Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2016, Vol. 10 Issue (4) : 11    https://doi.org/10.1007/s11783-016-0854-x
RESEARCH ARTICLE
Enhanced disinfection of Escherichia coli and bacteriophage MS2 in water using a copper and silver loaded titanium dioxide nanowire membrane
Guiying RAO1,Kristen S. BRASTAD2,3,Qianyi ZHANG2,Rebecca ROBINSON3,Zhen HE4,Ying LI1()
1. Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA
2. Department of Mechanical Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
3. A.O. Smith Corporate Technology Center, Milwaukee, WI 53224, USA
4. Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
 Download: PDF(973 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A novel photocatalytic Ag-Cu-TiO2 nanowire membrane was fabricated.

Bacteria and virus disinfection was improved by co-depositing Ag and Cu onto membrane.

Synergetic photocatalytic effects and free metal ions of Ag and Cu contribute to disinfection.

7.68 log removal of E. coli and 4.02 log removal of bacteriophage MS2 were achieved.

Titanium dioxide (TiO2) is a widely used photocatalyst that has been demonstrated for microorganism disinfection in drinking water. In this study, a new material with a novel structure, silver and copper loaded TiO2 nanowire membrane (Cu-Ag-TiO2) was prepared and evaluated for its efficiency to inactivate E. coli and bacteriophage MS2. Enhanced photo-activated bactericidal and virucidal activities were obtained by the Cu-Ag-TiO2 membrane than by the TiO2, Ag-TiO2 and Cu-TiO2 membranes under both dark and UV light illumination. The better performance was attributed to the synergies of enhanced membrane photoactivity by loading silver and copper on the membrane and the synergistic effect between the free silver and copper ions in water. At the end of a 30 min test of dead-end filtration under 254 nm UV irradiation, the Cu-Ag-TiO2 membrane was able to obtain an E. coli removal of 7.68 log and bacteriophage MS2 removal of 4.02 log, which have met the US EPA standard. The free metal ions coming off the membrane have concentrations of less than 10 ppb in the water effluent, far below the US EPA maximum contaminant level for silver and copper ions in drinking water. Therefore, the photo-activated disinfection by the Cu-Ag-TiO2 membrane is a viable technique for meeting drinking water treatment standards of microbiological water purifiers.

Keywords Photo-activated disinfection      Titanium dioxide      Nanowire membrane      Silver      Copper     
PACS:     
Fund: 
Issue Date: 12 June 2016
 Cite this article:   
Guiying RAO,Kristen S. BRASTAD,Qianyi ZHANG, et al. Enhanced disinfection of Escherichia coli and bacteriophage MS2 in water using a copper and silver loaded titanium dioxide nanowire membrane[J]. Front. Environ. Sci. Eng., 2016, 10(4): 11.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-016-0854-x
https://academic.hep.com.cn/fese/EN/Y2016/V10/I4/11
Fig.1  Schematic of the test setup (a) and the exploded diagram of the membrane holder (b)
Fig.2  SEM images of the TiO2 membrane (a) and the Cu-Ag-TiO2 membrane (b); EDS analysis results of the Ag-TiO2 membrane (c), the Cu-TiO2 membrane (d) and the Cu-Ag-TiO2 membrane (e); and membrane cross-section (f)
Fig.3  Pore size distributions of the prepared membranes
Fig.4  Inactivation of E. coli by the TiO2, Ag-TiO2, Cu-TiO2, and Cu-Ag-TiO2 membranes under dark (a) and UV (b) conditions.
Fig.5  Concentrations of free silver ions in water effluent for the Ag-TiO2 membrane and copper ions for the Cu-TiO2 membrane under the dark condition
Fig.6  Inactivation of bacteriophage MS2 for the TiO2, Ag-TiO2, Cu-TiO2, and Cu-Ag-TiO2 membranes under dark (a) and UV (b) conditions.
1 Murray K E, Manitou-Alvarez E I, Inniss E C, Healy F G, Bodour A A. Assessment of oxidative and UV-C treatments for inactivating bacterial biofilms from groundwater wells. Frontiers of Environmental Science & Engineering, 2015, 9(1): 39–49
2 Pablos C, Marugán J, van Grieken R, Serrano E. Emerging micropollutant oxidation during disinfection processes using UV-C, UV-C/H2O2, UV-A/TiO2 and UV-A/TiO2/H2O2. Water Research, 2013, 47(3): 1237–1245
https://doi.org/10.1016/j.watres.2012.11.041 pmid: 23276426
3 Ollis D F. Photocatalytic purification and remediation of contaminated air and water. Comptes Rendus de l'Académie des Sciences Series IIC: Chemistry, 2000, 3(6): 405–411
https://doi.org/10.1016/S1387-1609(00)01169-5
4 Thabet S, Weiss-Gayet M, Dappozze F, Cotton P, Guillard C. Photocatalysis on yeast cells: toward targets and mechanisms. Applied Catalysis B: Environmental, 2013, 140–141: 169–178
https://doi.org/10.1016/j.apcatb.2013.03.037
5 Chen X, Mao S S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chemical Reviews, 2007, 107(7): 2891–2959
https://doi.org/10.1021/cr0500535 pmid: 17590053
6 Wang S, Wang K, Jehng J, Liu L. Preparation of TiO2/MCM-41 by plasma enhanced chemical vapor deposition method and its photocatalytic activity. Frontiers of Environmental Science & Engineering, 2012, 6(3): 304–312
https://doi.org/10.1007/s11783-010-0297-8
7 Coleman H M, Marquis C P, Scott J A, Chin S S, Amal R. Bactericidal effects of titanium dioxide-based photocatalysts. Chemical Engineering Journal, 2005, 113(1): 55–63
https://doi.org/10.1016/j.cej.2005.07.015
8 Li Q, Mahendra S, Lyon D Y, Brunet L, Liga M V, Li D, Alvarez P J J. Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Research, 2008, 42(18): 4591–4602
https://doi.org/10.1016/j.watres.2008.08.015 pmid: 18804836
9 Ashkarran A A, Aghigh S M, Kavianipour M, Farahani N J. Visible light photo-and bioactivity of Ag/TiO2 nanocomposite with various silver contents. Current Applied Physics, 2011, 11(4): 1048–1055
https://doi.org/10.1016/j.cap.2011.01.042
10 Selvaraj S, Saha K C, Chakraborty A, Bhattacharyya S N, Saha A. Toxicity of free and various aminocarboxylic ligands sequestered copper(II) ions to Escherichia coli. Journal of Hazardous Materials, 2009, 166(2–3): 1403–1409
https://doi.org/10.1016/j.jhazmat.2008.12.060 pmid: 19167164
11 Khraisheh M, Wu L, Al-Muhtaseb A H, Al-Ghouti M A. Photocatalytic disinfection of Escherichia coli using TiO2-P25 and Cu-doped TiO2. Chemical Engineering Journal, 2005, 113: 55–63
12 McEvoy J G, Zhang Z. Review: antimicrobial and photocatalytic disinfection mechanisms in silver-modified photocatalysts under dark and light conditions. Journal of Photochemistry and Photobiology C, Photochemistry Reviews, 2014, 19: 62–75
https://doi.org/10.1016/j.jphotochemrev.2014.01.001
13 Liga M V, Bryant E L, Colvin V L, Li Q. Virus inactivation by silver doped titanium dioxide nanoparticles for drinking water treatment. Water Research, 2011, 45(2): 535–544
https://doi.org/10.1016/j.watres.2010.09.012 pmid: 20926111
14 Hernández-Gordillo A, González V R. Silver nanoparticles loaded on Cu-doped TiO2 for the effective reduction of nitro-aromatic contaminants. Chemical Engineering Journal, 2015, 261: 53–59
https://doi.org/10.1016/j.cej.2014.05.148
15 Behnajady M A, Eskandarloo H. Silver and copper co-impregnated onto TiO2-P25 nanoparticles and its photocatalytic activity. Chemical Engineering Journal, 2013, 228: 1207–1213
https://doi.org/10.1016/j.cej.2013.04.110
16 Fang J, Liu H, Shang C, Zeng M, Ni M, Liu W.E. coli and bacteriophage MS2 disinfection by UV, ozone and the combined UV and ozone processes. Frontiers of Environmental Science & Engineering, 2014, 8(4): 547–552
https://doi.org/10.1007/s11783-013-0620-2
17 Anastasi E M, Wohlsen T D, Stratton H M, Katouli M. Survival of Escherichia coli in two sewage treatment plants using UV irradiation and chlorination for disinfection. Water Research, 2013, 47(17): 6670–6679
https://doi.org/10.1016/j.watres.2013.09.008 pmid: 24091189
18 Vélez-Colmenares J J, Acevedo A, Nebot E. Effect of recirculation and initial concentration of microorganisms on the disinfection kinetics of Escherichia coli. Desalination, 2011, 280(1–3): 20–26
https://doi.org/10.1016/j.desal.2011.06.041
19 Venieri D, Gounaki I, Binas V, Zachopoulos A, Kiriakidis G, Mantzavinos D. Inactivation of MS2 coliphage in sewage by solar photocatalysis using metal-doped TiO2. Applied Catalysis B: Environmental, 2015, 178: 54–64 doi:10.1016/j.apcatb.2014.10.052
20 Sigstam T, Rohatschek A, Zhong Q, Brennecke M, Kohn T. On the cause of the tailing phenomenon during virus disinfection by chlorine dioxide. Water Research, 2014, 48: 82–89
https://doi.org/10.1016/j.watres.2013.09.023 pmid: 24139105
21 Zhang Q, Rao G, Rogers J, Zhao C, Liu L, Li Y. Novel anti-fouling Fe2O3/TiO2 nanowire membranes for humic acid removal from water. Chemical Engineering Journal, 2015, 271: 180–187
https://doi.org/10.1016/j.cej.2015.02.085
22 Li M, Noriega-Trevino M E, Nino-Martinez N, Marambio-Jones C, Wang J, Damoiseaux R, Ruiz F, Hoek E M V. Synergistic bactericidal activity of Ag-TiO2 nanoparticles in both light and dark conditions. Environmental Science & Technology, 2011, 45(20): 8989–8995
https://doi.org/10.1021/es201675m pmid: 21866941
23 Yadav H M, Otari S V, Koli V B, Mali S S, Hong C K, Pawar S H, Delekar S D. Preparation and characterization of copper-doped anatase TiO2 nanoparticles with visible light photocatalytic antibacterial activity. Journal of Photochemistry and Photobiology A Chemistry, 2014, 280: 32–38
https://doi.org/10.1016/j.jphotochem.2014.02.006
24 Giesche H. Mercury porosimetry: a general (practical) overview. Particle & Particle Systems Characterization, 2006, 23(1): 1–11
https://doi.org/10.1002/ppsc.200601009
25 Lynch C T. CRC Handbook of Materials Science, Volume II: Material Composites and Refractory Materials. Florida: CRC Press, 1975.
26 Li J, Xu J, Dai W, Fan K. Dependence of Ag deposition methods on the photocatalytic activity and surface state of TiO2 with twistlike helix structure. Journal of Physical Chemistry C, 2009, 113(19): 8343–8349
https://doi.org/10.1021/jp8114012
27 Zhang J, Wang J, Zhao Z, Yu T, Feng J, Yuan Y, Tang Z, Liu Y, Li Z, Zou Z. Reconstruction of the (001) surface of TiO2 nanosheets induced by the fluorine-surfactant removal process under UV-irradiation for dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2012, 14(14): 4763–4769
https://doi.org/10.1039/c2cp24039d pmid: 22382572
28 Carbonell E, Ramiro-Manzano F, Rodríguez I, Corma A, Meseguer F, García H. Enhancement of TiO2 photocatalytic activity by structuring the photocatalyst film as photonic sponge. Photochemical & Photobiological Sciences, 2008, 7(8): 931–935
https://doi.org/10.1039/b801954a pmid: 18688500
29 Kubitschek H E. Cell volume increase in Escherichia coli after shifts to richer media. Journal of Bacteriology, 1990, 172(1): 94–101
pmid: 2403552
30 Stockley P G, Stonehouse N J, Valegård K. Molecular mechanism of RNA phage morphogenesis. International Journal of Biochemistry, 1994, 26(10–11): 1249–1260
https://doi.org/10.1016/0020-711X(94)90094-9 pmid: 7851629
31 Zhang X, Du A J, Lee P, Sun D D, Leckie J O. TiO2 nanowire membrane for concurrent filtration and photocatalytic oxidation of humic acid in water. Journal of Membrane Science, 2008, 313(1-2): 44–51
https://doi.org/10.1016/j.memsci.2007.12.045
32 Zodrow K, Brunet L, Mahendra S, Li D, Zhang A, Li Q, Alvarez P J J. Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal. Water Research, 2009, 43(3): 715–723
https://doi.org/10.1016/j.watres.2008.11.014 pmid: 19046755
33 Kaitainen S, Mähönen A J, Lappalainen R, Kröger H, Lammi M J, Qu C. TiO2 coating promotes human mesenchymal stem cell proliferation without the loss of their capacity for chondrogenic differentiation. Biofabrication, 2013, 5(2): 025009
https://doi.org/10.1088/1758-5082/5/2/025009 pmid: 23592549
34 Chen S, Guo Y, Zhong H, Chen S, Li J, Ge Z, Tang J. Synergistic antibacterial mechanism and coating application of copper/titanium dioxide nanoparticles. Chemical Engineering Journal, 2014, 256: 238–246
https://doi.org/10.1016/j.cej.2014.07.006
35 United States Environmental Protection Agency. Retrieved from: (accessed <Date>November 25, 2015</Date>)
[1] FSE-16017-OF-RGY_suppl_1 Download
[1] Fanling Meng, Yunxue Xia, Jianshuai Zhang, Dong Qiu, Yaozhu Chu, Yuanyuan Tang. Cu/Cr co-stabilization mechanisms in a simulated Al2O3-Fe2O3-Cr2O3-CuO waste system[J]. Front. Environ. Sci. Eng., 2021, 15(6): 116-.
[2] Christine C. Nguyen, Cody N. Hugie, Molly L. Kile, Tala Navab-Daneshmand. Association between heavy metals and antibiotic-resistant human pathogens in environmental reservoirs: A review[J]. Front. Environ. Sci. Eng., 2019, 13(3): 46-.
[3] Zhichao Wu, Chang Zhang, Kaiming Peng, Qiaoying Wang, Zhiwei Wang. Hydrophilic/underwater superoleophobic graphene oxide membrane intercalated by TiO2 nanotubes for oil/water separation[J]. Front. Environ. Sci. Eng., 2018, 12(3): 15-.
[4] Ping He, Guangxue Wu, Rui Tang, Peilun Ji, Shoujun Yuan, Wei Wang, Zhenhu Hu. Influence of arsanilic acid, Cu2+, PO43 and their interaction on anaerobic digestion of pig manure[J]. Front. Environ. Sci. Eng., 2018, 12(2): 9-.
[5] Bao Jiang, Dechun Su, Xiaoqing Wang, Jifang Liu, Yibing Ma. Field evidence of decreased extractability of copper and nickel added to soils in 6-year field experiments[J]. Front. Environ. Sci. Eng., 2018, 12(2): 7-.
[6] Xiaonan Liu, Qiuxia Tan, Yungui Li, Zhonghui Xu, Mengjun Chen. Copper recovery from waste printed circuit boards concentrated metal scraps by electrolysis[J]. Front. Environ. Sci. Eng., 2017, 11(5): 10-.
[7] Li SHENG,Shuhang HUANG,Minghao SUI,Lingdian ZHANG,Lei SHE,Yong CHEN. Deposition of copper nanoparticles on multiwalled carbon nanotubes modified with poly (acrylic acid) and their antimicrobial application in water treatment[J]. Front. Environ. Sci. Eng., 2015, 9(4): 625-633.
[8] Gholamreza GHASEMZADEH,Mahdiye MOMENPOUR,Fakhriye OMIDI,Mohammad R. HOSSEINI,Monireh AHANI,Abolfazl BARZEGARI. Applications of nanomaterials in water treatment and environmental remediation[J]. Front.Environ.Sci.Eng., 2014, 8(4): 471-482.
[9] Xiaolong SONG,Jianxin YANG,Bin LU,Bo LI,Guangyuan ZENG. Identification and assessment of environmental burdens of Chinese copper production from a life cycle perspective[J]. Front.Environ.Sci.Eng., 2014, 8(4): 580-588.
[10] Yifei SUN, Xin FU, Wei QIAO, Wei WANG, Tianle ZHU, Xinghua LI. Dechlorination of 2,2′,4,4′,5,5′-hexachlorobiphenyl by thermal reaction with activated carbon-supported copper or zinc[J]. Front Envir Sci Eng, 2013, 7(6): 827-832.
[11] Haiqian LI, Yonglong LU, Li LI. PCDD/Fs emission, risk characterization, and reduction in China’s secondary copper production industry[J]. Front Envir Sci Eng, 2013, 7(4): 589-597.
[12] Sandeep PANDA, Nilotpala PRADHAN, Umaballav MOHAPATRA, Sandeep K. PANDA, Swagat S. RATH, Danda S. RAO, Bansi D. NAYAK, Lala B. SUKLA, Barada K. MISHRA. Bioleaching of copper from pre and post thermally activated low grade chalcopyrite contained ball mill spillage[J]. Front Envir Sci Eng, 2013, 7(2): 281-293.
[13] Fengjie ZHANG, Xiaoxia OU, Shuo CHEN, Chunqiu RAN, Xie QUAN. Competitive adsorption and desorption of copper and lead in some soil of North China[J]. Front Envir Sci Eng, 2012, 6(4): 484-492.
[14] Shenghung WANG, Kuohua WANG, Jihmirn JEHNG, Lichen LIU. Preparation of TiO2/MCM-41 by plasma enhanced chemical vapor deposition method and its photocatalytic activity[J]. Front Envir Sci Eng, 2012, 6(3): 304-312.
[15] Tianxiang XIA, Xuehua LIU. Copper and zinc interaction on water clearance and tissue metal distribution in the freshwater mussel, Cristaria plicata, under laboratory conditions[J]. Front Envir Sci Eng Chin, 2011, 5(2): 236-242.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed