Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2016, Vol. 10 Issue (5) : 2    https://doi.org/10.1007/s11783-016-0834-1
RESEARCH ARTICLE
Impact of photocatalytic remediation of pollutants on urban air quality
Christian GEORGE1,*(),Anne BEELDENS2,Fotios BARMPAS3,Jean-François DOUSSIN4,Giuseppe MANGANELLI5,Hartmut HERRMANN6,Jörg KLEFFMANN7,Abdelwahid MELLOUKI8
1. Université Lyon 1, CNRS, UMR 5256, IRCELYON, Institut de recherches sur la catalyse et l’environnement de Lyon, Villeurbanne F-69626, France
2. Belgian Road Research Centre (BRRC), Woluwedal 42-1200 Brussels, Belgium
3. Laboratory of Heat Transfer and Environmental Engineering (LHTEE), Aristotle University of Thessaloniki, Box 483, GR 54124 Thessaloniki, Greece
4. LISA, UMR CNRS 7583, Université Paris Est Créteil et Université Paris Diderot, Institut Pierre Simon Laplace, Créteil 94010, France
5. CTG Italcementi Group, Via Stezzano 87, 24126 Bergamo, Italy
6. Physikalische und Theoretische Chemie / School of Mathematics and Natural Sciences, Bergische Universität Wuppertal (BUW), 42119 Wuppertal, Germany
7. Leibniz-Institut für Troposphärenforschunge.V. (TROPOS), Atmospheric Chemistry Department, 04318 Leipzig, Germany
8. Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS (UPR 3021)/OSUC, 1C Avenue de la Recherche Scientifique, Orléans 457071, France
 Download: PDF(762 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Air pollution remediation using photocatalytic construction materials was tested.

NOx and VOC uptake rates on different materials were measured in the laboratory.

Effective NOx and VOC abatement levels were tested under real conditions.

Recommendations for implementation of photocatalytic materials are provided.

In the recent years, photocatalytic self-cleaning and “depolluting” materials have been suggested as a remediation technology mainly for NOx and aromatic VOCs in urban areas. A number of products incorporating the aforementioned technology have been made commercially available with the aim to improve urban air quality. These commercial products are based on the photocatalytic properties of a thin layer of TiO2 at the surface of the material (such as glass, pavement, etc.) or embedded in paints or concrete. The use of TiO2 photocatalysts as an emerging air pollution control technology has been reported in many locations worldwide. However, up to now, the effectiveness measured in situ and the expected positive impact on air quality of this relatively new technology has only been demonstrated in a limited manner. Assessing and demonstrating the effectiveness of these depolluting techniques in real scale applications aims to create a real added value, in terms of policy making (i.e., implementing air quality strategies) and economics (by providing a demonstration of the actual performance of a new technique).

Keywords Photocatalysis      Air pollution      Depollution efficiency      NOx      VOC      Air quality abatement and management     
PACS:     
Fund: 
Corresponding Author(s): Christian GEORGE   
Issue Date: 09 May 2016
 Cite this article:   
Christian GEORGE,Anne BEELDENS,Fotios BARMPAS, et al. Impact of photocatalytic remediation of pollutants on urban air quality[J]. Front. Environ. Sci. Eng., 2016, 10(5): 2.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-016-0834-1
https://academic.hep.com.cn/fese/EN/Y2016/V10/I5/2
Fig.1  Simplified scheme of the various (photo)chemical conversions involved in the formation of photochemical pollution episodes, so called photosmog. This scheme highlights the catalytic nature of atmospheric processes, influenced by anthropogenic activities.
Fig.2  Simplified description of photocatalysis. When illuminated with light of energy higher than the band gap, electron-hole pairs are created in a semi-conductor, thus allowing chemical reactions on its surface. If applied on urban surfaces, these reactions may then introduce sink processes for atmospheric pollutants.
Fig.3  Typical experiment on the degradation of NO2 on photoactive concrete. The NO2 flow was first stabilized using a reactor bypass, then this flow was directed into the bed flow reactor in the dark. A NO2 sink can be observed showing a possible dark reaction. Then lights were switched on inducing a photochemical conversion due to the photocatalytic nature of the tested material.
Fig.4  Schematic of the measurement sites during the field trial in a tunnel at Brussels. This figure shows the location of the two sites and lists the various measured parameters in the test section. The slope of the tunnel, impacting the driving conditions, is also schematized.
Fig.5  Schematic of the measurement sites during the outdoor field trial, where the various measurements were performed in workshop located between a reference (on the right) and an active (on the left) street canyon.
1 EEA. Air quality in Europe — Report No 9/2013: ISSN 1725–9177 European Environment Agency, Luxembourg: Publications Office of the European Union, 2013
2 OECD. OECD Environmental Outlook to 2050: The Consequences of Inaction.Paris: OECD Publishing, 2012
https://doi.org/10.1787/9789264122246-en
3 Dockery D W, Pope C A, Xu X, Spengler J D, Ware J H, Fay M E, Ferris B GJr, Speizer F E. An association between air pollution and mortality in six U.S. cities. New England Journal of Medicine, 1993, 329(24): 1753–1759
https://doi.org/10.1056/NEJM199312093292401
4 Finlayson-Pitts B J, Pitts J N. Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications.San Diego: Academic Press, 2000
5 Melkonyan A, Kuttler W. Long-term analysis of NO, NO2 and O3 concentrations in North Rhine-Westphalia, Germany. Atmospheric Environment, 2012, 60: 316–326
https://doi.org/10.1016/j.atmosenv.2012.06.048
6 Carslaw D C, Beevers S D, Bell M C. Risks of exceeding the hourly EU limit value for nitrogen dioxide resulting from increased road transport emissions of primary nitrogen dioxide. Atmospheric Environment, 2007, 41(10): 2073–2082
https://doi.org/10.1016/j.atmosenv.2006.10.074
7 Kurtenbach R, Kleffmann J, Niedojadlo A, Wiesen P. Primary NO2 emissions and their impact on air quality in traffic environments in Germany. Environmental Sciences Europe, 2012, 24(1): 1–8
https://doi.org/10.1186/2190-4715-24-21
8 Beevers S D, Westmoreland E, de Jong M C, Williams M L, Carslaw D C. Trends in NOx and NO2 emissions from road traffic in Great Britain. Atmospheric Environment, 2012, 54: 107–116
https://doi.org/10.1016/j.atmosenv.2012.02.028
9 Kurz C, Orthofer R, Sturm P, Kaiser A, Uhrner U, Reifeltshammer R, Rexeis M. Projection of the air quality in Vienna between 2005 and 2020 for NO2 and PM10. Urban Climate, 2014, 10, Part 4(0): 703–719
10 Maggos T, Plassais A, Bartzis J G, Vasilakos C, Moussiopoulos N, Bonafous L. Photocatalytic degradation of NOx in a pilot street canyon configuration using TiO2-mortar panels. Environmental Monitoring and Assessment, 2008, 136(1–3): 35–44
11 Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann D W. Understanding TiO2 photocatalysis: mechanisms and materials. Chemical Reviews, 2014, 114(19): 9919–9986
https://doi.org/10.1021/cr5001892
12 Strini A, Cassese S, Schiavi L. Measurement of benzene, toluene, ethylbenzene and o-xylene gas phase photodegradation by titanium dioxide dispersed in cementitious materials using a mixed flow reactor. Applied Catalysis B: Environmental, 2005, 61(1–2): 90–97
https://doi.org/10.1016/j.apcatb.2005.04.009
13 Hoffmann M R, Martin S T, Choi W, Bahnemann D W. Environmental applications of semiconductor photocatalysis. Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews (Washington, D. C.), 1995, 95(1): 69–96
https://doi.org/10.1021/cr00033a004
14 Herrmann J M. Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catalysis Today, 1999, 53(1): 115–129
https://doi.org/10.1016/S0920-5861(99)00107-8
15 Chen H, Nanayakkara C E, Grassian V H. Titanium dioxide photocatalysis in atmospheric chemistry. Chemical Reviews, 2012, 112(11): 5919–5948
https://doi.org/10.1021/cr3002092
16 Goodeve C F, Kitchener J A. Photosensitisation by titanium dioxide. Transactions of the Faraday Society, 1938, 34(0): 570–579
https://doi.org/10.1039/tf9383400570
17 Renz C. Lichtreaktionen der Oxyde des Titans, Cers und der Erdsäuren. Helvetica ChimicaActa, 1921, 4(1): 961–968 (in German)
https://doi.org/10.1002/hlca.192100401101
18 Fujishima A, Zhang X, Tryk D A. TiO2 photocatalysis and related surface phenomena. Surface Science Reports, 2008, 63(12): 515–582
https://doi.org/10.1016/j.surfrep.2008.10.001
19 Henderson M A. A surface science perspective on TiO2 photocatalysis. Surface Science Reports, 2011, 66(6–7): 185–297
https://doi.org/10.1016/j.surfrep.2011.01.001
20 Auvinen J, Wirtanen L. The influence of photocatalytic interior paints on indoor air quality. Atmospheric Environment, 2008, 42(18): 4101–4112
https://doi.org/10.1016/j.atmosenv.2008.01.031
21 Beaumont S K, Gustafsson R J, Lambert R M. Heterogeneous photochemistry relevant to the troposphere: H2O2 production during the photochemical reduction of NO2 to HONO on UV-illuminated TiO2 surfaces. ChemPhysChem, 2009, 10(2): 331–333
https://doi.org/10.1002/cphc.200800613
22 Geiss O, Cacho C, Barrero-Moreno J, Kotzias D. Photocatalytic degradation of organic paint constituents-formation of carbonyls. Building and Environment, 2012, ( 48): 107–112
https://doi.org/10.1016/j.buildenv.2011.08.021
23 Gustafsson R J, Orlov A, Griffiths P T, Cox R A, Lambert R M. Reduction of NO2 to nitrous acid on illuminated titanium dioxide aerosol surfaces: implications for photocatalysis and atmospheric chemistry. Chemical Communications (Cambridge), 2006, (37): 3936–3938
https://doi.org/10.1039/b609005b
24 Monge M E, D'Anna B, George C. Nitrogen dioxide removal and nitrous acid formation on titanium oxide surfaces-an air quality remediation process? Physical Chemistry Chemical Physics, 2010, 12(31): 8991–8999
https://doi.org/10.1039/b925785c
25 Ndour M, D'Anna B, George C, Ka O, Balkanski Y, Kleffmann J, Stemmler K, Ammann M. Photoenhanced uptake of NO2 on mineral dust: laboratory experiments and model simulations. Geophysical Research Letters, 2008, 35(5): L05812, 1–5
https://doi.org/10.1029/2007GL032006
26 Salthammer T, Fuhrmann F. Photocatalytic surface reactions on indoor wall paint. Environmental Science & Technology, 2007, 41(18): 6573–6578
https://doi.org/10.1021/es070057m
27 Boonen E, Akylas V, Barmpas F, Boréave A, Bottalico L, Cazaunau M, Chen H, Daële V, De Marco T, Doussin J F, Gaimoz C, Gallus M, George C, Grand N, Grosselin B, Guerrini G L, Herrmann H, Ifang S, Kleffmann J, Kurtenbach R, Maille M, Manganelli G, Mellouki A, Miet K, Mothes F, Moussiopoulos N, Poulain L, Rabe R, Zapf P, Beeldens A. Construction of a photocatalytic de-polluting field site in the Leopold II tunnel in Brussels. Journal of Environmental Management, 2015, 155(0): 136–144
https://doi.org/10.1016/j.jenvman.2015.03.001
28 Gallus M, Akylas V, Barmpas F, Beeldens A, Boonen E, Boreave A, Cazaunau M, Chen H, Daele V, Doussin J F, Dupart Y, Gaimoz C, George C, Grosselin B, Herrmann H, Ifang S, Kurtenbach R, Maille M, Mellouki A, Miet K, Mothes F, Moussiopoulos N, Poulain L, Rabe R, Zapf P, Kleffmann J. Photocatalytic de-pollution in the Leopold II tunnel in Brussels: NOx abatement results. Building and Environment, 2015, (84): 125–133
https://doi.org/10.1016/j.buildenv.2014.10.032
29 Crowley J N, Ammann M, Cox R A, Hynes R G, Jenkin M E, Mellouki A, Rossi M J, Troe J, Wallington T J. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume V—heterogeneous reactions on solid substrates. Atmospheric Chemistry and Physics, 2010, 10(18): 9059–9223
https://doi.org/10.5194/acp-10-9059-2010
30 Ammann M, Cox R A, Crowley J N, Jenkin M E, Mellouki A, Rossi M J, Troe J, Wallington T J. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume VI—heterogeneous reactions with liquid substrates. Atmospheric Chemistry and Physics, 2013, 13(16): 8045–8228
https://doi.org/10.5194/acp-13-8045-2013
31 Ammann M, Pöschl U, Rudich Y. Effects of reversible adsorption and Langmuir-Hinshelwood surface reactions on gas uptake by atmospheric particles. Physical Chemistry Chemical Physics, 2003, 5(2): 351–356
https://doi.org/10.1039/b208708a
32 Hashimoto K, Wasada K, Toukai N, Kominami H, Kera Y. Photocatalytic oxidation of nitrogen monoxide over titanium(IV) oxide nanocrystals large size areas. Journal of Photochemistry and Photobiology A Chemistry, 2000, 136(1–2): 103–109
https://doi.org/10.1016/S1010-6030(00)00329-4
33 Hoffmann M R, Martin S T, Choi W Y, Bahnemann D W. Environmental applications of semiconductor photocatalysis. Chemical Reviews, 1995, 95(1): 69–96
https://doi.org/10.1021/cr00033a004
34 Shang J, Du Y, Xu Z. Photocatalytic oxidation of heptane in the gas-phase over TiO2. Chemosphere, 2002, 46(1): 93–99
https://doi.org/10.1016/S0045-6535(01)00115-1
35 Rohrer F, Bohn B, Brauers T, Brüning D, Johnen J F, Wahner A, Kleffmann J. Characterisation of the photolytic HONO-source in the atmosphere simulation chamber SAPHIR. Atmospheric Chemistry and Physics Discussion, 2004, 4(6): 7881–7915
https://doi.org/10.5194/acpd-4-7881-2004
36 Gallus M, Ciuraru R, Mothes F, Akylas V, Barmpas F, Beeldens A, Bernard F, Boonen E, Boréave A, Cazaunau M, Charbonnel N, Chen H, Daële V, Dupart Y, Gaimoz C, Grosselin B, Herrmann H, Ifang S, Kurtenbach R, Maille M, Marjanovic I, Michoud V, Mellouki A, Miet K, Moussiopoulos N, Poulain L, Zapf P, George C, Doussin J F, Kleffmann J. Photocatalytic abatement results from a model street canyon. Environmental Science and Pollution Research International, 2015, 22(22):18185–18196
https://doi.org/10.1007/s11356-015-4926-4.
37 Ballari M M, Brouwers H J H. Full scale demonstration of air-purifying pavement. Journal of Hazardous Materials, 2013, 254–255: 406–414
https://doi.org/10.1016/j.jhazmat.2013.02.012
38 Bolte G, Flassak T.Numerische Simulation der Wirksamkeit photo katalytis chaktiver Betonoberflächen. In: Conference Proceedings of Internationale Baustofftagung 18. Ibausil, Weimar.Weimar: Internationale Baustofftagung 18. ibausil, 2012
39 Guerrini G L, Peccati E. Photocatalytic cementitious roads for depollution. In: Proceedings of International RILEM Symposium on Photocatalysis, Environment and Construction Materials, Florence, Italy. Bagneux: RILEM Publications, 2007
40 Ifang S, Gallus M, Liedtke S, Kurtenbach R, Wiesen P, Kleffmann J. Standardization methods for testing photo-catalytic air remediation materials: problems and solution. Atmospheric Environment, 2014, (91): 154–161
https://doi.org/10.1016/j.atmosenv.2014.04.001
[1] Fengping Hu, Yongming Guo. Health impacts of air pollution in China[J]. Front. Environ. Sci. Eng., 2021, 15(4): 74-.
[2] Wei Mao, Lixun Zhang, Tianye Wang, Yichen Bai, Yuntao Guan. Fabrication of highly efficient Bi2WO6/CuS composite for visible-light photocatalytic removal of organic pollutants and Cr(VI) from wastewater[J]. Front. Environ. Sci. Eng., 2021, 15(4): 52-.
[3] Mariana Valdez-Castillo, Sonia Arriaga. Response of bioaerosol cells to photocatalytic inactivation with ZnO and TiO2 impregnated onto Perlite and Poraver carriers[J]. Front. Environ. Sci. Eng., 2021, 15(3): 43-.
[4] Xuying Ma, Ian Longley, Jennifer Salmond, Jay Gao. PyLUR: Efficient software for land use regression modeling the spatial distribution of air pollutants using GDAL/OGR library in Python[J]. Front. Environ. Sci. Eng., 2020, 14(3): 44-.
[5] Chao Liu, Hancheng Dai, Lin Zhang, Changchun Feng. The impacts of economic restructuring and technology upgrade on air quality and human health in Beijing-Tianjin-Hebei region in China[J]. Front. Environ. Sci. Eng., 2019, 13(5): 70-.
[6] Zunaira Asif, Zhi Chen. An integrated optimization and simulation approach for air pollution control under uncertainty in open-pit metal mine[J]. Front. Environ. Sci. Eng., 2019, 13(5): 74-.
[7] Dian Ding, Jia Xing, Shuxiao Wang, Xing Chang, Jiming Hao. Impacts of emissions and meteorological changes on China’s ozone pollution in the warm seasons of 2013 and 2017[J]. Front. Environ. Sci. Eng., 2019, 13(5): 76-.
[8] Wenjing Lu, Yawar Abbas, Muhammad Farooq Mustafa, Chao Pan, Hongtao Wang. A review on application of dielectric barrier discharge plasma technology on the abatement of volatile organic compounds[J]. Front. Environ. Sci. Eng., 2019, 13(2): 30-.
[9] Cong Liu, Yinping Zhang. Relations between indoor and outdoor PM2.5 and constituent concentrations[J]. Front. Environ. Sci. Eng., 2019, 13(1): 5-.
[10] In-Sun Kang, Jinying Xi, Hong-Ying Hu. Photolysis and photooxidation of typical gaseous VOCs by UV Irradiation: Removal performance and mechanisms[J]. Front. Environ. Sci. Eng., 2018, 12(3): 8-.
[11] Lianjie Guo, Nan Jiang, Jie Li, Kefeng Shang, Na Lu, Yan Wu. Abatement of mixed volatile organic compounds in a catalytic hybrid surface/packed-bed discharge plasma reactor[J]. Front. Environ. Sci. Eng., 2018, 12(2): 15-.
[12] Fenghe Lv, Hua Wang, Zhangliang Li, Qi Zhang, Xuan Liu, Yan Su. Fabrication and photocatalytic ability of an Au/TiO2/reduced graphene oxide nanocomposite[J]. Front. Environ. Sci. Eng., 2018, 12(1): 4-.
[13] Weiman Li, Haidi Liu, Yunfa Chen. Promotion of transition metal oxides on the NH3-SCR performance of ZrO2-CeO2 catalyst[J]. Front. Environ. Sci. Eng., 2017, 11(2): 6-.
[14] He NIU,Ziwei MO,Min SHAO,Sihua LU,Shaodong XIE. Screening the emission sources of volatile organic compounds (VOCs) in China by multi-effects evaluation[J]. Front. Environ. Sci. Eng., 2016, 10(5): 1-.
[15] Guoxia MA, Jinnan WANG, Fang YU, Xiaomin GUO, Yanshen ZHANG, Chao LI. Assessing the premature death due to ambient particulate matter in China’s urban areas from 2004 to 2013[J]. Front. Environ. Sci. Eng., 2016, 10(5): 7-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed