Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2015, Vol. 9 Issue (5) : 939-947    https://doi.org/10.1007/s11783-015-0807-9
RESEARCH ARTICLE
Iron-carbon composite microspheres prepared through a facile aerosol-based process for the simultaneous adsorption and reduction of chlorinated hydrocarbons
Bhanukiran SUNKARA1,Yang SU1,Jingjing ZHAN1,Jibao HE3,Gary L. MCPHERSON3,Vijay T. JOHN1,*()
1. Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA 70118, USA
2. Coordinated Instrumentation Facility, Tulane University, New Orleans, LA 70118, USA
3. Department of Chemistry, Tulane University, New Orleans, LA 70118, USA
 Download: PDF(1450 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Iron-carbon (Fe-C) composite microspheres prepared through a facile aerosol-based process are effective remediation agents for the simultaneous adsorption and reduction of chlorinated hydrocarbons. Complete dechlorination was achieved for the class of chlorinated ethenes that include tetrachloroethylene (PCE), trichloroethylene (TCE), cis- and trans-1,2-dicloroethylene (c-DCE, t-DCE), 1,1-dichloroethylene (1,1-DCE) and, vinyl chloride (VC). The Fe-C particles potentially provides multi-functionality with requisite characteristics of adsorption, reaction, and transport for the effective in situ remediation of chlorinated hydrocarbons. The carbon support immobilizes the ferromagnetic iron nanoparticles onto its surface, thereby inhibiting aggregation. The adsorptive nature of the carbon support prevents the release of toxic intermediates such as the dichloroethylenes and vinyl chloride. The adsorption of chlorinated ethenes on the Fe-C composites is higher (>80%) than that of humic acid (<35%) and comparable to adsorption on commercial activated carbons (>90%). The aerosol-based process is an efficient method to prepare adsorptive-reactive composite particles in the optimal size range for transport through the porous media and as effective targeted delivery agents for the in situ remediation of soil and groundwater contaminants.

Keywords chlorinated ethene      iron-carbon      aerosol      adsorption      reductive dechlorination     
Corresponding Author(s): Vijay T. JOHN   
Online First Date: 20 July 2015    Issue Date: 12 October 2015
 Cite this article:   
Yang SU,Jingjing ZHAN,Jibao HE, et al. Iron-carbon composite microspheres prepared through a facile aerosol-based process for the simultaneous adsorption and reduction of chlorinated hydrocarbons[J]. Front. Environ. Sci. Eng., 2015, 9(5): 939-947.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-015-0807-9
https://academic.hep.com.cn/fese/EN/Y2015/V9/I5/939
Fig.1  (a) Schematic showing the aerosol process for composite particles synthesis and (b) schematic of reaction in an aerosol droplet
Fig.2  (a) SEM (b) TEM and (c) High resolution TEM of Fe-C composite particles prepared by the aerosol-based process. The inset in Fig. 2(a) is the single particle SEM of the Fe-C composite
chlorinated ethylene abbreviation, formula kobs (apparent reaction rate constant) /h−1 km,obs (mass-normalized reaction rate constant) /(L·h−1·g−1)
tetrachloroethene PCE, C2Cl4 0.895 0.358
trichloroethene TCE, C2HCl3 1.101 0.441
1,2-dichloroethene (mixture of cis- and trans-) 1,2-DCE, C2H2Cl2 1.145 0.458
1,1-dichloroethene 1,1-DCE, C2H2Cl2 1.328 0.531
vinyl chloride VC, C2H3Cl 2.4709 0.988
Tab.1  Observed overall reaction rate constants for reduction of the various chlorinated ethenes using the aerosol-based Fe-C composite particles
Fig.3  Representative headspace analyses using gas chromatography showing (a) PCE and (b) TCE degradation and reaction product evolution at various reaction times
Fig.4  (a) PCE and (b) TCE removal from solution and gas product evolution rates for Fe-C composites. M/M0 is the fraction of the original chlorinated ethylene remaining and P/Pf is the ratio of the gas product peak to the gas product peak at the end of reaction. The initial sharp decrease of the chlorinated ethylene (PCE, TCE) peak is due to the strong adsorption of carbon in the Fe-C composite. The subsequent slow evolution of gas phase dechlorination products indicates that the dechlorination of the chlorinated ethene is responsible for the second, slower step in the coupled adsorption and reaction sequence. km,obs is the mass normalized rate constant based on the mass of zerovalent iron
Fig.5  Reaction kinetics of the intermediate chlorinated ethenes (a) 1,2-DCE, (b) 1,1-DCE, and (c) VC. M/M0 is the fraction of the original chlorinated ethene remaining and P/Pf is the ratio of the gas product peak to the gas product peak at the end of reaction. The initial sharp decrease of the chlorinated ethene (1,2-DCE, 1,1-DCE and VC) peak is due to the strong adsorption of carbon in the Fe-C composite. The subsequent slow evolution of gas phase dechlorination products indicates that the dechlorination of the chlorinated ethene is responsible for the second, slower step in the coupled adsorption and reaction sequence. km,obs is the mass normalized rate constant based on the mass of zerovalent iron
Fig.6  Comparison of adsorption capacities of humic acid, Fe salt-C from the aerosol-based process and commercial activated carbon. In all experiments, 20 mL of a 20 ppm chlorinated ethylene ((a) PCE, (b) TCE, (c) 1,2-DCE, (d) 1,1-DCE, and (e) VC) solution and 0.2g of particles were used. The adsorption capacity was measured 5 min after the addition of particles to the chlorinated ethene solution. The results show that the adsorption of chlorinated ethenes on aerosol based iron-carbon composites is higher than that of humic acid and is comparable to the adsorption on commercially available granular and irregularly defined activated carbons
chlorinated ethene partition coefficient (Kp) aerosol Fe salt-C
tetrachloroethylene 898
trichloroethylene 1897
cis- 1,2-dichloroethylene 5927
trans- 1,2-dichloroethylene 3057
1, 1-dichloroethylene 4536
vinyl chloride 145
Tab.2  Calculated partition coefficient of chlorinated hydrocarbons adsorption on aerosol-based Fe salt-C composites
1 Matheson  L J, Tratnyek  P G. Reductive dehalogenation of chlorinated methanes by iron metal. Environmental Science & Technology, 1994, 28(12): 2045–2053
https://doi.org/10.1021/es00061a012 pmid: 22191743
2 Orth  W S, Gillham  R W. Dechlorination of trichloroethene in aqueous solution using Fe0. Environmental Science & Technology, 1996, 30(1): 66–71
https://doi.org/10.1021/es950053u
3 Doong  R A, Chen  K T, Tsai  H C. Reductive dechlorination of carbon tetrachloride and tetrachloroethylene by zerovalent silicon-iron reductants. Environmental Science & Technology, 2003, 37(11): 2575–2581
https://doi.org/10.1021/es020978r pmid: 12831046
4 Lowry  G, Reinhard  M. Pd-catalyzed TCE dechlorination in groundwater: solute effects, biological control, and oxidative catalyst regeneration. Environmental Science & Technology, 2000, 34(15): 3217–3223
https://doi.org/10.1021/es991416j
5 Schrick  B, Blough  J L, Jones  A D, Mallouk  T E. Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles. Chemistry of Materials, 2002, 14(12): 5140–5147
https://doi.org/10.1021/cm020737i
6 Liu  Y, Majetich  S A, Tilton  R D, Sholl  D S, Lowry  G V. TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environmental Science & Technology, 2005, 39(5): 1338–1345
https://doi.org/10.1021/es049195r pmid: 15787375
7 Liu  Y, Choi  H, Dionysiou  D, Lowry  G V. Trichloroethene hydrodechlorination in water by highly disordered monometallic nanoiron. Chemistry of Materials, 2005, 17(21): 5315–5322
https://doi.org/10.1021/cm0511217
8 Elliott  D W, Zhang  W X. Field assessment of nanoscale bimetallic particles for groundwater treatment. Environmental Science & Technology, 2001, 35(24): 4922–4926
https://doi.org/10.1021/es0108584 pmid: 11775172
9 Zheng  T, Zhan  J, He  J, Day  C, Lu  Y, McPherson  G L, Piringer  G, John  V T. Reactivity characteristics of nanoscale zerovalent iron—silica composites for trichloroethylene remediation. Environmental Science & Technology, 2008, 42(12): 4494–4499
https://doi.org/10.1021/es702214x pmid: 18605576
10 O’Carroll  D, Sleep  B, Krol  M, Boparai  H, Kocur  C. Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Advances in Water Resources, 2013, 51: 104–122
https://doi.org/10.1016/j.advwatres.2012.02.005
11 Phenrat  T, Saleh  N, Sirk  K, Tilton  R D, Lowry  G V. Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environmental Science & Technology, 2007, 41(1): 284–290
https://doi.org/10.1021/es061349a pmid: 17265960
12 Schrick B, Hydutsky B W, Blough J L, Mallouk T E. Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chemistry of Materials, 2004, 16(11): 2187–2193
https://doi.org/10.1021/cm0218108
13 He  F, Zhao  D. Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environmental Science & Technology, 2005, 39(9): 3314–3320
https://doi.org/10.1021/es048743y pmid: 15926584
14 Phenrat  T, Saleh  N, Sirk  K, Kim  H J, Tilton  R D, Lowry  G V. Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. Journal of Nanoparticle Research, 2008, 10(5): 795–814
https://doi.org/10.1007/s11051-007-9315-6
15 He  F, Zhao  D, Liu  J, Roberts  C B. Stabilization of Fe-Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Industrial & Engineering Chemistry Research, 2007, 46(1): 29–34
https://doi.org/10.1021/ie0610896
16 He  F,  Zhao  D.  Manipulating the  size  and  dispersibility  of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers. Environmental Science & Technology, 2007, 41(17): 6216–6221
https://doi.org/10.1021/es0705543 pmid: 17937305
17 Quinn  J, Geiger  C, Clausen  C, Brooks  K, Coon  C, O’Hara  S, Krug  T, Major  D, Yoon  W S, Gavaskar  A, Holdsworth  T. Field demonstration of DNAPL dehalogenation using emulsified zero-valent iron. Environmental Science & Technology, 2005, 39(5): 1309–1318
https://doi.org/10.1021/es0490018 pmid: 15787371
18 Saleh  N, Phenrat  T, Sirk  K, Dufour  B, Ok  J, Sarbu  T, Matyjaszewski  K, Tilton  R D, Lowry  G V. Adsorbed triblock copolymers deliver reactive iron nanoparticles to the oil/water interface. Nano Letters, 2005, 5(12): 2489–2494
https://doi.org/10.1021/nl0518268 pmid: 16351201
19 Zhan  J, Sunkara  B, Le  L, John  V T, He  J, McPherson  G L, Piringer  G, Lu  Y. Multifunctional colloidal particles for in situ remediation of chlorinated hydrocarbons. Environmental Science & Technology, 2009, 43(22): 8616–8621
https://doi.org/10.1021/es901968g pmid: 20028061
20 Sunkara  B, Zhan  J, He  J, McPherson  G L, Piringer  G, John  V T. Nanoscale zerovalentiron supported on uniform carbon microspheres for the in situ remediation of chlorinated hydrocarbons. ACS Applied Materials & Interfaces, 2010, 2(10): 2854–2862
https://doi.org/10.1021/am1005282
21 Zhan  J, Kolesnichenko  I, Sunkara  B, He  J, McPherson  G L, Piringer  G, John  V T. Multifunctional iron-carbon nanocomposites through an aerosol-based process for the in situ remediation of chlorinated hydrocarbons. Environmental Science & Technology, 2011, 45(5): 1949–1954
https://doi.org/10.1021/es103493e pmid: 21299241
22 Sunkara  B, Zhan  J, Kolesnichenko  I, Wang  Y, He  J, Holland  J E, McPherson  G L, John  V T. Modifying metal nanoparticle placement on carbon supports using an aerosol-based process, with application to the environmental remediation of chlorinated hydrocarbons. Langmuir, 2011, 27(12): 7854–7859
https://doi.org/10.1021/la200657m pmid: 21612244
23 Zhan  J, Sunkara  B, Tang  J, Wang  Y, He  J, McPherson  G L, John  V T. Carbothermalsynthesis of aerosol-based adsorptive-reactive iron–carbon particles for the remediation of chlorinated hydrocarbons. Industrial & Engineering Chemistry Research, 2011, 50(23): 13021–13029
https://doi.org/10.1021/ie200783z
24 Zhan  J, Zheng  T, Piringer  G, Day  C, McPherson  G L, Lu  Y, Papadopoulos  K, John  V T. Transport characteristics of nanoscale functional zerovalent iron/silica composites for in situ remediation of trichloroethylene. Environmental Science & Technology, 2008, 42(23): 8871–8876
https://doi.org/10.1021/es800387p pmid: 19192811
25 Bleyl  S, Kopinke  F D, Georgi  A, Mackenzie  K. Carbo-iron—atailored reagent for in situ groundwater remediation. Chemieingenieurtechnik (Weinheim), 2013, 85: 1302–1311
https://doi.org/10.1002/cite.201300009
26 Busch  J, Meißner  T, Potthoff  A, Oswald  S E. Transport of carbon colloid supported nanoscale zero-valent iron in saturated porous media. Journal of Contaminant Hydrology, 2014, 164: 25–34
https://doi.org/10.1016/j.jconhyd.2014.05.006 pmid: 24914524
27 Mackenzie  K, Bleyl  S, Georgi  A, Kopinke  F D. Carbo-iron—an Fe/AC composite—as alternative to nano-iron for groundwater treatment. Water Research, 2012, 46(12): 3817–3826
https://doi.org/10.1016/j.watres.2012.04.013 pmid: 22591820
28 Lien  H L, Zhang  W. Nanoscale iron particles for complete reduction of chlorinated ethenes. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2001, 191(1–2): 97–105
https://doi.org/10.1016/S0927-7757(01)00767-1
29 Muftikian  R, Fernando  Q, Korte  N. A method for the rapid dechlorination of low molecular weight chlorinated hydrocarbons in water. Water Research, 1995, 29(10): 2434–2439
https://doi.org/10.1016/0043-1354(95)00102-Q
30 Nyer  E K, Vance  D B. Nano-scale iron for dehalogenation. Ground Water Monitoring and Remediation, 2001, 2(2): 41–46
https://doi.org/10.1111/j.1745-6592.2001.tb00298.x
31 Wang  C, Zhang  W. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environmental Science & Technology, 1997, 31(7): 2154–2156
https://doi.org/10.1021/es970039c
32 Hess  D R. Nebulizers: principles and performance. Respiratory Care, 2000, 45(6): 609–622
pmid: 10894454
33 Phenrat  T, Liu  Y, Tilton  R D, Lowry  G V. Adsorbed polyelectrolyte coatings decrease Fe0 nanoparticle reactivity with TCE in water: conceptual model and mechanisms. Environmental Science & Technology, 2009, 43(5): 1507–1514
https://doi.org/10.1021/es802187d pmid: 19350927
34 Gossett  J M. Measurement of Henry’s law constants for C1 and C2 chlorinated hydrocarbons. Environmental Science & Technology, 1987, 21(2): 202–208
https://doi.org/10.1021/es00156a012
[1] Seyyed Salar Meshkat, Ebrahim Ghasemy, Alimorad Rashidi, Omid Tavakoli, Mehdi Esrafili. Experimental and DFT insights into nitrogen and sulfur co-doped carbon nanotubes for effective desulfurization of liquid phases: Equilibrium & kinetic study[J]. Front. Environ. Sci. Eng., 2021, 15(5): 109-.
[2] Guolong Zeng, Yiyang Liu, Xiaoguo Ma, Yinming Fan. Fabrication of magnetic multi-template molecularly imprinted polymer composite for the selective and efficient removal of tetracyclines from water[J]. Front. Environ. Sci. Eng., 2021, 15(5): 107-.
[3] Guanyu Jiang, Can Wang, Lu Song, Xing Wang, Yangyang Zhou, Chunnan Fei, He Liu. Aerosol transmission, an indispensable route of COVID-19 spread: case study of a department-store cluster[J]. Front. Environ. Sci. Eng., 2021, 15(3): 46-.
[4] Fan Lu, Tianyu Hu, Shunyan Wei, Liming Shao, Pinjing He. Bioaerosolization behavior along sewage sludge biostabilization[J]. Front. Environ. Sci. Eng., 2021, 15(3): 45-.
[5] Wenwen Xie, Yanpeng Li, Wenyan Bai, Junli Hou, Tianfeng Ma, Xuelin Zeng, Liyuan Zhang, Taicheng An. The source and transport of bioaerosols in the air: A review[J]. Front. Environ. Sci. Eng., 2021, 15(3): 44-.
[6] Mariana Valdez-Castillo, Sonia Arriaga. Response of bioaerosol cells to photocatalytic inactivation with ZnO and TiO2 impregnated onto Perlite and Poraver carriers[J]. Front. Environ. Sci. Eng., 2021, 15(3): 43-.
[7] Pil Uthaug Rasmussen, Katrine Uhrbrand, Mette Damkjær Bartels, Helle Neustrup, Dorina Gabriela Karottki, Ute Bültmann, Anne Mette Madsen. Occupational risk of exposure to methicillin-resistant Staphylococcus aureus (MRSA) and the quality of infection hygiene in nursing homes[J]. Front. Environ. Sci. Eng., 2021, 15(3): 41-.
[8] Philippa Douglas, Daniela Fecht, Deborah Jarvis. Characterising populations living close to intensive farming and composting facilities in England[J]. Front. Environ. Sci. Eng., 2021, 15(3): 40-.
[9] Yunping Han, Lin Li, Ying Wang, Jiawei Ma, Pengyu Li, Chao Han, Junxin Liu. Composition, dispersion, and health risks of bioaerosols in wastewater treatment plants: A review[J]. Front. Environ. Sci. Eng., 2021, 15(3): 38-.
[10] Dongjie Shang, Jianfei Peng, Song Guo, Zhijun Wu, Min Hu. Secondary aerosol formation in winter haze over the Beijing-Tianjin-Hebei Region, China[J]. Front. Environ. Sci. Eng., 2021, 15(2): 34-.
[11] Ragini Pirarath, Palani Shivashanmugam, Asad Syed, Abdallah M. Elgorban, Sambandam Anandan, Muthupandian Ashokkumar. Mercury removal from aqueous solution using petal-like MoS2 nanosheets[J]. Front. Environ. Sci. Eng., 2021, 15(1): 15-.
[12] Yang Deng. Low-cost adsorbents for urban stormwater pollution control[J]. Front. Environ. Sci. Eng., 2020, 14(5): 83-.
[13] Jing Li, Haiqin Yu, Xue Zhang, Rixin Zhu, Liangguo Yan. Crosslinking acrylamide with EDTA-intercalated layered double hydroxide for enhanced recovery of Cr(VI) and Congo red: Adsorptive and mechanistic study[J]. Front. Environ. Sci. Eng., 2020, 14(3): 52-.
[14] Alisa Salimova, Jian’e Zuo, Fenglin Liu, Yajiao Wang, Sike Wang, Konstantin Verichev. Ammonia and phosphorus removal from agricultural runoff using cash crop waste-derived biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 48-.
[15] Ziwen Du, Chuyi Huang, Jiaqi Meng, Yaru Yuan, Ze Yin, Li Feng, Yongze Liu, Liqiu Zhang. Sorption of aromatic organophosphate flame retardants on thermally and hydrothermally produced biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 43-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed