Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2016, Vol. 10 Issue (2) : 368-380    https://doi.org/10.1007/s11783-015-0815-9
RESEARCH ARTICLE
Microbial community structure and dynamics of starch-fed and glucose-fed chemostats during two years of continuous operation
Min GOU1,Jing ZENG1,Huizhong WANG1,Yueqin TANG1,*(),Toru SHIGEMATSU2,Shigeru MORIMURA3,Kenji KIDA1
1. College of Architecture and Environment, Sichuan University, Chengdu 610065, China
2. Department of Food Science, Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences (NUPALS), Niigata 956-8603, Japan
3. Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-0862, Japan
 Download: PDF(1443 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The microbial community structures of two mesophilic anaerobic chemostats, one fed with glucose, the other with starch as sole carbon sources, were studied at various dilution rates (0.05–0.25 d−1 for glucose and 0.025–0.1 d−1 for starch) during two years continuous operation. In the glucose-fed chemostat, the aceticlastic methanogen Methanosaeta spp. and hydrogenotrophic methanogen Methanoculleus spp. predominated at low dilution rates, whereas Methanosaeta spp. and the hydrogenotrophic Methanobacterium spp. predominated together when dilution rates were greater than 0.1 d−1. Bacteria affiliated with the phyla Bacteroidetes, Spirochaetes, and Actinobacteria predominated at dilution rates of 0.05, 0.1, and 0.15 d−1, respectively, while Firmicutes predominated at higher dilution rates (0.2 and 0.25 d−1). In the starch-fed chemostat, the aceticlastic and hydrogenotrophic methanogens coexisted at all dilution rates. Although bacteria belonging to only two phyla were mainly responsible for starch degradation (Spirochaetes at the dilution rate of 0.08 d−1 and Firmicutes at other dilution rates), different bacterial genera were identified at different dilution rates. With the exception of Archaea in the glucose-fed chemostat, the band patterns revealed by denaturing gradient gel electrophoresis (DGGE) of the microbial communities in the two chemostats displayed marked changes during long-term operation at a constant dilution rate. The bacterial community changed with changes in the dilution rate, and was erratic during long-term operation in both glucose-fed and starch-fed chemostats.

Keywords microbial community      glucose degradation      starch degradation      dilution rate      continuous methane fermentation      phylogenetic analysis     
Corresponding Author(s): Yueqin TANG   
Online First Date: 23 September 2015    Issue Date: 01 February 2016
 Cite this article:   
Min GOU,Jing ZENG,Huizhong WANG, et al. Microbial community structure and dynamics of starch-fed and glucose-fed chemostats during two years of continuous operation[J]. Front. Environ. Sci. Eng., 2016, 10(2): 368-380.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-015-0815-9
https://academic.hep.com.cn/fese/EN/Y2016/V10/I2/368
Fig.1  Effect of dilution rate on TOC and VFA concentrations and gas production in the two chemostats, (a) glucose-fed chemostat; (b) starch-fed chemostats. Circles, TOC removal efficiency; crosses, TOC concentration; triangles, VFA concentration; squares, gas production
dilution rate taxon 0.05 d−1 0.1 d−1 0.15 d−1 0.20 d−1 0.25 d−1
No. of OTUs No. of clones No. of OTUs No. of clones No. of OTUs No. of clones No. of OTUs No. of clones No. of OTUs No. of clones
Archaea GAL1 GAL2 GAL3 GAL4 GAL5
Methanosarcina 1 2
Methanosaeta 1 13 2 27 2 19 1 23 3 20
Methanoregula 1 1
total (Archaea) 1 13 2 27 2 19 2 25 4 21
dilution rate taxon 0.05 d−1 0.1 d−1 0.15 d−1 0.20 d−1 0.25 d−1
No. of OTUs No. of clones No. of OTUs No. of clones No. of OTUs No. of clones No. of OTUs No. of clones No. of OTUs No. of clones
Bacteria GBL1 GBL2 GBL3 GBL4 GBL5
Bacteroidates 1 16
Spirochaetes 1 4 1 16
Proteobacteria 1 3
Actinobacteria 1 4 1 13 1 2
Firmicutes 2 20 1 19
Thermotogae 1 1
Candidate division TM7 1 6 1 3
total (Bacteria) 3 23 2 20 2 19 3 23 3 22
Tab.1  Distribution of 16S rRNA gene clones obtained from the glucose-fed chamostata)
dilution rate taxon 0.025 d−1 0.05 d−1 0.08 d−1 0.10 d−1
No. of OTUs No. of clones No. of OTUs No. of clones No. of OTUs No. of clones No. of OTUs No. of clones
Archaea SAL1 SAL2 SAL3 SAL4
Methanoculleus 1 17
Methanosarcina 1 22 1 1
Methanosaeta 2 26 4 24
total (Archaea) 1 17 1 22 2 26 5 25
dilution rate taxon 0.025 d−1 0.05 d−1 0.08 d−1 0.10 d−1
No. of OTUs No. of clones No. of OTUs No. of clones No. of OTUs No. of clones No. of OTUs No. of clones
Bacteria SBL1 SBL2 SBL3 SBL4
Bacteroidates 1 3 1 2
Spirochaetes 1 18 2 4
Firmicutes 1 16 1 22 1 1 3 12
total (Bacteria) 2 19 1 22 3 21 5 16
Tab.2  Distribution of 16S rRNA gene clones obtained from the starch-fed chamostata)
Fig.2  Phylogenetic tree showing relationships among the bacterial clones of phyla Firmicutes and Bacteroidetes. The tree was constructed by the neighbor-joining method using partial sequences of 16S rRNA genes. GBL1 to GBL5 refer to 16S rRNA gene clone libraries derived from the glucose-fed chemostat at five dilution rates (0.05, 0.10, 0.15, 0.20, and 0.25 d−1), respectively. SBL1 to SBL4 refer to 16S rRNA gene clone libraries derived from the starch-fed chemostat at four dilution rates (0.025, 0.05, 0.08, and 0.10 d−1), respectively. Numbers of clones with identical sequences are shown in parentheses
Fig.3  Phylogenetic tree showing relationships among the bacterial clones of phyla except for Firmicutes and Bacteroidetes
Fig.4  Denaturing gradient gel electrophoresis (DGGE) of archaeal 16S rRNA gene fragments derived from the chemostats. (a) glucose-fed chemostat; (b) starch-fed chemostats. The clones from the two chemostats were used as standards. * The sample was used for library construction
Fig.5  Denaturing gradient gel electrophoresis (DGGE) of bacterial 16S rRNA gene fragments derived from the chemostats. (a) glucose-fed chemostat; (b) starch-fed chemostats. The clones from the two chemostats were used as standards. Major bands are numbered from A1 to A6 (a) and from B1 to B6 (b). Bands represent related microorganisms as follows: A1, GBL1-02; A2, GBL2-01; A3, GBL3-01; A4, GBL4-03; A5, GBL5-03; A6, GBL5-01; B1, SBL1-02; B2, SBL1-01; B3, SBL3-03; B4, SBL3-01; B5, SBL4-05; B6, SBL4-01. * The sample was used for library construction
1 Tang  S Y, Dai  Y Z, Liu  Z Y. Food Industrial Wastewater Treatment. Beijing: Chemical Industry Press, 2001 (in Chinese)
2 Abbasi  T, Tauseef  S M, Abbasi  S A. Anaerobic digestion for global warming control and energy generation—An overview. Renewable & Sustainable Energy Reviews, 2012, 16(5): 3228–3242
https://doi.org/10.1016/j.rser.2012.02.046
3 Ito  T, Yoshiguchi  K, Ariesyady  H D, Okabe  S. Identification and quantification of key microbial trophic groups of methanogenic glucose degradation in an anaerobic digester sludge. Bioresource Technology, 2012, 123: 599–607
https://doi.org/10.1016/j.biortech.2012.07.108 pmid: 22944494
4 Fernández  A, Huang  S, Seston  S, Xing  J, Hickey  R, Criddle  C, Tiedje  J. How stable is stable? Function versus community composition. Applied and Environmental Microbiology, 1999, 65(8): 3697–3704
pmid: 10427068
5 Yu  Z T, Schanbacher  F L. Production of methane biogas as fuel through anaerobic digestion. In: Singh  OV, Harvey  SP, eds. Sustainable Biotechnology. Netherlands: Springer, 2010, 106–127
6 Ferry  J G. Fermentation of acetate. In: Ferry  JG, ed. Methanogenesis: Ecology, Physiology, Biochemistry & Genetics. New York: Springer, 1993, 304–334
7 Cheng  C H, Hung  C H, Lee  K S, Liau  P Y, Liang  C M, Yang  L H, Lin  P J, Lin  C Y. Microbial community structure of a starch-feeding fermentative hydrogen production reactor operated under different incubation conditions. International Journal of Hydrogen Energy, 2008, 33(19): 5242–5249
https://doi.org/10.1016/j.ijhydene.2008.05.017
8 Angenent  L T, Karim  K, Al-Dahhan  M H, Wrenn  B A, Domíguez-Espinosa  R. Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends in Biotechnology, 2004, 22(9): 477–485
https://doi.org/10.1016/j.tibtech.2004.07.001 pmid: 15331229
9 Ahring  B K, Ibrahim  A A, Mladenovska  Z. Effect of temperature increase from 55 to 65°C on performance and microbial population dynamics of an anaerobic reactor treating cattle manure. Water Research, 2001, 35(10): 2446–2452
https://doi.org/10.1016/S0043-1354(00)00526-1 pmid: 11394779
10 Hori  T, Haruta  S, Ueno  Y, Ishii  M, Igarashi  Y. Dynamic transition of a methanogenic population in response to the concentration of volatile fatty acids in a thermophilic anaerobic digester. Applied and Environmental Microbiology, 2006, 72(2): 1623–1630
https://doi.org/10.1128/AEM.72.2.1623-1630.2006 pmid: 16461718
11 Shigematsu  T, Era  S, Mizuno  Y, Ninomiya  K, Kamegawa  Y, Morimura  S, Kida  K. Microbial community of a mesophilic propionate-degrading methanogenic consortium in chemostat cultivation analyzed based on 16S rRNA and acetate kinase genes. Applied Microbiology and Biotechnology, 2006, 72(2): 401–415
https://doi.org/10.1007/s00253-005-0275-4 pmid: 16496142
12 Tang  Y Q, Shigematsu  T, Morimura  S, Kida  K. Effect of dilution rate on the microbial structure of a mesophilic butyrate-degrading methanogenic community during continuous cultivation. Applied Microbiology and Biotechnology, 2007, 75(2): 451–465
https://doi.org/10.1007/s00253-006-0819-2 pmid: 17221191
13 Ovreås  L, Forney  L, Daae  F L, Torsvik  V. Distribution of bacterioplankton in meromictic Lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Applied and Environmental Microbiology, 1997, 63(9): 3367–3373
pmid: 9292986
14 Tang  Y Y, Shigematsu  T, Ikbal, Morimura  S, Kida  K. The effects of micro-aeration on the phylogenetic diversity of microorganisms in a thermophilic anaerobic municipal solid-waste digester. Water Research, 2004, 38(10): 2537–2550
https://doi.org/10.1016/j.watres.2004.03.012 pmid: 15159157
15 Huber  T, Faulkner  G, Hugenholtz  P. Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics, 2004, 20(14): 2317–2319
https://doi.org/10.1093/bioinformatics/bth226 pmid: 15073015
16 Thompson  J D, Gibson  T J, Plewniak  F, Jeanmougin  F, Higgins  D G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 1997, 25(24): 4876–4882
https://doi.org/10.1093/nar/25.24.4876 pmid: 9396791
17 Tamura  K, Dudley  J, Nei  M, Kumar  S. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 2007, 24(8): 1596–1599
https://doi.org/10.1093/molbev/msm092 pmid: 17488738
18 Bräuer  S L, Cadillo-Quiroz  H, Yashiro  E, Yavitt  J B, Zinder  S H. Isolation of a novel acidiphilic methanogen from an acidic peat bog. Nature, 2006, 442(7099): 192–194
https://doi.org/10.1038/nature04810 pmid: 16699521
19 Zellner  G, Messner  P, Winter  J, Stackebrandt  E. Methanoculleus palmolei sp. nov., an irregularly coccoid methanogen from an anaerobic digester treating wastewater of a palm oil plant in north-Sumatra, Indonesia. International Journal of Systematic Bacteriology, 1998, 48(4): 1111–1117
https://doi.org/10.1099/00207713-48-4-1111 pmid: 9828413
20 Tarasov  A L, Borzenkov  I A, Chernyh  N A, Belyaev  S S. Isolation and investigation of anaerobic microorganisms involved in methanol transformation in an underground gas storage facility. Mikrobiologiia, 2011, 80(2): 184–191
21 Rivière  D, Desvignes  V, Pelletier  E, Chaussonnerie  S, Guermazi  S, Weissenbach  J, Li  T, Camacho  P, Sghir  A. Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. ISME Journal, 2009, 3(6): 700–714
https://doi.org/10.1038/ismej.2009.2 pmid: 19242531
22 Rattanachomsri  U, Kanokratana  P, Eurwilaichitr  L, Igarashi  Y, Champreda  V. Culture-independent phylogenetic analysis of the microbial community in industrial sugarcane bagasse feedstock piles. Bioscience, Biotechnology, and Biochemistry, 2011, 75(2): 232–239
https://doi.org/10.1271/bbb.100429 pmid: 21307603
23 Allen-Vercoe  E, Daigneault  M, White  A, Panaccione  R, Duncan  S H, Flint  H J, O’Neal  L, Lawson  P A. Anaerostipes hadrus comb. nov., a dominant species within the human colonic microbiota; reclassification of Eubacterium hadrum Moore et al. 1976. Anaerobe, 2012, 18(5): 523–529
https://doi.org/10.1016/j.anaerobe.2012.09.002 pmid: 22982042
24 Jiménez  N, Barcenilla  J M, de Felipe  F L, de Las Rivas  B, Muñoz  R. Characterization of a bacterial tannase from Streptococcus gallolyticus UCN34 suitable for tannin biodegradation. Applied Microbiology and Biotechnology, 2014, 98(14): 6329–6337
pmid: 24577784
25 Briones  A M, Daugherty  B J, Angenent  L T, Rausch  K D, Tumbleson  M E, Raskin  L. Microbial diversity and dynamics in multi- and single-compartment anaerobic bioreactors processing sulfate-rich waste streams. Environmental Microbiology, 2007, 9(1): 93–106
https://doi.org/10.1111/j.1462-2920.2006.01119.x pmid: 17227415
26 Zhang  P, Chen  Y G, Zhou  Q, Zheng  X, Zhu  X Y, Zhao  Y X. Understanding short-chain fatty acids accumulation enhanced in waste activated sludge alkaline fermentation: kinetics and microbiology. Environmental Science & Technology, 2010, 44(24): 9343–9348
https://doi.org/10.1021/es102878m pmid: 21105739
27 Krakat  N, Schmidt  S, Scherer  P. Mesophilic fermentation of renewable biomass: does hydraulic retention time regulate methanogen diversity? Applied and Environmental Microbiology, 2010, 76(18): 6322–6326
https://doi.org/10.1128/AEM.00927-10 pmid: 20675458
28 Roest  K, Heilig  H G, Smidt  H, de Vos  W M, Stams  A J, Akkermans  A D. Community analysis of a full-scale anaerobic bioreactor treating paper mill wastewater. Systematic and Applied Microbiology, 2005, 28(2): 175–185
https://doi.org/10.1016/j.syapm.2004.10.006 pmid: 15830810
29 Gagliano  M C, Braguglia  C M, Gallipoli  A, Gianico  A, Rossetti  S. Microbial diversity in innovative mesophilic/thermophilic temperature-phased anaerobic digestion of sludge. Environmental Science and Pollution Research International, 2015, 22(10): 7339–7348
https://doi.org/10.1007/s11356-014-3061-y pmid: 24875310
30 Braguglia  C M, Gagliano  M C, Rossetti  S. High frequency ultrasound pretreatment for sludge anaerobic digestion: effect on floc structure and microbial population. Bioresource Technology, 2012, 110: 43–49
https://doi.org/10.1016/j.biortech.2012.01.074 pmid: 22326112
31 Nelson  K E, Zinder  S H, Hance  I, Burr  P, Odongo  D, Wasawo  D, Odenyo  A, Bishop  R. Phylogenetic analysis of the microbial populations in the wild herbivore gastrointestinal tract: insights into an unexplored niche. Environmental Microbiology, 2003, 5(11): 1212–1220
https://doi.org/10.1046/j.1462-2920.2003.00526.x pmid: 14641599
32 Fernandez  A S, Hashsham  S A, Dollhopf  S L, Raskin  L, Glagoleva  O, Dazzo  F B, Hickey  R F, Criddle  C S, Tiedje  J M. Flexible community structure correlates with stable community function in methanogenic bioreactor communities perturbed by glucose. Applied and Environmental Microbiology, 2000, 66(9): 4058–4067
https://doi.org/10.1128/AEM.66.9.4058-4067.2000 pmid: 10966429
33 Nesbø  C L, Dlutek  M, Zhaxybayeva  O, Doolittle  W F. Evidence for existence of “mesotogas,” members of the order Thermotogales adapted to low-temperature environments. Applied and Environmental Microbiology, 2006, 72(7): 5061–5068
https://doi.org/10.1128/AEM.00342-06 pmid: 16820506
34 Kundu  K, Bergmann  I, Hahnke  S, Klocke  M, Sharma  S, Sreekrishnan  T R. Carbon source—a strong determinant of microbial community structure and performance of an anaerobic reactor. Journal of Biotechnology, 2013, 168(4): 616–624
https://doi.org/10.1016/j.jbiotec.2013.08.023 pmid: 23994689
35 Zumstein  E, Moletta  R, Godon  J J. Examination of two years of community dynamics in an anaerobic bioreactor using fluorescence polymerase chain reaction (PCR) single-strand conformation polymorphism analysis. Environmental Microbiology, 2000, 2(1): 69–78
https://doi.org/10.1046/j.1462-2920.2000.00072.x pmid: 11243264
[1] Qinxue Wen, Shuo Yang, Zhiqiang Chen. Mesophilic and thermophilic anaerobic digestion of swine manure with sulfamethoxazole and norfloxacin: Dynamics of microbial communities and evolution of resistance genes[J]. Front. Environ. Sci. Eng., 2021, 15(5): 94-.
[2] Ruijie Li, Mengmeng Zhou, Shilong He, Tingting Pan, Jing Liu, Jiabao Zhu. Deciphering the effect of sodium dodecylbenzene sulfonate on up-flow anaerobic sludge blanket treatment of synthetic sulfate-containing wastewater[J]. Front. Environ. Sci. Eng., 2021, 15(5): 91-.
[3] Weichuan Qiao, Rong Li, Tianhao Tang, Achuo Anitta Zuh. Removal, distribution and plant uptake of perfluorooctane sulfonate (PFOS) in a simulated constructed wetland system[J]. Front. Environ. Sci. Eng., 2021, 15(2): 20-.
[4] Yanqing Duan, Aijuan Zhou, Xiuping Yue, Zhichun Zhang, Yanjuan Gao, Yanhong Luo, Xiao Zhang. Acceleration of the particulate organic matter hydrolysis by start-up stage recovery and its original microbial mechanism[J]. Front. Environ. Sci. Eng., 2021, 15(1): 12-.
[5] Yuhan Zheng, Zhiguo Su, Tianjiao Dai, Feifei Li, Bei Huang, Qinglin Mu, Chuanping Feng, Donghui Wen. Identifying human-induced influence on microbial community: A comparative study in the effluent-receiving areas in Hangzhou Bay[J]. Front. Environ. Sci. Eng., 2019, 13(6): 90-.
[6] Aoshuang Jing, Tao Liu, Xie Quan, Shuo Chen, Yaobin Zhang. Enhanced nitrification in integrated floating fixed-film activated sludge (IFFAS) system using novel clinoptilolite composite carrier[J]. Front. Environ. Sci. Eng., 2019, 13(5): 69-.
[7] Qinqin Liu, Miao Li, Rui Liu, Quan Zhang, Di Wu, Danni Zhu, Xuhui Shen, Chuanping Feng, Fawang Zhang, Xiang Liu. Removal of trimethoprim and sulfamethoxazole in artificial composite soil treatment systems and diversity of microbial communities[J]. Front. Environ. Sci. Eng., 2019, 13(2): 28-.
[8] Xiaohui Wang, Shuai Du, Tao Ya, Zhiqiang Shen, Jing Dong, Xiaobiao Zhu. Removal of tetrachlorobisphenol A and the effects on bacterial communities in a hybrid sequencing biofilm batch reactor-constructed wetland system[J]. Front. Environ. Sci. Eng., 2019, 13(1): 14-.
[9] Guangqing Song, Hongbo Xi, Xiumei Sun, Yudong Song, Yuexi Zhou. Effect of 2-butenal manufacture wastewater to methanogenic activity and microbial community[J]. Front. Environ. Sci. Eng., 2018, 12(5): 10-.
[10] Yonglei Wang, Baozhen Liu, Kefeng Zhang, Yongjian Liu, Xuexin Xu, Junqi Jia. Investigate of in situ sludge reduction in sequencing batch biofilm reactor: Performances, mechanisms and comparison of different carriers[J]. Front. Environ. Sci. Eng., 2018, 12(5): 5-.
[11] Zechong Guo, Lei Gao, Ling Wang, Wenzong Liu, Aijie Wang. Enhanced methane recovery and exoelectrogen-methanogen evolution from low-strength wastewater in an up-flow biofilm reactor with conductive granular graphite fillers[J]. Front. Environ. Sci. Eng., 2018, 12(4): 13-.
[12] Liguo Zhang, Qiaoying Ban, Jianzheng Li. Microbial community dynamics at high organic loading rates revealed by pyrosequencing during sugar refinery wastewater treatment in a UASB reactor[J]. Front. Environ. Sci. Eng., 2018, 12(4): 4-.
[13] Ming Zeng, Ping Li, Nan Wu, Xiaofang Li, Chang Wang. Preparation and characterization of a novel microorganism embedding material for simultaneous nitrification and denitrification[J]. Front. Environ. Sci. Eng., 2017, 11(6): 15-.
[14] Xiaolin Sheng, Rui Liu, Xiaoyan Song, Lujun Chen, Kawagishi Tomoki. Comparative study on microbial community in intermittently aerated sequencing batch reactors (SBR) and a traditional SBR treating digested piggery wastewater[J]. Front. Environ. Sci. Eng., 2017, 11(3): 8-.
[15] Jiaxuan YANG, Jun MA, Dan SONG, Xuedong ZHAI, Xiujuan KONG. Impact of preozonation on the bioactivity and biodiversity of subsequent biofilters under low temperature conditions—A pilot study[J]. Front. Environ. Sci. Eng., 2016, 10(4): 5-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed