Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2016, Vol. 10 Issue (3) : 413-427    https://doi.org/10.1007/s11783-016-0832-3
REVIEW ARTICLE
Chemical poison and regeneration of SCR catalysts for NOx removal from stationary sources
Junhua LI1,*(),Yue PENG1,2,Huazhen CHANG3,Xiang LI1,John C. CRITTENDEN2,Jiming HAO1
1. State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
2. School of Civil and Environmental Engineering and the Brook Byers Institute for Sustainable Systems, Georgia Institute of Technology, 800 West Peachtree Street, Suite 400 F-H, Atlanta, GA 30332-0595, United States
3. School of Environment and Natural Resource, Renmin University of China, Beijing 100872, China
 Download: PDF(951 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Selective catalytic reduction (SCR) of NOx with NH3 is an effective technique to remove NOx from stationary sources, such as coal-fired power plant and industrial boilers. Some of elements in the fly ash deactivate the catalyst due to strong chemisorptions on the active sites. The poisons may act by simply blocking active sites or alter the adsorption behaviors of reactants and products by an electronic interaction. This review is mainly focused on the chemical poisoning on V2O5-based catalysts, environmental-benign catalysts and low temperature catalysts. Several common poisons including alkali/alkaline earth metals, SO2 and heavy metals etc. are referred and their poisoning mechanisms on catalysts are discussed. The regeneration methods of poisoned catalysts and the development of poison-resistance catalysts are also compared and analyzed. Finally, future research directions in developing poisoning resistance catalysts and facile efficient regeneration methods for SCR catalysts are proposed.

Keywords flue gas      DeNOx      SCR catalyst      poison and regeneration     
Corresponding Author(s): Junhua LI   
Online First Date: 16 March 2016    Issue Date: 05 April 2016
 Cite this article:   
Junhua LI,Yue PENG,Huazhen CHANG, et al. Chemical poison and regeneration of SCR catalysts for NOx removal from stationary sources[J]. Front. Environ. Sci. Eng., 2016, 10(3): 413-427.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-016-0832-3
https://academic.hep.com.cn/fese/EN/Y2016/V10/I3/413
Fig.1  The plugged (a) and deactivated (b) SCR catalysts
catalysts preparation methods(calcination temperature) reaction conditions highest NOx conversion(temperature range) source
V-based catalyst
V2O5/TiO2 Sol-gel (500℃) NH3 = NO= 0.5%, 5%O2, 13,500 h-1 ≥90% (450–500℃) [29]
V2O5-SO42-/TiO2 Sol-gel (500℃) NH3 = NO= 0.5%, 5%O2, 13,500 h-1 100% (370–500℃) [6]
V2O5-WO3/TiO2 impregnation (500℃) NH3 = NO= 0.05%, 3%O2, 70,000 h-1 100% (300–450℃) [30]
V2O5-MoO3/TiO2 impregnation (550℃) NH3 = NO= 0.08%, 0.9%O2 100% (280–400℃) [31]
V2O5-CeO2-WO3/TiO2 impregnation (500℃) NH3 = NO= 0.05%, 3%O2, 28,000 h-1 100% (250–450℃) [22]
Ce-based catalyst
CeO2/TiO2 co-precipitation (500℃) NH3 = NO= 0.05%, 5.3%O2, 25,000 h-1 100% (170–350℃) [32]
CeO2-WO3 homogeneous precipitation(500℃) NH3 = NO= 0.05%, 5%O2, 250,000 h-1 ≥97% (225–450℃) [23,33]
CeO2-MO3 impregnation (500℃) NH3 = NO= 0.05%, 5%O2, 120,000 h-1 ≥90% (300–350℃) [25]
CeO2-WO3/TiO2 homogeneous precipitation(500℃) NH3 = NO= 0.05%, 5%O2, 100,000 h-1 100% (225–450℃) [27]
CeO2-MO3/TiO2 impregnation (500℃) NH3 = NO= 0.05%, 5%O2, 128,000 h-1 ≥90% (270–400℃) [34]
Mn-based catalyst
MnOx precipitation(350℃) NH3 = NO= 0.05%, 5%O2, 50,000 h-1 100% (100–150℃) [35]
MnOx/AC/C impregnation (400℃) NH3 = NO= 0.05%, 3%O2, 10,610 h-1 95% (250℃) [36]
MnOx–CeO2 co-precipitation (650℃) NH3 = NO= 0.1%, 2%O2, 42,000 h-1 100% (120–150℃) [37]
MnOx–CuO co-precipitation (350℃) NH3 = NO= 0.05%,5%O2, 30000 h-1 100% (50–200℃) [38]
MnOx–WO3 co-precipitation (600℃) NH3 = NO= 0.05%, 5%O2, 50,000 h-1 100% (70–200℃) [39]
MnOx/TiO2 impregnation (400℃) NH3 = NO= 0.05%, 5%O2, 50,000 h-1 100% (150–200℃) [40]
Fe-based catalyst
FeOx–MnOx co-precipitation (500℃) NH3 = NO= 0.1%, 2%O2, 15,000 h-1 100% (120–180℃) [41]
Fe2(SO4)3/TiO2 impregnation (500℃) NH3 = NO= 0.05%, 5%O2, 80,000 h-1 ≥90% (350–450℃) [42]
FeOx–WO3 co-precipitation (500℃) NH3 = NO= 0.05%, 3%O2, 60,000 h-1 100% (250–400℃) [43]
FeOx/TiO2 co-precipitation (400℃) NH3 = NO= 0.05%, 5%O2, 50,000 h-1 ≥95% (250–350℃) [20]
Zeolite catalyst
Cu-SSZ commercial NH3 = NO= 0.035%, CO2 = H2O= 5%, 14%O2, 30,000 h-1 ≥90% (200–400℃) [44]
Cu-SAPO commercial NH3 = NO= 0.035%, CO2 = H2O= 5%, 14%O2, 30,000 h-1 ≥80% (200–350℃) [26]
Fe-ZSM-5 ion exchange(600℃) NH3 = NO= 0.035%, 2%H2O, 5%O2, 30,000 h-1 ≥80% (350–450℃) [45]
Fe-HBEA ion exchange(550℃) NH3 = NO= 0.05%, 3%O2, 160,000 h-1 ≥90% (300–550℃) [46]
Tab.1  Research results on several kinds of SCR catalysts in literature
Fig.2  Schematic of K2O poisoning on ceria-based catalyst
Fig.3  Deactivation mechanisms of CaSO4 on catalyst surface
Fig.4  Proposed scheme for correlation of basic sites and redox properties for poisoning of metal oxides catalysts in SCR reaction [90]. LT means low temperature, HT means high temperature, 1st means standard SCR reaction, 2nd means fast SCR reaction, 3rd means NSCR reaction, and 4th means catalysts deactivation
Fig.5  Poisoning and regeneration mechanism of As poisoned commercial SCR catalysts
catalysts poisons solutions conditions
V2O5-WO3/TiO2 [17,60,146,147] alkali metals H2SO4 solution washing
V2O5-WO3/TiO2 [64] alkali metals electrophoresis washing
V2O5-WO3/TiO2 [148] K, Ca, Mg ethanol solution microwave
V2O5-WO3/TiO2 [139,146] arsenic H2O2 solution washing
V2O5-WO3/TiO2 [136] arsenic NaOH/H2O2; Ca(NO3)2 washing
TiO2-ZrO2-CeO2/ATS [71] alkali metals H2SO4 washing
CeO2-WO3 [72] alkali metals H2O washing
CeO2-WO3 [102] SO2 0.1 vol% H2 300℃
Mn-Ce/TiO2 [106] SO2 H2O microwave
Tab.2  Regeneration methods of SCR catalysts
Fig.6  Regeneration process sketch of used commercial SCR catalysts
1 Hao J, Tian H, Lu Y. Emission inventories of NOx from commercial energy consumption in China, 1995–1998. Environmental Science & Technology, 2002, 36(4): 552–560
https://doi.org/10.1021/es015601k pmid: 11878367
2 Hao J, Wang L. Improving urban air quality in China: Beijing case study. Journal of the Air & Waste Management Association, 2005, 55(9): 1298–1305
https://doi.org/10.1080/10473289.2005.10464726 pmid: 16259425
3 Larrubia M, Ramis G, Busca G. An FT-IR study of the adsorption of urea and ammonia over V2O5-MoO3-TiO2 SCR catalysts. Applied Catalysis B: Environmental, 2000, 27(3): 145–151
https://doi.org/10.1016/S0926-3373(00)00150-8
4 Busca G, Lietti L, Ramis G, Berti F. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: a review. Applied Catalysis B: Environmental, 1998, 18(1): 1–36
https://doi.org/10.1016/S0926-3373(98)00040-X
5 Liang Z, Ma X, Lin H, Tang Y. The energy consumption and environmental impacts of SCR technology in China. Applied Energy, 2011, 88(4): 1120–1129
https://doi.org/10.1016/j.apenergy.2010.10.010
6 Kobayashi Y, Tajima N, Nakano H, Hirao K. Selective catalytic reduction of nitric oxide by ammonia: the activation mechanism. Journal of Physical Chemistry B, 2004, 108(33): 12264–12266
https://doi.org/10.1021/jp047957z
7 Nova I, Ciardelli C, Tronconi E, Chatterjee D, Weibel M. NH3-NO/NO2 SCR for diesel exhausts after treatment: mechanism and modelling of a catalytic converter. Topics in Catalysis, 2007, 42(1): 43–46
https://doi.org/10.1007/s11244-007-0148-4
8 Smirniotis P, Pena D, Uphade B. Low–temperature selective catalytic reduction (SCR) of NO with NH3 by Using Mn, Cr, and Cu oxides supported on hombikat TiO2. Angewandte Chemie International Edition, 2001, 40(13): 2479–2482
https://doi.org/10.1002/1521-3773(20010702)40:13<2479::AID-ANIE2479>3.0.CO;2-7
9 Li J, He H, Hu C, Zhao J. The abatement of major pollutants in air and water by environmental catalysis. Frontiers of Environmental Science & Engineering, 2013, 7(3): 302–325
https://doi.org/10.1007/s11783-013-0511-6
10 Topsøe N, Dumesic J, Topsøe H. Vanadia-Titania catalysts for selective catalytic reduction of nitric-oxide by ammonia ii studies of active sites and formulation of catalytic cycles. Journal of Catalysis, 1995, 151(1): 241–252
https://doi.org/10.1006/jcat.1995.1025
11 Topsøe N, Topsøe H, Dumesic J. Vanadia/titania catalysts for selective catalytic reduction (SCR) of nitric-oxide by ammonia I. Combined temperature-programmed in-situ FTIR and on-line mass-spectroscopy studies. Journal of Catalysis, 1995, 151(1): 226–240
https://doi.org/10.1006/jcat.1995.1024
12 Topsøe N Y. Mechanism of the selective catalytic reduction of nitric oxide by ammonia elucidated by in situ on-line fourier transform infrared spectroscopy. Science, 1994, 265(5176): 1217–1219
https://doi.org/10.1126/science.265.5176.1217 pmid: 17787589
13 Vargas M, Casanova M, Trovarelli A, Busca G. An IR study of thermally stable V2O5-WO3-TiO2 SCR catalysts modified with silica and rare-earths (Ce, Tb, Er). Applied Catalysis B: Environmental, 2007, 75(3–4): 303–311
https://doi.org/10.1016/j.apcatb.2007.04.022
14 Liu F, Yu Y, He H. Environmentally-benign catalysts for the selective catalytic reduction of NOx from diesel engines: structure-activity relationship and reaction mechanism aspects. Chemical Communications, 2014, 50(62): 8445–8463
https://doi.org/10.1039/C4CC01098A pmid: 24819654
15 Qi G, Yang R T. A superior catalyst for low-temperature NO reduction with NH3. Chemical Communications, 2003, 7(7): 848–849
https://doi.org/10.1039/b212725c pmid: 12739642
16 Qi G, Yang R. Performance and kinetics study for low-temperature SCR of NO with NH3 over MnOx–CeO2 catalyst. Journal of Catalysis, 2003, 217(2): 434–441
https://doi.org/10.1016/S0021-9517(03)00081-2
17 Khodayari R, Odenbrand C. Regeneration of commercial SCR catalysts by washing and sulphation: effect of sulphate groups on the activity. Applied Catalysis B: Environmental, 2001, 33(4): 277–291
https://doi.org/10.1016/S0926-3373(01)00193-X
18 Khodayari R, Odenbrand C. Regeneration of commercial TiO2-V2O5-WO3 SCR catalysts used in bio fuel plants. Applied Catalysis B: Environmental, 2001, 30(1): 87–99
https://doi.org/10.1016/S0926-3373(00)00227-7
19 Apostolescu N, Geiger B, Hizbullah K, Jan M, Kureti S, Reichert D, Schott F, Weisweiler W. Selective catalytic reduction of nitrogen oxides by ammonia on iron oxide catalysts. Applied Catalysis B: Environmental, 2006, 62(1): 104–114
https://doi.org/10.1016/j.apcatb.2005.07.004
20 Liu F, He H, Zhang C, Feng Z, Zheng L, Xie Y, Hu T. Selective catalytic reduction of NO with NH3 over iron titanate catalyst: catalytic performance and characterization. Applied Catalysis B: Environmental, 2010, 96(3): 408–420
https://doi.org/10.1016/j.apcatb.2010.02.038
21 Liu F, He H, Lian Z, Shan W, Xie L, Asakura K, Yang W, Deng H. Highly dispersed iron vanadate catalyst supported on TiO2 for the selective catalytic reduction of NOx with NH3. Journal of Catalysis, 2013, 307: 340–351
https://doi.org/10.1016/j.jcat.2013.08.003
22 Chen L, Li J, Ge M. Promotional Effect of Ce-doped V2O5-WO3/TiO2 with low vanadium loadings for selective catalytic reduction of NOx by NH3. Journal of Physical Chemistry C, 2009, 113(50): 21177–21184
https://doi.org/10.1021/jp907109e
23 Shan W, Liu F, He H, Shi X, Zhang C. Novel cerium-tungsten mixed oxide catalyst for the selective catalytic reduction of NOx with NH3. Chemical Communications, 2011, 47(28): 8046–8048
https://doi.org/10.1039/c1cc12168e pmid: 21655619
24 Peng Y, Li K, Li J. Identification of the active sites on CeO2–WO3 catalysts for SCR of NOx with NH3: an in situ IR and Raman spectroscopy study. Applied Catalysis B: Environmental, 2013, 140: 483–492
https://doi.org/10.1016/j.apcatb.2013.04.043
25 Peng Y, Qu R, Zhang X, Li J. The relationship between structure and activity of MoO3–CeO2 catalysts for NO removal: influences of acidity and reducibility. Chemical Communications, 2013, 49(55): 6215–6217
https://doi.org/10.1039/c3cc42693a pmid: 23736146
26 Chang H, Li J, Su W, Shao Y, Hao J. A novel mechanism for poisoning of metal oxide SCR catalysts: base-acid explanation correlated with redox properties. Chemical Communications, 2014, 50(70): 10031–10034
https://doi.org/10.1039/C4CC02991G pmid: 24963840
27 Shan W, Liu F, He H, Shi X, Zhang C. A superior Ce-W-Ti mixed oxide catalyst for the selective catalytic reduction of NOx with NH3. Applied Catalysis B: Environmental, 2012, 115: 100–106
https://doi.org/10.1016/j.apcatb.2011.12.019
28 Yang S, Wang C, Li J, Yan N, Ma L, Chang H. Low temperature selective catalytic reduction of NO with NH3 over Mn–Fe spinel: performance, mechanism and kinetic study. Applied Catalysis B: Environmental, 2011, 110(0): 71–80
https://doi.org/10.1016/j.apcatb.2011.08.027
29 Baraket L, Ghorbel A, Grange P. Selective catalytic reduction of NO by ammonia on V2O5–SO42–/TiO2 catalysts prepared by the sol-gel method. Applied Catalysis B: Environmental, 2007, 72(1–2): 37–43
https://doi.org/10.1016/j.apcatb.2006.10.001
30 Chen L, Li J, Ge M. The poisoning effect of alkali metals doping over nano V2O5–WO3/TiO2 catalysts on selective catalytic reduction of NOx by NH3. Chemical Engineering Journal, 2011, 170(2–3): 531–537
https://doi.org/10.1016/j.cej.2010.11.020
31 Lietti L, Nova I, Ramis G, Dall L’Acqua E, Busca G, Giamello E, Forzatti P, Bregani F. Characterization and Reactivity of V2O5–MoO3/TiO2 De-NOx SCR Catalysts. Journal of Catalysis, 1999, 187(2): 419–435
https://doi.org/10.1006/jcat.1999.2603
32 Li P, Xin Y, Li Q, Wang Z, Zhang Z, Zheng L. Ce-Ti amorphous oxides for selective catalytic reduction of NO with NH3: confirmation of Ce-O-Ti active sites. Environmental Science & Technology, 2012, 46(17): 9600–9605
https://doi.org/10.1021/es301661r pmid: 22888951
33 Shan W, Liu F, He H, Shi X, Zhang C. Novel cerium-tungsten mixed oxide catalyst for the selective catalytic reduction of NOx with NH3. Chemical Communications, 2011, 47(28): 8046–8048
https://doi.org/10.1039/c1cc12168e pmid: 21655619
34 Liu Z, Zhang S, Li J, Ma L. Promoting effect of MoO3 on the NOx reduction by NH3 over CeO2/TiO2 catalyst studied with in situ DRIFTS. Applied Catalysis B: Environmental, 2014, 144: 90–95
https://doi.org/10.1016/j.apcatb.2013.06.036
35 Kang M, Park E, Kim J, Yie J. Manganese oxide catalysts for NOx reduction with NH3 at low temperatures. Applied Catalysis A, General, 2007, 327(2): 261–269
https://doi.org/10.1016/j.apcata.2007.05.024
36 Tang X, Hao J, Yi H, Li J. Low-temperature SCR of NO with NH3 over AC/C supported manganese-based monolithic catalysts. Catalysis Today, 2007, 126(3): 406–411
https://doi.org/10.1016/j.cattod.2007.06.013
37 Qi G, Yang R, Chang R. MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures. Applied Catalysis B: Environmental, 2004, 51(2): 93–106
https://doi.org/10.1016/j.apcatb.2004.01.023
38 Kang M, Park E, Kim J, Yie J. Cu–Mn mixed oxides for low temperature NO reduction with NH3. Catalysis Today, 2006, 111(3): 236–241
https://doi.org/10.1016/j.cattod.2005.10.032
39 Liu F, Shan W, Lian Z, Xie L, Yang W, He H. Novel MnWOx catalyst with remarkable performance for low temperature NH3-SCR of NOx. Catalysis Science & Technology, 2013, 3(10): 2699–2707
https://doi.org/10.1039/c3cy00326d
40 Li J, Chen J, Ke R, Luo C, Hao J. Effects of precursors on the surface Mn species and the activities for NO reduction over MnOx/TiO2 catalysts. Catalysis Communications, 2007, 8(12): 1896–1900
https://doi.org/10.1016/j.catcom.2007.03.007
41 Long R Q, Yang R T, Chang R. Low temperature selective catalytic reduction (SCR) of NO with NH3 over Fe-Mn based catalysts. Chemical Communications, 2002, 5(5): 452–453
https://doi.org/10.1039/b111382h pmid: 12120537
42 Ma L, Li J, Ke R, Fu L. Catalytic performance, characterization, and mechanism study of Fe2(SO4)3/TiO2 catalyst for selective catalytic reduction of NOx by ammonia. Journal of Physical Chemistry C, 2011, 115(15): 7603–7612
https://doi.org/10.1021/jp200488p
43 Li X, Li J, Peng Y, Zhang T, Liu S, Hao J. Selective catalytic reduction of NO with NH3 over novel iron-tungsten mixed oxide catalyst in a broad temperature range. Catalysis Science & Technology, 2015, 5(9): 4556–4564
https://doi.org/10.1039/C5CY00605H
44 Ma L, Cheng Y, Cavataio G, McCabe R W, Fu L, Li J. Characterization of commercial Cu-SSZ-13 and Cu-SAPO-34 catalysts with hydrothermal treatment for NH3-SCR of NOx in diesel exhaust. Chemical Engineering Journal, 2013, 225: 323–330
https://doi.org/10.1016/j.cej.2013.03.078
45 Li J, Zhu R, Cheng Y, Lambert C K, Yang R T. Mechanism of propene poisoning on Fe-ZSM-5 for selective catalytic reduction of NOx with ammonia. Environmental Science & Technology, 2010, 44(5): 1799–1805
https://doi.org/10.1021/es903576d pmid: 20136123
46 Ma L, Chang H, Yang S, Chen L, Fu L, Li J. Relations between iron sites and performance of Fe/HBEA catalysts prepared by two different methods for NH3-SCR. Chemical Engineering Journal, 2012, 209: 652–660
https://doi.org/10.1016/j.cej.2012.08.042
47 Kapteijn F, Singoredjo L, Andreini A, Moulijn J. Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia. Applied Catalysis B: Environmental, 1994, 3(2): 173–189
https://doi.org/10.1016/0926-3373(93)E0034-9
48 Tang X, Li J, Sun L, Hao J. Origination of N2O from NO reduction by NH3 over β-MnO2 and α-Mn2O3. Applied Catalysis B: Environmental, 2010, 99(1): 156–162
https://doi.org/10.1016/j.apcatb.2010.06.012
49 Li J, Chen J, Ke R, Luo C, Hao J. Effects of precursors on the surface Mn species and the activities for NO reduction over MnOx/TiO2 catalysts. Catalysis Communications, 2007, 8(12): 1896–1900
https://doi.org/10.1016/j.catcom.2007.03.007
50 Gao X, Jiang Y, Zhong Y, Luo Z, Cen K. The activity and characterization of CeO2-TiO2 catalysts prepared by the sol-gel method for selective catalytic reduction of NO with NH3. Journal of Hazardous Materials, 2010, 174(1–3): 734–739
https://doi.org/10.1016/j.jhazmat.2009.09.112 pmid: 19837510
51 Xu W, Yu Y, Zhang C, He H. Selective catalytic reduction of NO by NH3 over a Ce/TiO2 catalyst. Catalysis Communications, 2008, 9(6): 1453–1457
https://doi.org/10.1016/j.catcom.2007.12.012
52 Wu Z, Jiang B, Liu Y, Wang H, Jin R. DRIFT study of manganese/ titania-based catalysts for low-temperature selective catalytic reduction of NO with NH3. Environmental Science & Technology, 2007, 41(16): 5812–5817
https://doi.org/10.1021/es0700350 pmid: 17874791
53 Wu Z, Jin R, Liu Y, Wang H. Ceria modified MnOx/TiO2 as a superior catalyst for NO reduction with NH3 at low-temperature. Catalysis Communications, 2008, 9(13): 2217–2220
https://doi.org/10.1016/j.catcom.2008.05.001
54 Wu Z, Jiang B, Liu Y, Zhao W, Guan B. Experimental study on a low-temperature SCR catalyst based on MnOx/TiO2 prepared by sol-gel method. Journal of Hazardous Materials, 2007, 145(3): 488–494
https://doi.org/10.1016/j.jhazmat.2006.11.045 pmid: 17188430
55 Wu Z, Jin R, Wang H, Liu Y. Effect of ceria doping on SO2 resistance of Mn/TiO2 for selective catalytic reduction of NO with NH3 at low temperature. Catalysis Communications, 2009, 10(6): 935–939
https://doi.org/10.1016/j.catcom.2008.12.032
56 Chen J, Buzanowski M, Yang R, Cichanowicz J. Deactivation of the vanadia catalyst in the selective catalytic reduction process. Journal of the Air & Waste Management Association, 1990, 40(10): 1403–1409
https://doi.org/10.1080/10473289.1990.10466793
57 Lietti L, Forzatti P, Ramis G, Busca G, Bregani F. Potassium doping of vanadia/titania de-NOx ing catalysts: Surface characterisation and reactivity study. Applied Catalysis B: Environmental, 1993, 3(1): 13–35
https://doi.org/10.1016/0926-3373(93)80065-L
58 Kling Å, Andersson C, Myringer Å, Eskilsson D, Järås S G. Alkali deactivation of high-dust SCR catalysts used for NOx reduction exposed to flue gas from 100MW-scale biofuel and peat fired boilers: influence of flue gas composition. Applied Catalysis B: Environmental, 2007, 69(3): 240–251
https://doi.org/10.1016/j.apcatb.2006.03.022
59 Lisi L, Lasorella G, Malloggi S, Russo G. Single and combined deactivating effect of alkali metals and HCl on commercial SCR catalysts. Applied Catalysis B: Environmental, 2004, 50(4): 251–258
https://doi.org/10.1016/j.apcatb.2004.01.007
60 Zheng Y, Jensen A, Johnsson J. Laboratory investigation of selective catalytic reduction catalysts: deactivation by potassium compounds and catalyst regeneration. Industrial & Engineering Chemistry Research, 2004, 43(4): 941–947
https://doi.org/10.1021/ie030404a
61 Zheng Y, Jensen A, Johnsson J. Deactivation of V2O5-WO3-TiO2 SCR catalyst at a biomass-fired combined heat and power plant. Applied Catalysis B: Environmental, 2005, 60(3): 253–264
https://doi.org/10.1016/j.apcatb.2005.03.010
62 Nicosia D, Elsener M, Kröcher O, Jansohn P. Basic investigation of the chemical deactivation of V2O5-WO3-TiO2 SCR catalysts by potassium, calcium, and phosphate. Topics in Catalysis, 2007, 42(1): 333–336
https://doi.org/10.1007/s11244-007-0200-4
63 Nicosia D, Czekaj I, Kröcher O. Chemical deactivation of V2O5/WO3-TiO2 SCR catalysts by additives and impurities from fuels, lubrication oils and urea solution: Part II. Characterization study of the effect of alkali and alkaline earth metals. Applied Catalysis B: Environmental, 2008, 77(3): 228–236
https://doi.org/10.1016/j.apcatb.2007.07.032
64 Peng Y, Li J, Shi W, Xu J, Hao J. Design strategies for development of SCR catalyst: improvement of alkali poisoning resistance and novel regeneration method. Environmental Science & Technology, 2012, 46(22): 12623–12629
https://doi.org/10.1021/es302857a pmid: 23116295
65 Calatayud M, Minot C. Effect of alkali doping on a V2O5/TiO2 catalyst from periodic DFT calculations. Journal of Physical Chemistry C, 2007, 111(17): 6411–6417
https://doi.org/10.1021/jp068373v
66 Witko M, Grybos R, Tokarz-Sobieraj R. Heterogeneity of V2O5 (010) surfaces–the role of alkali metal dopants. Topics in Catalysis, 2006, 38(1–3): 105–115
https://doi.org/10.1007/s11244-006-0075-9
67 Kristensen S, Kunov-Kruse A, Riisager A, Rasmussen S, Fehrmann R. High performance vanadia–anatase nanoparticle catalysts for the selective catalytic reduction of NO by ammonia. Journal of Catalysis, 2011, 284(1): 60–67
https://doi.org/10.1016/j.jcat.2011.08.017
68 Du X, Gao X, Qiu K, Luo Z, Cen K. The reaction of poisonous alkali oxides with vanadia SCR catalyst and the afterward influence: a DFT and experimental study. Journal of Physical Chemistry C, 2015, 119(4): 1905–1912
https://doi.org/10.1021/jp511475b
69 Du X, Gao X, Qu R, Ji P, Luo Z, Cen K. Cen K F, The influence of alkali metals on the Ce–Ti mixed oxide catalyst for the selective catalytic reduction of NOx. ChemCatChem, 2012, 4(12): 2075–2081
https://doi.org/10.1002/cctc.201200316
70 Shen Y, Zhu S. Deactivation mechanism of potassium additives on Ti0.8Zr0.2Ce0.2O2.4 for NH3-SCR of NO. Catalysis Science & Technology, 2012, 2(9): 1806–1810
https://doi.org/10.1039/c2cy20238g
71 Yang B, Shen Y, Shen B, Zhu S. Regeneration of the deactivated TiO2-ZrO2-CeO2/ATS catalyst for NH3-SCR of NOx in glass furnace. Journal of Rare Earths, 2013, 31(2): 130–136
https://doi.org/10.1016/S1002-0721(12)60246-4
72 Peng Y, Li J, Chen L, Chen J, Han J, Zhang H, Han W. Alkali metal poisoning of a CeO2-WO3 catalyst used in the selective catalytic reduction of NOx with NH3: an experimental and theoretical study. Environmental Science & Technology, 2012, 46(5): 2864–2869
https://doi.org/10.1021/es203619w pmid: 22303920
73 Cimino S, Lisi L, Tortorelli M, Low temperature SCR on supported MnOx catalysts for marine exhaust gas cleaning: Effect of KCl poisoning. Chemical Engineering Journal 2016, 283: 223–230
74 Guo R, Wang Q, Pan W, Chen Q, Ding H, Yin X, Yang N, Lu C, Wang S, Yuan Y. The poisoning effect of heavy metals doping on Mn/TiO2 catalyst for selective catalytic reduction of NO with NH3. Journal of Molecular Catalysis A Chemical, 2015, 407: 1–7
https://doi.org/10.1016/j.molcata.2015.06.017
75 Shen B, Deng L, Chen J. Effect of K and Ca on catalytic activity of Mn-CeOx/Ti-PILC. Frontiers of Environmental Science & Engineering, 2013, 7(4): 512–517
https://doi.org/10.1007/s11783-013-0519-y
76 Peng Y, Li J, Huang X, Li X, Su W, Sun X, Wang D, Hao J. Deactivation mechanism of potassium on the V2O5/CeO2 catalysts for SCR reaction: acidity, reducibility and adsorbed-NOx. Environmental Science & Technology, 2014, 48(8): 4515–4520
https://doi.org/10.1021/es405602a pmid: 24634979
77 Tang F, Xu B, Shi H, Qiu J, Fan Y. The poisoning effect of Na+ and Ca2+ ions doped on the V2O5/TiO2 catalysts for selective catalytic reduction of NO by NH3. Applied Catalysis B: Environmental, 2010, 94(1): 71–76
https://doi.org/10.1016/j.apcatb.2009.10.022
78 Wang H, Chen X, Gao S, Wu Z, Liu Y, Weng X. Deactivation mechanism of Ce/TiO2 selective catalytic reduction catalysts by the loading of sodium and calcium salts. Catalysis Science & Technology, 2013, 3(3): 715–722
https://doi.org/10.1039/C2CY20568H
79 Liu Y, Gu T, Wang Y, Weng X, Wu Z. Influence of Ca doping on MnOx/TiO2 catalysts for low-temperature selective catalytic reduction of NOx by NH3. Catalysis Communications, 2012, 18: 106–109
https://doi.org/10.1016/j.catcom.2011.11.022
80 Gu T, Jin R, Liu Y, Liu H, Weng X, Wu Z. Promoting effect of calcium doping on the performances of MnOx/TiO2 catalysts for NO reduction with NH3 at low temperature. Applied Catalysis B: Environmental, 2013, 129: 30–38
https://doi.org/10.1016/j.apcatb.2012.09.003
81 Choo S, Yim S, Nam I, Ham S, Lee J. Effect of promoters including WO3 and BaO on the activity and durability of V2O5/sulfated TiO2 catalyst for NO reduction by NH3. Applied Catalysis B: Environmental, 2003, 44(3): 237–252
https://doi.org/10.1016/S0926-3373(03)00073-0
82 Choung J, Nam I, Ham S. Effect of promoters including tungsten and barium on the thermal stability of V2O5/sulfated TiO2 catalyst for NO reduction by NH3. Catalysis Today, 2006, 111(3): 242–247
https://doi.org/10.1016/j.cattod.2005.10.033
83 Putluru S, Kristensen S, Due-Hansen J, Riisager A, Fehrmann R. Alternative alkali resistant deNOx catalysts. Catalysis Today, 2012, 184(1): 192–196
https://doi.org/10.1016/j.cattod.2011.10.012
84 Yu W, Wu X, Si Z, Weng D. Influences of impregnation procedure on the SCR activity and alkali resistance of V2O5–WO3/TiO2 catalyst. Applied Surface Science, 2013, 283: 209–214
https://doi.org/10.1016/j.apsusc.2013.06.083
85 Zhang L, Cui S, Guo H, Ma X, Luo X. The influence of K+ cation on the MnOx-CeO2/TiO2 catalysts for selective catalytic reduction of NOx with NH3 at low temperature. Journal of Molecular Catalysis A Chemical, 2014, 390: 14–21
https://doi.org/10.1016/j.molcata.2014.02.021
86 Due-Hansen J, Boghosian S, Kustov A, Fristrup P, Tsilomelekis G, Ståhl K, Christensen C H, Fehrmann R. Vanadia-based SCR catalysts supported on tungstated and sulfated zirconia: influence of doping with potassium. Journal of Catalysis, 2007, 251(2): 459–473
https://doi.org/10.1016/j.jcat.2007.07.016
87 Due-Hansen J, Kustov A L, Rasmussen S B, Fehrmann R, Christensen C H. Tungstated zirconia as promising carrier for DeNOx catalysts with improved resistance towards alkali poisoning. Applied Catalysis B: Environmental, 2006, 66(3): 161–167
https://doi.org/10.1016/j.apcatb.2006.03.006
88 Peng Y, Li J, Si W, Li X, Shi W, Luo J, Fu J, Crittenden J, Hao J. Ceria promotion on the potassium resistance of MnOx/TiO2 SCR catalysts: an experimental and DFT study. Chemical Engineering Journal, 2015, 269: 44–50
https://doi.org/10.1016/j.cej.2015.01.052
89 Hu P, Huang Z, Gu X, Xu F, Gao J, Wang Y, Chen Y, Tang X. Alkali-resistant mechanism of a hollandite DeNOx catalyst. Environmental Science & Technology, 2015, 49(11): 7042–7047
https://doi.org/10.1021/acs.est.5b00570 pmid: 25941972
90 Wang P, Wang H, Chen X, Liu Y, Weng X, Wu Z. Novel SCR catalyst with superior alkaline resistance performance: enhanced self-protection originated from modifying protonated titanate nanotubes. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(2): 680–690
https://doi.org/10.1039/C4TA03519D
91 Hower J, Trimble A, Eble C, Palmer C, Kolker A. Characterization of fly ash from low-sulfur and high-sulfur coal sources: partitioning of carbon and trace elements with particle size. Energy Sources, 1999, 21(6): 511–525
https://doi.org/10.1080/00908319950014641
92 Phil H, Reddy M, Kumar P, Ju L, Hyo J. SO2 resistant antimony promoted V2O5/TiO2 catalyst for NH3-SCR of NOx at low temperatures. Applied Catalysis B: Environmental, 2008, 78(3): 301–308
https://doi.org/10.1016/j.apcatb.2007.09.012
93 Lietti L, Nova I, Forzatti P. Selective catalytic reduction (SCR) of NO by NH3 over TiO2-supported V2O5–WO3 and V2O5–MoO3 catalysts. Topics in Catalysis, 2000, 11–12(1–4): 111–122
https://doi.org/10.1023/A:1027217612947
94 Klimczak M, Kern P, Heinzelmann T, Lucas M, Claus P. High-throughput study of the effects of inorganic additives and poisons on NH3-SCR catalysts—Part I: V2O5–WO3/TiO2 catalysts. Applied Catalysis B: Environmental, 2010, 95(1): 39–47
https://doi.org/10.1016/j.apcatb.2009.12.007
95 Shang X, Hu G, He C, Zhao J, Zhang F, Xu Y, Zhang Y, Li J, Chen J. Regeneration of full-scale commercial honeycomb monolith catalyst (V2O5–WO3/TiO2) used in coal-fired power plant. Journal of Industrial and Engineering Chemistry, 2012, 18(1): 513–519
https://doi.org/10.1016/j.jiec.2011.11.070
96 Kamata H, Ohara H, Takahashi K, Yukimura A, Seo Y. SO2 oxidation over the V2O5/TiO2 SCR catalyst. Catalysis Letters, 2001, 73(1): 79–83
https://doi.org/10.1023/A:1009065030750
97 Srivastava R K, Miller C A, Erickson C, Jambhekar R. Emissions of sulfur trioxide from coal-fired power plants. Journal of the Air & Waste Management Association, 2004, 54(6): 750–762
https://doi.org/10.1080/10473289.2004.10470943 pmid: 15242154
98 Guo X, Bartholomew C, Hecker W, Baxter L L. Effects of sulfate species on V2O5/TiO2 SCR catalysts in coal and biomass-fired systems. Applied Catalysis B: Environmental, 2009, 92(1): 30–40
https://doi.org/10.1016/j.apcatb.2009.07.025
99 Magnusson M, Fridell E, Ingelsten H. The influence of sulfur dioxide and water on the performance of a marine SCR catalyst. Applied Catalysis B: Environmental, 2012, 111: 20–26
https://doi.org/10.1016/j.apcatb.2011.09.010
100 Giakoumelou I, Fountzoula C, Kordulis C, Boghosian S. Molecular structure and catalytic activity of V2O5/TiO2 catalysts for the SCR of NO by NH3: in situ Raman spectra in the presence of O2, NH3, NO, H2, H2O, and SO2. Journal of Catalysis, 2006, 239(1): 1–12
https://doi.org/10.1016/j.jcat.2006.01.019
101 Xu W, He H, Yu Y. Deactivation of a Ce/TiO2 catalyst by SO2 in the selective catalytic reduction of NO by NH3. Journal of Physical Chemistry C, 2009, 113(11): 4426–4432
https://doi.org/10.1021/jp8088148
102 Chang H, Li J, Yuan J, Chen L, Dai Y, Arandiyan H, Xu J, Hao J. Ge, Mn-doped CeO2–WO3 catalysts for NH3–SCR of NOx: effects of SO2 and H2 regeneration. Catalysis Today, 2013, 201: 139–144
https://doi.org/10.1016/j.cattod.2012.03.027
103 Liu J, Li X, Zhao Q, Hao C, Wang S, Tade M. Combined spectroscopic and theoretical approach to sulfur-poisoning on Cu-supported Ti–Zr mixed oxide catalyst in the selective catalytic reduction of NOx. ACS Catalysis, 2014, 4(8): 2426–2436
https://doi.org/10.1021/cs5005739
104 Jiang B, Wu Z, Liu Y, Lee S, Ho W. DRIFT study of the SO2 effect on low-temperature SCR reaction over Fe-Mn/TiO2. Journal of Physical Chemistry C, 2010, 114(11): 4961–4965
https://doi.org/10.1021/jp907783g
105 Jin R, Liu Y, Wu Z, Wang H, Gu T. Relationship between SO2 poisoning effects and reaction temperature for selective catalytic reduction of NO over Mn–Ce/TiO2 catalyst. Catalysis Today, 2010, 153(3): 84–89
https://doi.org/10.1016/j.cattod.2010.01.039
106 Sheng Z, Hu Y, Xue J, Wang X, Liao W. SO2 poisoning and regeneration of Mn-Ce/TiO2 catalyst for low temperature NOx reduction with NH3. Journal of Rare Earths, 2012, 30(7): 676–682
https://doi.org/10.1016/S1002-0721(12)60111-2
107 Yang S, Guo Y, Yan N, Wu D, He H, Xie J, Qu Z, Jia J. Remarkable effect of the incorporation of titanium on the catalytic activity and SO2 poisoning resistance of magnetic Mn–Fe spinel for elemental mercury capture. Applied Catalysis B: Environmental, 2011, 101(3): 698–708
https://doi.org/10.1016/j.apcatb.2010.11.012
108 Casarin M, Ferrigato F, Maccato C, Vittadini A. SO2 on TiO2(110) and Ti2O3(102) nonpolar surfaces: a DFT study. Journal of Physical Chemistry B, 2005, 109(25): 12596–12602
https://doi.org/10.1021/jp050314e pmid: 16852558
109 Lu Z, Müller C, Yang Z, Hermansson K, Kullgren J. SOx on ceria from adsorbed SO2. Journal of Chemical Physics, 2011, 134(18): 184703
https://doi.org/10.1063/1.3566998 pmid: 21568525
110 Liu Y, Cen W, Wu Z, Weng X, Wang H. SO2 poisoning structures and the effects on pure and Mn doped CeO2: a first principles investigation. Journal of Physical Chemistry C, 2012, 116(43): 22930–22937
https://doi.org/10.1021/jp307113t
111 Ma Z, Weng D, Wu X, Si Z, Wang B. A novel Nb–Ce/WOx–TiO2 catalyst with high NH3-SCR activity and stability. Catalysis Communications, 2012, 27: 97–100
https://doi.org/10.1016/j.catcom.2012.07.006
112 Chang H, Chen X, Li J, Ma L, Wang C, Liu C, Schwank J W, Hao J. Improvement of activity and SO2 tolerance of Sn-modified MnOx-CeO2 catalysts for NH₃-SCR at low temperatures. Environmental Science & Technology, 2013, 47(10): 5294–5301
https://doi.org/10.1021/es304732h pmid: 23582170
113 Du X, Gao X, Cui L, Fu Y, Luo Z, Cen K. Investigation of the effect of Cu addition on the SO2-resistance of a Ce Ti oxide catalyst for selective catalytic reduction of NO with NH3. Fuel, 2012, 92(1): 49–55
https://doi.org/10.1016/j.fuel.2011.08.014
114 Liu C, Chen L, Li J, Ma L, Arandiyan H, Du Y, Xu J, Hao J. Enhancement of activity and sulfur resistance of CeO2 supported on TiO2-SiO2 for the selective catalytic reduction of NO by NH3. Environmental Science & Technology, 2012, 46(11): 6182–6189
https://doi.org/10.1021/es3001773 pmid: 22548347
115 Peng Y, Liu C, Zhang X, Li J. The effect of SiO2 on a novel CeO2–WO3/TiO2 catalyst for the selective catalytic reduction of NO with NH3. Applied Catalysis B: Environmental, 2013, 140: 276–282
https://doi.org/10.1016/j.apcatb.2013.04.030
116 Blanco J, Avila P, Barthelemy C, Bahamonde A, Odriozola J, De La Banda J G, Heinemann H. Influence of phosphorus in vanadium-containing catalysts for NOx removal. Applied Catalysis, 1989, 55(1): 151–164
https://doi.org/10.1016/S0166-9834(00)82325-8
117 Kamata H, Takahashi K, Odenbrand C I. Surface acid property and its relation to SCR activity of phosphorus added to commercial V2O5 (WO3)/TiO2 catalyst. Catalysis Letters, 1998, 53(1): 65–71
https://doi.org/10.1023/A:1019020931117
118 Beck J, Brandenstein J, Unterberger S, Hein K R. Effects of sewage sludge and meat and bone meal co-combustion on SCR catalysts. Applied Catalysis B: Environmental, 2004, 49(1): 15–25
https://doi.org/10.1016/j.apcatb.2003.11.007
119 Beck J, Müller R, Brandenstein J, Matscheko B, Matschke J, Unterberger S, Hein K R. The behaviour of phosphorus in flue gases from coal and secondary fuel co-combustion. Fuel, 2005, 84(14): 1911–1919
https://doi.org/10.1016/j.fuel.2005.03.011
120 Beck J, Unterberger S. The behaviour of phosphorus in the flue gas during the combustion of high-phosphate fuels. Fuel, 2006, 85(10): 1541–1549
https://doi.org/10.1016/j.fuel.2006.01.005
121 Tobiasen L, Skytte R, Pedersen L, Pedersen S, Lindberg M. Deposit characteristic after injection of additives to a Danish straw-fired suspension boiler. Fuel Processing Technology, 2007, 88(11): 1108–1117
https://doi.org/10.1016/j.fuproc.2007.06.017
122 Castellino F, Jensen A, Johnsson J, Fehrmann R. Influence of reaction products of K-getter fuel additives on commercial vanadia-based SCR catalysts: Part II. Simultaneous addition of KCl, Ca (OH)2, H3PO4 and H2SO4 in a hot flue gas at a SCR pilot-scale setup. Applied Catalysis B: Environmental, 2009, 86(3): 206–215
https://doi.org/10.1016/j.apcatb.2008.11.008
123 Castellino F, Rasmussen S, Jensen A, Johnsson J, Fehrmann R. Deactivation of vanadia-based commercial SCR catalysts by polyphosphoric acids. Applied Catalysis B: Environmental, 2008, 83(1): 110–122
https://doi.org/10.1016/j.apcatb.2008.02.008
124 Li F, Zhang Y, Xiao D, Wang D, Pan X, Yang X. Hydrothermal Method Prepared Ce‐P‐O Catalyst for the Selective Catalytic Reduction of NO with NH3 in a Broad Temperature Range. ChemCatChem, 2010, 2(11): 1416–1419
https://doi.org/10.1002/cctc.201000179
125 Chang H, Wu Q, Zhang T, Li M, Sun X, Li J, Duan L, Hao J. Design strategies for CeO2-MoO3 catalysts for DeNOx and Hg0 oxidation in the presence of HCl: The significance of the surface acid-base properties. Environmental Science & Technology, 2015, 49(20): 12388–12394
https://doi.org/10.1021/acs.est.5b02520 pmid: 26421943
126 Chang F Y, Chen J C, Wey M Y, Tsai S A. Effects of particulates, heavy metals and acid gas on the removals of NO and PAHs by V2O5-WO3 catalysts in waste incineration system. Journal of Hazardous Materials, 2009, 170(1): 239–246
https://doi.org/10.1016/j.jhazmat.2009.04.105 pmid: 19500905
127 Chang F, Chen J, Wey M. Catalytic removal of NO in waste incineration processes over Rh/Al2O3 and Rh–Na/Al2O3: Effects of particulates, heavy metals, SO2 and HCl. Fuel Processing Technology, 2009, 90(4): 576–582
https://doi.org/10.1016/j.fuproc.2008.12.017
128 Chang F, Chen J, Wey M. Effects of oxygen and hydrogen chloride on NO removal efficiency by Rh/Al2O3 and Rh–Na/Al2O3 catalysts. Applied Catalysis A, General, 2009, 359(1): 88–95
https://doi.org/10.1016/j.apcata.2009.02.041
129 Hums E. Is advanced SCR technology at a standstill? A provocation for the academic community and catalyst manufacturers. Catalysis Today, 1998, 42(1): 25–35
https://doi.org/10.1016/S0920-5861(98)00073-X
130 Hums E. Understanding of deactivation behavior of DeNOx catalysts: a key to advanced catalyst applications. Kinetics and Catalysis, 1998, 39(5): 603–606
131 Valdés-Solí T, Marbán G, Fuertes A. Low-temperature SCR of NOx with NH3 over carbon-ceramic supported catalysts. Applied Catalysis B: Environmental, 2003, 46(2): 261–271
https://doi.org/10.1016/S0926-3373(03)00217-0
132 Senior C, Lignell D, Sarofim A, Mehta A. Modeling arsenic partitioning in coal-fired power plants. Combustion and Flame, 2006, 147(3): 209–221
https://doi.org/10.1016/j.combustflame.2006.08.005
133 Wei Z, Zhang S, Pan Z, Liu Y. Theoretical studies of arsenite adsorption and its oxidation mechanism on a perfect TiO2 anatase (101) surface. Applied Surface Science, 2011, 258(3): 1192–1198
https://doi.org/10.1016/j.apsusc.2011.09.069
134 Kong M, Liu Q, Wang X, Ren S, Yang J, Zhao D, Xi W, Yao L. Performance impact and poisoning mechanism of arsenic over commercial V2O5–WO3/TiO2 SCR catalyst. Catalysis Communications, 2015, 72: 121–126
https://doi.org/10.1016/j.catcom.2015.09.029
135 Peng Y, Li J, Si W, Luo J, Dai Q, Luo X, Liu X, Hao J. Insight into deactivation of commercial SCR catalyst by arsenic: an experiment and DFT study. Environmental Science & Technology, 2014, 48(23): 13895–13900
https://doi.org/10.1021/es503486w pmid: 25380546
136 Li X, Li J, Peng Y, Si W, He X, Hao J. Regeneration of commercial SCR Catalysts: probing the existing forms of arsenic oxide. Environmental Science & Technology, 2015, 49(16): 9971–9978
https://doi.org/10.1021/acs.est.5b02257 pmid: 26186082
137 Lange F, Schmelz H, Knözinger H. Infrared-spectroscopic investigations of selective catalytic reduction catalysts poisoned with arsenic oxide. Applied Catalysis B: Environmental, 1996, 8(2): 245–265
https://doi.org/10.1016/0926-3373(95)00071-2
138 Li X, Li Y. Molybdenum modified CeAlOx catalyst for the selective catalytic reduction of NO with NH3. Journal of Molecular Catalysis A Chemical, 2014, 386: 69–77
https://doi.org/10.1016/j.molcata.2014.02.016
139 Peng Y, Si W, Li X, Luo J, Li J, Crittenden J, Hao J. Comparison of MoO3 and WO3 on arsenic poisoning V2O5/TiO2 catalyst: DRIFTS and DFT study. Applied Catalysis B: Environmental, 2016, 181: 692–698
https://doi.org/10.1016/j.apcatb.2015.08.030
140 Khodayari R, Odenbrand C. Deactivating effects of lead on the selective catalytic reduction of nitric oxide with ammonia over a V2O5/WO3/TiO2 catalyst for waste incineration applications. Industrial & Engineering Chemistry Research, 1998, 37(4): 1196–1202
https://doi.org/10.1021/ie9706065
141 Gao X, Du X, Fu Y, Mao J, Luo Z, Ni M, Cen K. Theoretical and experimental study on the deactivation of V2O5 based catalyst by lead for selective catalytic reduction of nitric oxides. Catalysis Today, 2011, 175(1): 625–630
https://doi.org/10.1016/j.cattod.2011.05.025
142 Jiang Y, Gao X, Zhang Y, Wu W, Luo Z, Cen K. PbCl2‐poisoning kinetics of V2O5/TiO2 catalysts for the selective catalytic reduction of NO with NH3. Environmental Progress & Sustainable Energy, 2015, 34(4): 1085–1091
https://doi.org/10.1002/ep.12106
143 Jiang Y, Gao X, Zhang Y, Wu W, Song H, Luo Z, Cen K. Effects of PbCl2 on selective catalytic reduction of NO with NH3 over vanadia-based catalysts. Journal of Hazardous Materials, 2014, 274: 270–278
https://doi.org/10.1016/j.jhazmat.2014.04.026 pmid: 24794983
144 Guo R, Lu C, Pan W, Zhen W, Wang Q, Chen Q, Ding H, Yang N. A comparative study of the poisoning effect of Zn and Pb on Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO with NH3. Catalysis Communications, 2015, 59: 136–139
https://doi.org/10.1016/j.catcom.2014.10.006
145 Larsson A, Einvall J, Andersson A, Sanati M. Targeting by comparison with laboratory experiments the SCR catalyst deactivation process by potassium and zinc salts in a large-scale biomass combustion boiler. Energy & Fuels, 2006, 20(4): 1398–1405
https://doi.org/10.1021/ef060077u
146 Peng Y, Li J, Si W, Luo J, Wang Y, Fu J, Li X, Crittenden J, Hao J. Deactivation and regeneration of a commercial SCR catalyst: comparison with alkali metals and arsenic. Applied Catalysis B: Environmental, 2015, 168: 195–202
https://doi.org/10.1016/j.apcatb.2014.12.005
147 Si Z, Weng D, Wu X, Ran R, Ma Z. NH3-SCR activity, hydrothermal stability, sulfur resistance and regeneration of Ce0.75Zr0.25O2-PO43- catalyst. Catalysis Communications, 2012, 17: 146–149
https://doi.org/10.1016/j.catcom.2011.09.018
148 Yu Y, He C, Chen J, Yin L, Qiu T, Meng X. Regeneration of deactivated commercial SCR catalyst by alkali washing. Catalysis Communications, 2013, 39: 78–81
https://doi.org/10.1016/j.catcom.2013.05.010
149 Gao F, Tang X, Yi H, Zhao S, Zhang T, Li D, Ma D. The poisoning and regeneration effect of alkali metals deposed over commercial V2O5-WO3/TiO2 catalysts on SCR of NO by NH3. Chinese Science Bulletin, 2014, 59(31): 3966–3972
https://doi.org/10.1007/s11434-014-0496-y
150 Lee J, Kim S, Kim D, Kim K, Chun S, Hur K, Jeong S. Effect of H2SO4 concentration in washing solution on regeneration of commercial selective catalytic reduction catalyst. Korean Journal of Chemical Engineering, 2012, 29(2): 270–276
https://doi.org/10.1007/s11814-011-0156-8
151 Qiu K, Song J, Song H, Gao X, Luo Z, Cen K. A novel method of microwave heating mixed liquid-assisted regeneration of V2O5-WO3/TiO2 commercial SCR catalysts. Environmental Geochemistry and Health, 2015, 37(5): 905–914
https://doi.org/10.1007/s10653-014-9663-y pmid: 25732905
[1] Shi Yin, Yan-Qiu Chen, Yue-Li Li, Wang-Lai Cen, Hua-Qiang Yin. Static and dynamic characteristics of SO2-O2 aqueous solution in the microstructure of porous carbon materials[J]. Front. Environ. Sci. Eng., 2018, 12(5): 12-.
[2] Yi ZHAO,Tianxiang GUO,Zili ZANG. Activity and characteristics of “Oxygen-enriched” highly reactive absorbent for simultaneous flue gas desulfurization and denitrification[J]. Front. Environ. Sci. Eng., 2015, 9(2): 222-229.
[3] Yongfu GUO, Naiqiang YAN, Ping LIU, Shijian YANG, Juan WANG, Zan QU. Removal of elemental mercury with Mn/Mo/Ru/Al2O3 membrane catalytic system[J]. Front Envir Sci Eng, 2013, 7(3): 464-473.
[4] CUI Xiao, LI Caiting, WANG Fei, LI Shanhong, XIAO Chenchang, PENG Yu, ZHAI Yunbo. Experimental study on the control of black smoke pollution from the ceramic kilns based on the mechanism of the surfactant and coagulant[J]. Front.Environ.Sci.Eng., 2008, 2(1): 109-115.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed