Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2016, Vol. 10 Issue (2) : 381-389    https://doi.org/10.1007/s11783-015-0817-7
RESEARCH ARTICLE
Multiphase redistribution differences of polycyclic aromatic hydrocarbons (PAHs) between two successive sediment suspensions
Rufeng LI,Chenghong FENG(),Dongxin WANG,Baohua LI,Zhenyao SHEN
The Key Laboratory of Water and Sediment Sciences (Ministry of Education), School of Environment, Beijing Normal University, Beijing 100875, China
 Download: PDF(493 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Successive sediment suspensions often happen in estuary, yet little research has probed into the difference in the release behaviors of organic compounds among different suspensions. This study took polycyclic aromatic hydrocarbons (PAHs) as typical organic contaminants and investigated the release behaviors between two successive suspensions with a particle entrainment simulator (PES). Results showed that successive sediment suspensions lowered the concentration of dissolved PAHs in the overlying water via facilitating the re-adsorption of dissolved PAHs onto the suspended particles. Fast-release and slow-release periods of PAHs were successively observed in the both suspensions. The concentration changes of dissolved PAHs in the second suspension were generally similar with but hysteretic to those in the first suspension. More vigorous desorption and re-absorption of PAHs were induced in the second suspension. Successive sediment suspensions obviously decreased the concentrations of mineral composition and organic matters in the overlying water, which significantly affects multiphase distribution of PAHs.

Keywords sediment suspension      PAHs      multiphase distribution      distribution coefficients     
Corresponding Author(s): Chenghong FENG   
Online First Date: 17 September 2015    Issue Date: 01 February 2016
 Cite this article:   
Rufeng LI,Chenghong FENG,Dongxin WANG, et al. Multiphase redistribution differences of polycyclic aromatic hydrocarbons (PAHs) between two successive sediment suspensions[J]. Front. Environ. Sci. Eng., 2016, 10(2): 381-389.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-015-0817-7
https://academic.hep.com.cn/fese/EN/Y2016/V10/I2/381
Fig.1  The schematic view of the particle entrainment simulator (PES) used in the duplicate sediment suspensions
Fig.2  Concentration changes of the TSS (a) and DOC (b) fractions in the overlying water with time in the two sediment suspensions
Fig.3  Concentration changes of different ring and the total PAHs dissolved in the overlying water in the first suspension (a) and the second suspension (b)
Fig.4  Concentration changes of different ring and the total PAHs bound on the suspended particles in the first suspension (a) and the second suspension (b); the insets illustrate the corresponding multiple times of the concentrations of PAHs bound on suspended particles to those in raw sediment
Fig.5  Box figures of the log Kd values and changes of log Kd values for individual PAHs species with suspension time in the first suspension (a, b) and the second suspension (c, d)
1 Li  B, Feng  C, Li  X, Chen  Y, Niu  J, Shen  Z. Spatial distribution and source apportionment of PAHs in surficial sediments of the Yangtze Estuary, China. Marine Pollution Bulletin, 2012, 64(3): 636–643
https://doi.org/10.1016/j.marpolbul.2011.12.005 pmid: 22245436
2 Khairy  M A, Lohmann  R. Source apportionment and risk assessment of polycyclic aromatic hydrocarbons in the atmospheric environment of Alexandria, Egypt. Chemosphere, 2013, 91(7): 895–903
https://doi.org/10.1016/j.chemosphere.2013.02.018 pmid: 23499221
3 Doong  R A, Lin  Y T. Characterization and distribution of polycyclic aromatic hydrocarbon contaminations in surface sediment and water from Gao-ping River, Taiwan. Water Research, 2004, 38(7): 1733–1744
https://doi.org/10.1016/j.watres.2003.12.042 pmid: 15026227
4 Sanford  L P. Wave-forced resuspension of upper Chesapeake Bay muds. Estuarine Research Federation, 1994, 17(1B): 148–165
https://doi.org/10.2307/1352564
5 Wang  H S, Cheng  Z, Liang  P, Shao  D D, Kang  Y, Wu  S C, Wong  C K, Wong  M H. Characterization of PAHs in surface sediments of aquaculture farms around the Pearl River Delta. Ecotoxicology and Environmental Safety, 2010, 73(5): 900–906
https://doi.org/10.1016/j.ecoenv.2010.04.010 pmid: 20452022
6 Eggleton  J, Thomas  K V. A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events. Environment International, 2004, 30(7): 973–980
https://doi.org/10.1016/j.envint.2004.03.001 pmid: 15196845
7 Patrolecco  L, Ademollo  N, Capri  S, Pagnotta  R, Polesello  S. Occurrence of priority hazardous PAHs in water, suspended particulate matter, sediment and common eels (Anguilla anguilla) in the urban stretch of the River Tiber (Italy). Chemosphere, 2010, 81(11): 1386–1392
https://doi.org/10.1016/j.chemosphere.2010.09.027 pmid: 20932548
8 Brunk  B K, Jirka  G H, Lion  L W. Effects of salinity changes and the formation of dissolved organic matter coatings on the sorption of phenanthrene: Implications for pollutant trapping in estuaries. Environmental Science & Technology, 1996, 31(1): 119–125
https://doi.org/10.1021/es9602051
9 Wiberg  P L, Harris  C K. Desorption of p, p’-DDE from sediment during resuspension events on the Palos Verdes shelf, California: a modeling approach. Continental Shelf Research, 2002, 22(6−7): 1005–1023
https://doi.org/10.1016/S0278-4343(01)00117-0
10 Calmano  W, Hong  J, Forstner  U. Binding and mobilisation of heavy metals in contaminated sediments affected by pH and redox potential. Water Science and Technology, 1993, 28(8−9): 223–235
11 Schneider  A R. PCB desorption from resuspended Hudson River sediment. Dissertation for the Doctoral Degree. Maryland: University of Maryland, 2005
12 Wang  L L, Yang  Z F. Simulation of polycyclic aromatic hydrocarbon remobilization in typical active regions of river system under hydrodynamic conditions. Journal of Soils and Sediments, 2010, 10(7): 1380–1387
https://doi.org/10.1007/s11368-010-0286-3
13 Latimer  J S, Davis  W R, Keith  D J. Mobilization of PAHs and PCBs from in-place contaminated marine sediments during simulated resuspension events. Estuarine, Coastal and Shelf Science, 1999, 49(4): 577–595
https://doi.org/10.1006/ecss.1999.0516
14 Feng  J, Yang  Z, Niu  J, Shen  Z. Remobilization of polycyclic aromatic hydrocarbons during the resuspension of Yangtze River sediments using a particle entrainment simulator. Environmental Pollution, 2007, 149(2): 193–200
https://doi.org/10.1016/j.envpol.2007.01.001 pmid: 17321654
15 Zhou  J L, Hong  H, Zhang  Z, Maskaoui  K, Chen  W. Multi-phase distribution of organic micropollutants in Xiamen Harbour, China. Water Research, 2000, 34(7): 2132–2150
https://doi.org/10.1016/S0043-1354(99)00360-7
16 Gratz  L D, Bagley  S T, Leddy  D G, Johnson  J H, Chiu  C, Stommel  P. Interlaboratory comparison of HPLC-fluorescence detection and GC/MS: analysis of PAH compounds present in diesel exhaust. Journal of Hazardous Materials, 2000, 74(1−2): 37–46
https://doi.org/10.1016/S0304-3894(99)00197-1 pmid: 10781716
17 Capelo  J L, Galesio  M M, Felisberto  G M, Vaz  C, Pessoa  J C. Micro-focused ultrasonic solid-liquid extraction ( μ<?Pub Caret?>FUSLE) combined with HPLC and fluorescence detection for PAHs determination in sediments: optimization and linking with the analytical minimalism concept. Talanta, 2005, 66(5): 1272–1280
https://doi.org/10.1016/j.talanta.2005.01.046 pmid: 18970118
18 Wang  D, Feng  C, Huang  L, Niu  J, Shen  Z. Historical deposition behaviors of PAHs in the Yangtze River Estuary: role of the sources and water currents. Chemosphere, 2013, 90(6): 2020–2026
https://doi.org/10.1016/j.chemosphere.2012.10.079 pmid: 23200571
19 Tsai  C, Lick  W. A portable device for measuring sediment resuspension. Journal of Great Lakes Research, 1986, 12(4): 314–321
https://doi.org/10.1016/S0380-1330(86)71731-0
20 Komada  T, Reimers  C E. Resuspension-induced partitioning of organic carbon between solid and solution phases from a river-ocean transition. Marine Chemistry, 2001, 763(3): 155–174
https://doi.org/10.1016/S0304-4203(01)00055-X
21 Portet-Koltalo  F, Ammami  M T, Benamar  A, Wang  H, Le Derf  F, Duclairoir-Poc  C. Investigation of the release of PAHs from artificially contaminated sediments using cyclolipopeptidic biosurfactants. Journal of Hazardous Materials, 2013, 261: 593–601
https://doi.org/10.1016/j.jhazmat.2013.07.062 pmid: 23995556
22 Ghosh  U, Talley  J W, Luthy  R G. Particle-scale investigation of PAH desorption kinetics and thermodynamics from sediment. Environmental Science & Technology, 2001, 35(17): 3468–3475
https://doi.org/10.1021/es0105820 pmid: 11563648
23 Hung  C C, Gong  G C, Ko  F C, Chen  H Y, Hsu  M L, Wu  J M, Peng  S C, Nan  F H, Yeager  K M, Santschi  P H. Relationships between persistent organic pollutants and carbonaceous materials in aquatic sediments of Taiwan. Marine Pollution Bulletin, 2010, 60(7): 1010–1017
https://doi.org/10.1016/j.marpolbul.2010.01.026 pmid: 20206366
24 Wang  L, Shen  Z, Wang  H, Niu  J, Lian  G, Yang  Z. Distribution characteristics of phenanthrene in the water, suspended particles and sediments from Yangtze River under hydrodynamic conditions. Journal of Hazardous Materials, 2009, 165(1−3): 441–446
https://doi.org/10.1016/j.jhazmat.2008.10.016 pmid: 19022579
25 Doll  T E, Frimmel  F H, Kumke  M U, Ohlenbusch  G. Interaction between natural organic matter (NOM) and polycyclic aromatic compounds (PAC)-comparison of fluorescence quenching and solid phase micro extraction (SPME). Fresenius' Journal of Analytical Chemistry, 1999, 364(4): 313–319
https://doi.org/10.1007/s002160051342
26 Shor  L M, Rockne  K J, Taghon  G L, Young  L Y, Kosson  D S. Desorption kinetics for field-aged polycyclic aromatic hydrocarbons from sediments. Environmental Science & Technology, 2003, 37(8): 1535–1544
https://doi.org/10.1021/es025734l pmid: 12731835
27 Ciutat  A, Widdows  J, Readman  J W. Influence of cockle Cerastoderma edule bioturbation and tidal-current cycles on resuspension of sediment and polycyclic aromatic hydrocarbons. Marine Ecology Progress Series, 2006, 328: 51–64
https://doi.org/10.3354/meps328051
28 Chiou  C T, McGroddy  S E, Kile  D E. Partition characteristics of polycyclic aromatic hydrocarbons on soils and sediments. Environmental Science & Technology, 1998, 32(2): 264–269
https://doi.org/10.1021/es970614c
29 Rockne  K J, Taghon  G L, Kosson  D S. Pore structure of soot deposits from several combustion sources. Chemosphere, 2000, 41(8): 1125–1135
https://doi.org/10.1016/S0045-6535(00)00040-0 pmid: 10901237
30 Schrap  S M, Haller  M, Opperhuizen  A. Investigating the influence of incomplete separation of sediment and water on experimental sorption coefficients of chlorinated benzenes. Environmental Toxicology and Chemistry, 1995, 14(2): 219–228
https://doi.org/10.1002/etc.5620140206
31 Servos  M R, Muir  D C. Effect of suspended sediment concentration on the sediment to water partition coefficient for 1,3,6,8-tetrachlorodibenzo-p-dioxin. Environmental Science & Technology, 1989, 23(10): 1302–1306
https://doi.org/10.1021/es00068a018
32 Baker  J E, Capel  P D, Eisenreich  S J. Influence of colloids on sediment-water partition coefficients of polychlorobiphenyl congeners in natural waters. Environmental Science & Technology, 1986, 20(10): 1136–1143
https://doi.org/10.1021/es00153a009
33 Neff  J M, Stout  S A, Gunster  D G. Ecological risk assessment of polycyclic aromatic hydrocarbons in sediments: identifying sources and ecological hazard. Integrated Environmental Assessment and Management, 2005, 1(1): 22–33
https://doi.org/10.1897/IEAM_2004a-016.1 pmid: 16637144
[1] Hanzhong Jia, Yafang Shi, Xiaofeng Nie, Song Zhao, Tiecheng Wang, Virender K. Sharma. Persistent free radicals in humin under redox conditions and their impact in transforming polycyclic aromatic hydrocarbons[J]. Front. Environ. Sci. Eng., 2020, 14(4): 73-.
[2] Hui ZHANG,Le XU,Yifei ZHANG,Mengchan JIANG. The transformation of PAHs in the sewage sludge incineration treatment[J]. Front. Environ. Sci. Eng., 2016, 10(2): 336-340.
[3] Qiuying CHEN,Jingling LIU,Feng LIU,Binbin WANG,Zhiguo CAO. Biologic risk and source diagnose of 16 PAHs from Haihe River Basin, China[J]. Front. Environ. Sci. Eng., 2016, 10(1): 46-52.
[4] XIA Tianxiang,JIANG Lin,JIA Xiaoyang,ZHONG Maosheng,LIANG Jing. Application of probabilistic risk assessment at a coking plant site contaminated by Polycyclic Aromatic Hydrocarbons[J]. Front.Environ.Sci.Eng., 2014, 8(3): 441-450.
[5] Kai LIU, Fengkui DUAN, Kebin HE, Yongliang MA, Yuan CHENG. Investigation on sampling artifacts of particle associated PAHs using ozone denuder systems[J]. Front Envir Sci Eng, 2014, 8(2): 284-292.
[6] Osamu SHITAMICHI, Taiki MATSUI, Yamei HUI, Weiwei CHEN, Totaro IMASAKA. Determination of persistent organic pollutants by gas chromatography/laser multiphoton ionization/time-of-flight mass spectrometry[J]. Front Envir Sci Eng, 2012, 6(1): 26-31.
[7] Jinbao WU, Zongqiang GONG, Liyan ZHENG, Yanli YI, Jinghua JIN, Xiaojun LI, Peijun LI. Removal of high concentrations of polycyclic aromatic hydrocarbons from contaminated soil by biodiesel[J]. Front Envir Sci Eng Chin, 2010, 4(4): 387-394.
[8] Zhenyi ZHANG, Chihiro INOUE, Guanghe LI, . Impact of solids on biphasic biodegradation of phenanthrene in the presence of hydroxypropyl- &#946; -cyclodextrin (HPCD)[J]. Front.Environ.Sci.Eng., 2010, 4(3): 329-333.
[9] XIA Xinghui, HU Lijuan, MENG Lihong. Adsorption and partition of benzo(a)pyrene on sediments with different particle sizes from the Yellow River[J]. Front.Environ.Sci.Eng., 2007, 1(2): 172-178.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed