highly contaminated oilfield soil: Bioaugmentation for enhancing aromatic compounds removal[J]. Front Envir Sci Eng, 2014, 8(2): 293-304.
[8] Jingjing PENG, Hong LI, Jianqiang SU, Qiufang ZHANG, Junpeng RUI, Chao CAI. Response of bacterial communities to short-term pyrene exposure in red soil[J]. Front Envir Sci Eng, 2013, 7(4): 559-567.
[9] Shuang LIU, Yanwei HOU, Guoxin SUN. Synergistic degradation of pyrene and volatilization of arsenic by cocultures of bacteria and a fungus[J]. Front Envir Sci Eng, 2013, 7(2): 191-199.
[10] Dengqiang FU, Ying TENG, Yuanyuan SHEN, Mingming SUN, Chen TU, Yongming LUO, Zhengao LI, Peter CHRISTIE. Dissipation of polycyclic aromatic hydrocarbons and microbial activity in a field soil planted with perennial ryegrass[J]. Front Envir Sci Eng, 2012, 6(3): 330-335.
[11] Jiying NING, Gang GANG, Zhihui BAI, Qing HU, Hongyan QI, Anzhou MA, Xuliang ZHUAN, Guoqiang ZHUANG. In situ enhanced bioremediation of dichlorvos by a phyllosphere Flavobacterium strain[J]. Front Envir Sci Eng, 2012, 6(2): 231-237.
[12] Jin GUO, Jun MA. Pyrene partition behavior to the NOM: Effect of NOM characteristics and its modification by ozone preoxidation[J]. Front Envir Sci Eng Chin, 2009, 3(1): 56-61.
[13] SU Yuhong, YANG Xueyun, CHIOU Cary. Effect of rhizosphere on soil microbial community and pyrene biodegradation[J]. Front.Environ.Sci.Eng., 2008, 2(4): 468-474.
[14] XIA Xinghui, HU Lijuan, MENG Lihong. Adsorption and partition of benzo(a)pyrene on sediments with different particle sizes from the Yellow River[J]. Front.Environ.Sci.Eng., 2007, 1(2): 172-178.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed