Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2016, Vol. 10 Issue (3) : 467-476    https://doi.org/10.1007/s11783-015-0809-7
RESEARCH ARTICLE
Utilization of aluminum hydroxide waste generated in fluoride adsorption and coagulation processes for adsorptive removal of cadmium ion
Jiawei JU1,2,Ruiping LIU1,*(),Zan HE1,2,Huijuan LIU1,Xiwang ZHANG3,Jiuhui QU1
1. State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
2. University of Chinese Academy of Sciences, Beijing 100039, China
3. Department of Chemical Engineering, Monash University, Clayton VIC 3800, Australia
 Download: PDF(569 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Although Al-based coagulation and adsorption processes have been proved highly efficient for fluoride (F) removal, the two processes both generate large amount of Al(OH)3 solid waste containing F (Al(OH)3-F). This study aimed to investigate the feasibility of utilizing Al(OH)3-F generated in Al(OH)3 adsorption (Al(OH)3-Fads) and coagulation (Al(OH)3-Fcoag) for the adsorption of cadmium ion (Cd(II)). The adsorption capacity of Al(OH)3-Fads and Al(OH)3-Fcoag for Cd(II) was similar as that of pristine aluminum hydroxide (Al(OH)3), being of 24.39 and 19.90 mg·g-1, respectively. The adsorption of Cd(II) onto Al(OH)3-Fads and Al(OH)3-Fcoag was identified to be dominated by ion-exchange with sodium ion (Na+) or hydrogen ion (H+), surface microprecitation, and electrostatic attraction. The maximum concentration of the leached fluoride from Al(OH)3-Fads and Al(OH)3-Fcoag is below the Chinese Class-I Industrial Wastewater Discharge Standard for fluoride (<10 mg·L-1). This study demonstrates that the Al(OH)3 solid wastes generated in fluoride removal process could be potentially utilized as a adsorbent for Cd(II) removal.

Keywords Al(OH)3      fluoride      cadmium      adsorption      reclamation      sequential extraction     
Corresponding Author(s): Ruiping LIU   
Online First Date: 28 July 2015    Issue Date: 05 April 2016
 Cite this article:   
Jiawei JU,Ruiping LIU,Zan HE, et al. Utilization of aluminum hydroxide waste generated in fluoride adsorption and coagulation processes for adsorptive removal of cadmium ion[J]. Front. Environ. Sci. Eng., 2016, 10(3): 467-476.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-015-0809-7
https://academic.hep.com.cn/fese/EN/Y2016/V10/I3/467
kinetic models parameter Al(OH)3-Fads Al(OH)3-Fcoag Al(OH)3
Qe,exp /(mg·g-1) 16.19 15.65 19.46
pseudo-first-order kinetic model k1 /( × 10 min-1) 0.19 0.16 0.23
Qe,cal /(mg·g-1) 12.78 12.30 11.70
R2 0.89 0.89 0.78
pseudo-second-order kinetic model k2 /( × 102 min-1) 0.16 0.14 0.04
Qe,cal /(mg·g-1) 16.66 16.39 19.60
R2 0.99 0.99 0.99
Tab.1  Fitted kinetic parameters of pseudo-first-order and pseudo-second-order models for the adsorption of Cd(II) onto these three adsorbents
adsorbents Qe,expa)/(mg·g-1) adsorption isotherm models
Langmuir parameters Freundlich parameters D-R parameters
Qmax/(mg·g-1) L/(L·mg-1) R2 F n R2 Qmax/(mg·g-1) E/(kJ·mol-1) R2
Al(OH)3-Fads 17.12 24.39 0.04 0.99 1.18 1.53 0.90 25.75 8.45 0.98
Al(OH)3-Fcoag 16.86 19.90 0.08 0.99 4.94 3.18 0.94 40.74 5.59 0.99
Al(OH)3 20.05 30.30 0.03 0.99 2.83 2.02 0.84 38.99 6.74 0.99
Tab.2  Fitted parameters of Langmuir, Freundlich, and D-R models for the adsorption of Cd(II) onto these three adsorbents
Fig.1  Uptake of Cd(II) onto these three adsorbents at various equilibrium pH
Fig.2  Uptake of Cd(II) onto these three adsorbents at various ionic strength
Fig.3  Solution pH variation during the adsorption of Cd(II) by these three adsorbents with prolonged time
Fig.4  XPS spectra of Cd 3d and Cl 2p on the surfaces of these three adsorbents
Binding energy /eV
Al(OH)3-Fads Al(OH)3-Fcoag Al(OH)3 Al(OH)3-Fads-Cd(II) Al(OH)3-Fcoag-Cd(II) Al(OH)3-Cd(II)
Na 1s 1071.5 (13.6%)a) 1071.5 (12.1%) 1071.7 (6.5%) 1071.4 (1.0%) 1071.5 (4.2%) 1071.4 (1.2%)
O 1s 531.8 (31.6%)a) 531.9 (34.8%) 531.6 (50.6%) 532.0 (47.1%) 531.9 (48.1%) 531.6 (60.4%)
Al 2p 74.4 (14.6%) 74.3 (21.7%) 74.0 (18.0%) 74.5 (29.6%) 74.4 (27.1%) 74.1 (20.2%)
F 1s 684.8 (14.9%) 684.9 (9.9%) / 685.1 (19.4%) 684.8 (13.9%) /
Cl 2p 198.6 (6.6%)200.2 (3.3%) 198.6 (6.1%)200.2 (4.3%) 198.6 (4.4%)200.1 (2.3%) 198.1 (5.1%)199.5 (4.6%) 198 (2.1%)199.5 (1.5%) 197.8 (1.8%)199.2 (1.1%)
Cd 3d / / / 405.2 (0.2%)411.9 (0.1%) 405.5 (0.2%)412.2 (0.2%) 405.3 (0.3%)412.1 (0.2%)
Tab.3  XPS binding energy of the main elements on the surfaces of these three adsorbents before and after adsorbing Cd(II)
Fig.5  Content and ratios of Cd(II) in different binding species within these three adsorbent (species-I: water-soluble Cd(II); species-II: N H 4 + -exchangeable Cd(II); species-III: Na+-exchangeable Cd(II))
1 Hu C Y, Lo S L, Kuan W H, Lee Y D. Removal of fluoride from semiconductor wastewater by electrocoagulation-flotation. Water Research, 2005, 39(5): 895–901
https://doi.org/10.1016/j.watres.2004.11.034 pmid: 15743636
2 Zhang G, Gao Y, Zhang Y, Gu P. Removal of fluoride from drinking water by a membrane coagulation reactor (MCR). Desalination, 2005, 177(1-3): 143–155
https://doi.org/10.1016/j.desal.2004.12.005
3 Cooper C, Jiang J Q, Ouki S. Preliminary evaluation of polymeric Fe- and Al- modified clays as adsorbents for heavy metal removal in water treatment. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2002, 77(5): 546–551
https://doi.org/10.1002/jctb.614
4 Mahmoud M E, Osman M M, Hafez O F, Hegazi A H, Elmelegy E. Removal and preconcentration of lead (II) and other heavy metals from water by alumina adsorbents developed by surface-adsorbed-dithizone. Desalination, 2010, 251(1-3): 123–130
https://doi.org/10.1016/j.desal.2009.08.008
5 Naiya T K, Bhattacharya A K, Das S K. Adsorption of Cd(II) and Pb(II) from aqueous solutions on activated alumina. Journal of Colloid and Interface Science, 2009, 333(1): 14–26
https://doi.org/10.1016/j.jcis.2009.01.003 pmid: 19211112
6 Granados-Correa F, Corral-Capulin N G, Olguín M T, Acosta-León C E. Comparison of the Cd (II) adsorption processes between boehmite (γ-AlOOH) and goethite (α-FeOOH). Chemical Engineering Journal, 2011, 171(3): 1027–1034
https://doi.org/10.1016/j.cej.2011.04.055
7 Orescanin V, Kollar R, Halkijevic I, Kuspilic M, Flegar V. Neutralization/purification of the wastewaters from printed circuit boards production using waste by-products. Journal of Environmental Science and Health. Part A: Environmental Science and Engineering & Toxic and Hazardous Substance Control, 2014, 49(5): 540–544
https://doi.org/10.1080/10934529.2014.859034 pmid: 24410684
8 Sun W, Yin K, Yu X. Effect of natural aquatic colloids on Cu(II) and Pb(II) adsorption by Al2O3 nanoparticles. Chemical Engineering Journal, 2013, 225(1): 464–473
https://doi.org/10.1016/j.cej.2013.04.010
9 Smičiklas I, Smiljanić S, Perić-Grujić A, Šljivić-Ivanović M, Antonović D. The influence of citrate anion on Ni (II) removal by raw red mud from aluminum industry. Chemical Engineering Journal, 2013, 214(1): 327–335
https://doi.org/10.1016/j.cej.2012.10.086
10 Lagergren S. Zur heorie der sogenannten adsorption geloster stoffe, Kungliga Svenska Vetenskapsakademiens. Handlingar, 1898, 24(4): 1–39
11 Ho Y S, McKay G. Pseudo-second order model for sorption processes. Process Biochemistry, 1999, 34(5): 451–465
https://doi.org/10.1016/S0032-9592(98)00112-5
12 McKay G, Blair H, Gardner J. Adsorption of dyes on chitin. I. Equilibrium studies. Journal of Applied Polymer Science, 1982, 27(8): 3043–3057
https://doi.org/10.1002/app.1982.070270827
13 Liu H, Cai X, Wang Y, Chen J. Adsorption mechanism-based screening of cyclodextrin polymers for adsorption and separation of pesticides from water. Water Research, 2011, 45(11): 3499–3511
https://doi.org/10.1016/j.watres.2011.04.004 pmid: 21529879
14 Liang J, Xu R, Jiang X, Wang Y, Zhao A, Tan W. Effect of arsenate on adsorption of Cd(II) by two variable charge soils. Chemosphere, 2007, 67(10): 1949–1955
https://doi.org/10.1016/j.chemosphere.2006.11.057 pmid: 17234246
15 Mansour M, Ossman M, Farag H. Removal of Cd (II) ion from waste water by adsorption onto polyaniline coated on sawdust. Desalination, 2011, 272(1-3): 301–305
https://doi.org/10.1016/j.desal.2011.01.037
16 Kinniburgh D, Syers J, Jackson M. Specific adsorption of trace amounts of calcium and strontium by hydrous oxides of iron and aluminum. Soil Science Society of America Journal, 1975, 39(3): 464–470
https://doi.org/10.2136/sssaj1975.03615995003900030027x
17 Breen C, Bejarano-Bravo C M, Madrid L, Thompson G, Mann B E. Na/Pb, Na/Cd and Pb/Cd exchange on a low iron Texas bentonite in the presence of competing H+ ion. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 1999, 155(2-3): 211–219
https://doi.org/10.1016/S0927-7757(99)00030-8
18 Liu Y, Zhao Q, Cheng G, Xu H. Exploring the mechanism of lead(II) adsorption from aqueous solution on ammonium citrate modified spent Lentinus edodes. Chemical Engineering Journal, 2011, 173(3): 792–800
https://doi.org/10.1016/j.cej.2011.08.054
19 Trivedi P, Axe L. Modeling Cd and Zn Sorption to Hydrous Metal Oxides. Environmental Science & Technology, 2000, 34(11): 2215–2223
https://doi.org/10.1021/es991110c
20 Wagner C D, Riggs W M, Davis L E, Moulder J F. Handbook of X-ray Photoelec-tron Spectroscopy. Eden Prairie, Minnesota: Physical Electronics Division, Perkin-Elmer Corporation, 1979
21 Hirsch D, Nir S, Banin A. Prediction of cadmium complexation in solution and adsorption to montmorillonite. Soil Science Society of America Journal, 1989, 53(3): 716–721
https://doi.org/10.2136/sssaj1989.03615995005300030012x
22 Cheng C, Wang J, Yang X, Li A, Philippe C. Adsorption of Ni(II) and Cd(II) from water by novel chelating sponge and the effect of alkali-earth metal ions on the adsorption. Journal of Hazardous Materials, 2014, 264(1): 332–341
https://doi.org/10.1016/j.jhazmat.2013.11.028 pmid: 24316805
[1] Seyyed Salar Meshkat, Ebrahim Ghasemy, Alimorad Rashidi, Omid Tavakoli, Mehdi Esrafili. Experimental and DFT insights into nitrogen and sulfur co-doped carbon nanotubes for effective desulfurization of liquid phases: Equilibrium & kinetic study[J]. Front. Environ. Sci. Eng., 2021, 15(5): 109-.
[2] Guolong Zeng, Yiyang Liu, Xiaoguo Ma, Yinming Fan. Fabrication of magnetic multi-template molecularly imprinted polymer composite for the selective and efficient removal of tetracyclines from water[J]. Front. Environ. Sci. Eng., 2021, 15(5): 107-.
[3] Ragini Pirarath, Palani Shivashanmugam, Asad Syed, Abdallah M. Elgorban, Sambandam Anandan, Muthupandian Ashokkumar. Mercury removal from aqueous solution using petal-like MoS2 nanosheets[J]. Front. Environ. Sci. Eng., 2021, 15(1): 15-.
[4] Kehui Liu, Xiaolu Liang, Chunming Li, Fangming Yu, Yi Li. Nutrient status and pollution levels in five areas around a manganese mine in southern China[J]. Front. Environ. Sci. Eng., 2020, 14(6): 100-.
[5] Yang Deng. Low-cost adsorbents for urban stormwater pollution control[J]. Front. Environ. Sci. Eng., 2020, 14(5): 83-.
[6] Jing Li, Haiqin Yu, Xue Zhang, Rixin Zhu, Liangguo Yan. Crosslinking acrylamide with EDTA-intercalated layered double hydroxide for enhanced recovery of Cr(VI) and Congo red: Adsorptive and mechanistic study[J]. Front. Environ. Sci. Eng., 2020, 14(3): 52-.
[7] Alisa Salimova, Jian’e Zuo, Fenglin Liu, Yajiao Wang, Sike Wang, Konstantin Verichev. Ammonia and phosphorus removal from agricultural runoff using cash crop waste-derived biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 48-.
[8] Ziwen Du, Chuyi Huang, Jiaqi Meng, Yaru Yuan, Ze Yin, Li Feng, Yongze Liu, Liqiu Zhang. Sorption of aromatic organophosphate flame retardants on thermally and hydrothermally produced biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 43-.
[9] Zhenyu Yang, Rong Xing, Wenjun Zhou, Lizhong Zhu. Adsorption characteristics of ciprofloxacin onto g-MoS2 coated biochar nanocomposites[J]. Front. Environ. Sci. Eng., 2020, 14(3): 41-.
[10] Tiancui Li, Yaocheng Fan, Deshou Cun, Yanran Dai, Wei Liang. Dibutyl phthalate adsorption characteristics using three common substrates in aqueous solutions[J]. Front. Environ. Sci. Eng., 2020, 14(2): 26-.
[11] Keke Li, Huosheng Li, Tangfu Xiao, Gaosheng Zhang, Aiping Liang, Ping Zhang, Lianhua Lin, Zexin Chen, Xinyu Cao, Jianyou Long. Zero-valent manganese nanoparticles coupled with different strong oxidants for thallium removal from wastewater[J]. Front. Environ. Sci. Eng., 2020, 14(2): 34-.
[12] Kanha Gupta, Nitin Khandelwal, Gopala Krishna Darbha. Removal and recovery of toxic nanosized Cerium Oxide using eco-friendly Iron Oxide Nanoparticles[J]. Front. Environ. Sci. Eng., 2020, 14(1): 15-.
[13] Hongqi Wang, Ruhan Jiang, Dekang Kong, Zili Liu, Xiaoxiong Wu, Jie Xu, Yi Li. Transmembrane transport of polycyclic aromatic hydrocarbons by bacteria and functional regulation of membrane proteins[J]. Front. Environ. Sci. Eng., 2020, 14(1): 9-.
[14] Muhammad Kashif Shahid, Yunjung Kim, Young-Gyun Choi. Adsorption of phosphate on magnetite-enriched particles (MEP) separated from the mill scale[J]. Front. Environ. Sci. Eng., 2019, 13(5): 71-.
[15] Gaoling Wei, Jinhua Zhang, Jinqiu Luo, Huajian Xue, Deyin Huang, Zhiyang Cheng, Xinbai Jiang. Nanoscale zero-valent iron supported on biochar for the highly efficient removal of nitrobenzene[J]. Front. Environ. Sci. Eng., 2019, 13(4): 61-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed