Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2015, Vol. 9 Issue (6) : 1108-1116    https://doi.org/10.1007/s11783-015-0806-x
RESEARCH ARTICLE
Influencing mechanism of high solid concentration on anaerobic mono-digestion of sewage sludge without agitation
Yuyao ZHANG,Huan LI(),Can LIU,Yingchao CHENG
Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
 Download: PDF(583 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

High-solids anaerobic digestion of sewage sludge was a promising process, but high solid concentration negatively influenced methane production. The influencing mechanism was systematically analyzed in this study through a series of static anaerobic digestion experiments at total solids (TS) contents of 3%–15%. The results showed that TS 6% was the boundary between low-solids and high-solids anaerobic digestion, and the accumulative methane yield decreased exponentially when TS increased from 6% to 15%. The performance of anaerobic digestion was directly determined by the efficiency of mass transfer, and the relation between methane yield and sludge diffusive coefficients was well described by a power function. Thus, the increasing TS resulted in an exponential increase in sludge viscosity but an exponential decrease in diffusive coefficient. The blocked mass transfer led to the accumulation of volatile fatty acids (VFAs) and free ammonia. Acetic metabolism was the main process, whereas butyric and propionic metabolisms occurred at the initial stage of high-solids anaerobic digestion. The concentration of VFAs reached the maximum at the initial stage, which were still lower than the threshold influencing methanogens. The concentration of free ammonia increased gradually, and the methanogenesis was inhibited when free ammonia nitrogen exceeded 50 mg·L−1. Consequently, the deterioration of high-solids anaerobic digestion was related to the blocked mass transfer and the resulting ammonia accumulation.

Keywords anaerobic digestion      methane      sewage sludge      volatile fatty acids      free ammonia     
Corresponding Author(s): Huan LI   
Online First Date: 17 July 2015    Issue Date: 23 November 2015
 Cite this article:   
Yuyao ZHANG,Huan LI,Can LIU, et al. Influencing mechanism of high solid concentration on anaerobic mono-digestion of sewage sludge without agitation[J]. Front. Environ. Sci. Eng., 2015, 9(6): 1108-1116.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-015-0806-x
https://academic.hep.com.cn/fese/EN/Y2015/V9/I6/1108
No. G1 G2 G3 G4 G5
substrate (dewatered sludge)
C/N 5.9 5.9 5.9 5.9 5.9
TS/% 16.7 16.7 16.7 16.7 16.7
VS/TS/% 61.0 61.0 61.0 61.0 61.0
inoculum
TS/% 14.2 14.2 14.2 14.2 14.2
VS/TS/% 36.0 36.0 36.0 36.0 36.0
mixture
substrate/g 120 240 360 480 600
inoculum/g 240 480 720 960 1200
deionized water/g 1440 1080 720 360 0
TS/% 3.0 6.0 9.0 12.0 15.0
pH 7.57 7.45 7.37 7.46 7.55
RI/S a) 1.0 1.0 1.0 1.0 1.0
Tab.1  Characteristics of the mixture of substrate and inoculum
Fig.1  Accumulative methane production during sludge anaerobic digestion at different solid concentrations (the insert corresponds to the first 6 days of the experiment)
Fig.2  SCOD (a) and VFAs (b) in the supernatant during sludge anaerobic digestion at different solid concentrations
Fig.3  Effect of initial solid concentration on specific methane production (SMP)
Fig.4  Relation between sludge viscosity and its solid concentration at three shear rates
Fig.5  Four kinds of VFAs during sludge anaerobic digestion at different solid concentrations
Fig.6  TAN (a), alkalinity (b), pH (c) and FAN (d) in the supernatant during sludge anaerobic digestion at different solid concentrations
1 Li  F, Lei  T, Zhang  Y P, Wei  J Z, Yang  Y. Preparation, characterization of sludge adsorbent and investigations on its removal of hydrogen sulfide under room temperature. Frontiers of Environmental Science & Engineering, 2015, 9(2): 190–196
https://doi.org/10.1007/s11783-014-0628-2
2 Yang  Y, Li  H, Li  J. Variation in humic and fulvic acids during thermal sludge treatment assessed by size fractionation, elementary analysis and spectroscopic methods. Frontiers of Environmental Science & Engineering, 2014, 8(6): 854–862
https://doi.org/10.1007/s11783-014-0755-9
3 Pantaleo  A, Gennaro  B D, Shah  N. Assessment of optimal size of anaerobic co-digestion plants: an application to cattle farms in the province of Bari (Italy). Renewable & Sustainable Energy Reviews, 2013, 20: 57–70
https://doi.org/10.1016/j.rser.2012.11.068
4 Chang  S, Li  J Z, Liu  F, Yu  Z. Effect of different gas releasing methods on anaerobic fermentative hydrogen production in batch cultures. Frontiers of Environmental Science & Engineering, 2012, 6(6): 901–906
https://doi.org/10.1007/s11783-012-0403-1
5 Appels  L, Baeyens  J, Degrève  J, Dewil  R. Principles and potential of the anaerobic digestion of waste-activated sludge. Progress in Energy and Combustion Science, 2008, 34(6): 755–781
https://doi.org/10.1016/j.pecs.2008.06.002
6 Jolis  D. High-solids anaerobic digestion of municipal sludge pretreated by thermal hydrolysis. Water Environment Research, 2008, 80(7): 654–662
https://doi.org/10.2175/193864708X267414 pmid: 18710149
7 Duan  N, Dong  B, Wu  B, Dai  X. High-solid anaerobic digestion of sewage sludge under mesophilic conditions: feasibility study. Bioresource Technology, 2012, 104: 150–156
https://doi.org/10.1016/j.biortech.2011.10.090 pmid: 22104097
8 Bolzonella  D, Pavan  P, Battistoni  P, Cecchi  F. Mesophilic anaerobic digestion of waste activated sludge: influence of the solid retention time in the wastewater treatment process. Process Biochemistry, 2005, 40(3−4): 1453–1460
https://doi.org/10.1016/j.procbio.2004.06.036
9 Bolzonella  D, Innocenti  L, Cecchi  F. Biological nutrient removal wastewater treatments and sewage sludge anaerobic mesophilic digestion performances. Water Science and Technology, 2002, 46(10): 199–208
pmid: 12479472
10 Guendouz  J, Buffière  P, Cacho  J, Carrère  M, Delgenes  J P. High-solids anaerobic digestion: comparison of three pilot scales. Water Science and Technology, 2008, 58(9): 1757–1763
https://doi.org/10.2166/wst.2008.521 pmid: 19029716
11 Karthikeyan  O P, Visvanathan  C. Bio-energy recovery from high-solid organic substrates by dry anaerobic bio-conversion processes: a review. Reviews in Environmental Science and Biotechnology, 2013, 12(3): 257–284
https://doi.org/10.1007/s11157-012-9304-9
12 Liao  X, Li  H, Cheng  Y, Chen  N, Li  C, Yang  Y. Process performance of high-solids batch anaerobic digestion of sewage sludge. Environmental Technology, 2014, 35(21−24): 2652–2659
https://doi.org/10.1080/09593330.2014.916756 pmid: 25176298
13 Liao  X, Li  H. Biogas production from low-organic-content sludge using a high-solids anaerobic digester with improved agitation. Applied Energy, 2015, 148: 252–259
https://doi.org/10.1016/j.apenergy.2015.03.082
14 Zhou  Y, Takaoka  M, Wang  W, Liu  X, Oshita  K. Effect of thermal hydrolysis pre-treatment on anaerobic digestion of municipal biowaste: a pilot scale study in China. Journal of Bioscience and Bioengineering, 2013, 116(1): 101–105
https://doi.org/10.1016/j.jbiosc.2013.01.014 pmid: 23419457
15 Bollon  J, Benbelkacem  H, Gourdon  R, Buffière  P. Measurement of diffusion coefficients in dry anaerobic digestion media. Chemical Engineering Science, 2013, 89: 115–119
https://doi.org/10.1016/j.ces.2012.11.036
16 Lay  J J, Li  Y Y, Noike  T, Endo  J, Ishimoto  S. Analysis of environmental factors affecting methane production from high solids organic waste. Water Science and Technology, 1997, 36(6−7): 493–500
https://doi.org/10.1016/S0273-1223(97)00560-X
17 Forster-Carneiro  T, Pérez  M, Romero  L I. Influence of total solid and inoculum contents on performance of anaerobic reactors treating food waste. Bioresource Technology, 2008, 99(15): 6994–7002
https://doi.org/10.1016/j.biortech.2008.01.018 pmid: 18295478
18 Fernández  J, Pérez  M, Romero  L I. Kinetics of mesophilic anaerobic digestion of the organic fraction of municipal solid waste: Influence of initial total solid concentration. Bioresource Technology, 2010, 101(16): 6322–6328
https://doi.org/10.1016/j.biortech.2010.03.046 pmid: 20362435
19 Chen  X, Yan  W, Sheng  K, Sanati  M. Comparison of high-solids to liquid anaerobic co-digestion of food waste and green waste. Bioresource Technology, 2014, 154: 215–221
https://doi.org/10.1016/j.biortech.2013.12.054 pmid: 24398149
20 Abbassi-Guendouz  A, Brockmann  D, Trably  E, Dumas  C, Delgenès  J P, Steyer  J P, Escudié  R. Total solids content drives high solid anaerobic digestion via mass transfer limitation. Bioresource Technology, 2012, 111: 55–61
https://doi.org/10.1016/j.biortech.2012.01.174 pmid: 22386469
21 Motte  J C, Trably  E, Escudiè  R, Hamelin  J, Steyer  J P, Bernet  N, Delgenes  J P, Dumas  C. Total solids content: a key parameter of metabolic pathways in dry anaerobic digestion. Biotechnology for Biofuels, 2013, 6(1): 164
https://doi.org/10.1186/1754-6834-6-164 pmid: 24261971
22 Fujishima  S, Miyahara  T, Noike  T. Effect of moisture content on anaerobic digestion of dewatered sludge: ammonia inhibition to carbohydrate removal and methane production. Water Science and Technology, 2000, 41(3): 119–127
pmid: 11381982
23 Owen  W F, Stuckey  D C, Healy  J B Jr, Young  L Y, McCarty  P L. Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Research, 1979, 13(6): 485–492
pmid: 10.1016/0043-1354(79)90043-5
24 Lopes  W S, Leite  V D, Prasad  S. Optimization of inoculum to substrate ratio for bio-energy generation in co-digestion of tannery solid wastes. Bioresource Technology, 2004, 94: 261–266
https://doi.org/10.1016/j.biortech.2004.01.006 pmid: 15182832
25 China Ministry of Environmental Protection (MEP). Standard Methods for the Examination of Water and Wastewater. 4th ed. Beijing: China Environmental Publishing, 2002
26 Hansen  K H, Angelidaki  I, Ahring  B K. Anaerobic digestion of swine manure: inhibition by ammonia. Water Research, 1998, 32(1): 5–12
https://doi.org/10.1016/S0043-1354(97)00201-7
27 Squires  T M, Brady  J F. A simple paradigm for active and nonlinear microrheology. Physics of Fluids, 2005, 17(7): 073101
https://doi.org/10.1063/1.1960607
28 Guo  X M, Trably  E, Latrille  E, Carrère  H, Steyer  J P. Hydrogen production from agricultural waste by dark fermentation: a review. International Journal of Hydrogen Energy, 2010, 35(19): 10660–10673
https://doi.org/10.1016/j.ijhydene.2010.03.008
29 van Ginkel  S, Logan  B E. Inhibition of biohydrogen production by undissociated acetic and butyric acids. Environmental Science & Technology, 2005, 39(23): 9351–9356
https://doi.org/10.1021/es0510515 pmid: 16382963
30 Barredo  M S, Evison  L M. Effect of propionate toxicity on methanogen-enriched sludge, Methanobrevibacter smithii, and Methanospirillum hungatii at different pH values. Applied and Environmental Microbiology, 1991, 57(6): 1764–1769
pmid: 1872605
31 Wang  Z, Xu  F, Li  Y. Effects of total ammonia nitrogen concentration on solid-state anaerobic digestion of corn stover. Bioresource Technology, 2013, 144: 281–287
https://doi.org/10.1016/j.biortech.2013.06.106 pmid: 23880129
32 de Baere  L A, Devocht  M, Vanassche  P, Verstraete  W. Influence of high NaCl and NH4Cl salt levels on methanogenic associations. Water Research, 1984, 18(5): 543–548
https://doi.org/10.1016/0043-1354(84)90201-X
[1] Tao Liu, Yudong Song, Zhiqiang Shen, Yuexi Zhou. Inhibition character of crotonaldehyde manufacture wastewater on biological acidification[J]. Front. Environ. Sci. Eng., 2021, 15(6): 119-.
[2] Qinxue Wen, Shuo Yang, Zhiqiang Chen. Mesophilic and thermophilic anaerobic digestion of swine manure with sulfamethoxazole and norfloxacin: Dynamics of microbial communities and evolution of resistance genes[J]. Front. Environ. Sci. Eng., 2021, 15(5): 94-.
[3] Ying Xu, Hui Gong, Xiaohu Dai. High-solid anaerobic digestion of sewage sludge: achievements and perspectives[J]. Front. Environ. Sci. Eng., 2021, 15(4): 71-.
[4] Xianke Lin, Xiaohong Chen, Sichang Li, Yangmei Chen, Zebin Wei, Qitang Wu. Sewage sludge ditch for recovering heavy metals can improve crop yield and soil environmental quality[J]. Front. Environ. Sci. Eng., 2021, 15(2): 22-.
[5] Milan Malhotra, Anurag Garg. Characterization of value-added chemicals derived from the thermal hydrolysis and wet oxidation of sewage sludge[J]. Front. Environ. Sci. Eng., 2021, 15(1): 13-.
[6] Xiling Li, Tianwei Hao, Yuxin Tang, Guanghao Chen. A “Seawater-in-Sludge” approach for capacitive biochar production via the alkaline and alkaline earth metals activation[J]. Front. Environ. Sci. Eng., 2021, 15(1): 3-.
[7] Mona Akbar, Muhammad Farooq Saleem Khan, Ling Qian, Hui Wang. Degradation of polyacrylamide (PAM) and methane production by mesophilic and thermophilic anaerobic digestion: Effect of temperature and concentration[J]. Front. Environ. Sci. Eng., 2020, 14(6): 98-.
[8] Madhavaraj Lavanya, Ho-Dong Lim, Kong-Min Kim, Dae-Hyuk Kim, Balasubramani Ravindran, Gui Hwan Han. A novel strategy for gas mitigation during swine manure odour treatment using seaweed and a microbial consortium[J]. Front. Environ. Sci. Eng., 2020, 14(3): 53-.
[9] Chao Pang, Chunhua He, Zhenhu Hu, Shoujun Yuan, Wei Wang. Aggravation of membrane fouling and methane leakage by a three-phase separator in an external anaerobic ceramic membrane bioreactor[J]. Front. Environ. Sci. Eng., 2019, 13(4): 50-.
[10] Bao Yu, Guodi Zheng, Xuedong Wang, Min Wang, Tongbin Chen. Biodegradation of triclosan and triclocarban in sewage sludge during composting under three ventilation strategies[J]. Front. Environ. Sci. Eng., 2019, 13(3): 41-.
[11] Yuzhou Deng, Shengpan Peng, Haidi Liu, Shuangde Li, Yunfa Chen. Mechanism of dichloromethane disproportionation over mesoporous TiO2 under low temperature[J]. Front. Environ. Sci. Eng., 2019, 13(2): 21-.
[12] Alvyn P. Berg, Ting-An Fang, Hao L. Tang. Unlocked disinfection by-product formation potential upon exposure of swimming pool water to additional stimulants[J]. Front. Environ. Sci. Eng., 2019, 13(1): 10-.
[13] Yanqing Duan, Aijuan Zhou, Kaili Wen, Zhihong Liu, Wenzong Liu, Aijie Wang, Xiuping Yue. Upgrading VFAs bioproduction from waste activated sludge via co-fermentation with soy sauce residue[J]. Front. Environ. Sci. Eng., 2019, 13(1): 3-.
[14] Sijia Ai, Hongyu Liu, Mengjie Wu, Guangming Zeng, Chunping Yang. Roles of acid-producing bacteria in anaerobic digestion of waste activated sludge[J]. Front. Environ. Sci. Eng., 2018, 12(6): 3-.
[15] Yi Chen, Shilong He, Mengmeng Zhou, Tingting Pan, Yujia Xu, Yingxin Gao, Hengkang Wang. Feasibility assessment of up-flow anaerobic sludge blanket treatment of sulfamethoxazole pharmaceutical wastewater[J]. Front. Environ. Sci. Eng., 2018, 12(5): 13-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed