Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2016, Vol. 10 Issue (6) : 10    https://doi.org/10.1007/s11783-016-0876-4
RESEARCH ARTICLE
Benzene degradation in waste gas by photolysis and photolysis-ozonation: experiments and modeling
Fariba Mahmoudkhani1,Maryam Rezaei1,Vahid Asili1,Mahsasadat Atyabi1,Elena Vaisman2,Cooper H. Langford2,Alex De Visscher1()
1. Department of Chemical and Petroleum Engineering, Centre for Environmental Engineering Research and Education (CEERE), Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
2. Department of Chemistry, Faculty of Science, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
 Download: PDF(266 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A photochemical model of benzene degradation compares well with experimental data obtained in the Lab.

62 reactions were needed to fully describe benzene degradation.

A feasibility study shows that the photolysis of benzene is a cost-effective process.

Experimental data and modeling results show that the degradation efficiency will increase when the combination of UV light and ozone is used.

The degradation of benzene, a carcinogenic air pollutant, was studied in a gas-phase photochemical reactor with an amalgam lamp emitting ultraviolet light at 185 and 254 nm. Efficient benzene degradation (>70%) was possible for benzene mass flow rates of up to 1.5 mg·min−1. Adding ozone allowed benzene mass flow rates of up to 5 mg·min−1 to be treated with the same efficiency. In terms of energy consumption, ozone doubles the efficiency of the process. A comprehensive mechanistic simulation model was developed incorporating a chemical kinetics model (62 reactions involving 47 chemical species), a material balance model incorporating diffusion and flow, a flow velocity model, and a light field model. The model successfully predicted the efficiency of the reactor, generally within 20%, which indicates that the model is sound, and can be used for feasibility studies. The prediction of the reactor efficiency in the presence of ozone was less successful, with systematically overestimated efficiency. Condensation of reaction products in the reactor is thought to be the main cause of model inaccuracy. Both experimental data and model predictions show that there is a synergistic effect between ozonation and ultraviolet degradation.

Keywords Photolysis      Ozone      Benzene      Waste gas      Simulation      Synergism     
PACS:     
Fund: 
Corresponding Author(s): Alex De Visscher   
Issue Date: 28 September 2016
 Cite this article:   
Fariba Mahmoudkhani,Maryam Rezaei,Vahid Asili, et al. Benzene degradation in waste gas by photolysis and photolysis-ozonation: experiments and modeling[J]. Front. Environ. Sci. Eng., 2016, 10(6): 10.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-016-0876-4
https://academic.hep.com.cn/fese/EN/Y2016/V10/I6/10
Fig.1  Benzene degradation efficiency versus benzene mass flow rate, at different volumetric air flow rates, in the absence of added ozone. Lamp input: 40 W. Reactor internal volume: 438.34 cm3.
Fig.2  UV irradiance versus benzene mass flow rate, at different volumetric flow rates, in the absence of added ozone.
Fig.3  Benzene degradation efficiency versus benzene mass flow rate, at a volumetric flow rate of 2.2 L min–1, in the presence of 17.6 mg min–1 ozone. Diamonds are experimental data; line is simulation result.
Fig.4  UV irradiance versus benzene mass flow rate, at a volumetric flow rate of 2.2 L•min–1, in the presence of 17.6 mg•min–1 ozone. Diamonds are experimental data; line is simulation result.
Fig.5  UV irradiance versus axial reactor location at a volumetric flow rate of 1 L•min–1, a benzene mass flow rate of 2 mg•min–1, in the absence of added ozone.
Fig.6  Axial benzene concentration profile in the reactor, at a volumetric flow rate of 1 L•min–1, a benzene mass flow rate of 2 mg•min–1, in the absence of added ozone. Inset: radial benzene concentration profile at 24.5 cm axial location.
condition benzene degradation efficiency
base case 38.37%
water mole fraction ×2 42.00%
radius ×2 53.37%
radius ×3 58.32%
radius ×4 60.63%
radius ×3 and water ×2 62.54%
light intensity and volumetric flow rate ×2 38.31%
reactor length/2 37.93%
Tab.1  Effect of process conditions on the modeled benzene degradation efficiency in the absence of ozone. Base case: flow rate 1 L•min–1, inlet benzene concentration 5 g•m–3, water mole fraction 0.0312, radii of the annular space 1.25 cm and 2.1 cm.
radius constant light intensity constant energy production
ozone ×1 ozone ×2 ozone ×3 ozone ×1 ozone ×1.5 ozone ×2
×1 44.90% 63.31% 77.19% 44.90% 49.65% 47.61%
×2 48.40% 69.22% 84.22% 48.40% 55.33% 57.42%
×3 48.49% 70.03% 85.76% 48.49% 55.93% 60.35%
Tab.2  Effect of process conditions on the modeled benzene degradation efficiency in the presence of ozone. Base case: flow rate 2.2 L•min–1, inlet benzene concentration 10 g•m–3, inlet ozone concentration 8 g•m–3, water mole fraction 0.0312, radii of the annular space 1.25 cm and 2.1 cm.
1 Kamps R, Müller H, Schmitt M, Sommer S, Wang Z, Kleinermanns K. Photooxidation of exhaust pollutants: I. Degradation efficiencies, quantum yields and products of benzene photooxidation. Chemosphere, 1993, 27(11): 2127–2142
https://doi.org/10.1016/0045-6535(93)90125-O
2 Wang C, Xi J Y, Hu H Y, Xi J Y, Hu H Y, Arhami M, Polidori A, Polidori A, Delfino R, Tjoa T, Tjoa T, Sioutas C, Wang C, Xi J Y, Hu H Y, Xi J Y, Hu H Y, Pacheco A, Freitas M, Pratt G, Dymond M, Dymond M, Krzyzanowski J, Luo H L, Chang W C, Lin D F, Pennell K, Bozkurt O, Suuberg E, Bozkurt O, Suuberg E, Isakov V, Touma J, Burke J, Touma J, Burke J, Lobdell D, Palma T, Rosenbaum A, zkaynak H, Lipfert F, Wyzga R, Baty J, Miller J, Miller J, Mohan R, Leonardi G, Robins A, Jefferis S, Jefferis S, Coy J, Wight J, Wight J, Murray V. Effects of operation conditions on removal rate constant and quantum yield of gaseous chlorobenzene degradation in a photochemical reactor. Journal of the Air & Waste Management Association, 2009, 59(4): 386–391
https://doi.org/10.3155/1047-3289.59.4.386
3 Zhang L, Anderson W A. Kinetic analysis of the photochemical decomposition of gas-phase chlorobenzene in a UV reactor: Quantum yield and photonic efficiency. Chemical Engineering Journal, 2013, 218(a): 247–252
4 Zhang L, Anderson W A. Effect of ozone and sulfur dioxide on the photolytic degradation of chlorobenzene in air. Industrial and Engineering Chemistry Research, 2013, 52(b): 3315–3319
5 Gürtler K R, Kleinermanns K. Photooxidation of exhaust pollutants: II. Photooxidation of chloromethanes: Degradation efficiencies, quantum yields and products. Chemosphere, 1994, 28(7): 1289–1298
https://doi.org/10.1016/0045-6535(94)90073-6
6 Chen F Y, Pehkonen S O, Ray M B. Kinetics and mechanisms of UV-photodegradation of chlorinated organics in the gas phase. Water Research, 2002, 36(17): 4203–4214
https://doi.org/10.1016/S0043-1354(02)00140-9
7 Alapi T, Van Craeynest K, Van Langenhove H, Dombi A. UV photolysis of the binary mixtures of VOCs in dry nitrogen stream. Reaction Kinetics and Catalysis Letters, 2006, 87(2): 255–262
https://doi.org/10.1007/s11144-006-0032-4
8 Alapi T, Van Craeynest K, Van Langenhove H, Dewulf J, Dombi A. Direct VUV photolysis of chlorinated methanes and their mixtures in a nitrogen stream. Chemosphere, 2007, 66(1): 139–144
https://doi.org/10.1016/j.chemosphere.2006.04.090
9 Gürtler R, Möller U, Sommer S, Kleinermanns K. Photooxidation of exhaust pollutants: III. Photooxidation of the chloroethenes: Degradation efficiencies, quantum yields and products. Chemosphere, 1994, 29(8): 1671–1682
https://doi.org/10.1016/0045-6535(94)90314-X
10 Lee K Y, Lee J Y, Khinast J, Stencel J R, Lavid M. Photochemical remediation of tetrachloroethylene: Reactor design, construction, and preliminary results. Journal of Environmental Engineering, 2004, 130(1): 100–103
https://doi.org/10.1061/(ASCE)0733-9372(2004)130:1(100)
11 Lee K Y, Lee J Y. Photochemical destruction of tetrachloroethylene and trichloroethylene from the exhaust of an air stripper. Journal of Environmental Engineering, 2005, 131(10): 1441–1446
https://doi.org/10.1061/(ASCE)0733-9372(2005)131:10(1441)
12 Chen J M, Cheng Z W, Jiang Y F, Zhang L L. Direct VUV photodegradation of gaseous a-pinene in a spiral quartz reactor: Intermediates, mechanism, and toxicity/biodegradability assessment. Chemosphere, 2010, 81(9): 1053–1060
https://doi.org/10.1016/j.chemosphere.2010.09.060
13 Cheng Z W, Jiang Y F, Zhang L L, Chen J M, Wei Y Y. Conversion characteristics and kinetic analysis of gaseous a-pinene degraded by VUV light in various reaction media. Separation and Purification Technology, 2011, 77(1): 26–32
https://doi.org/10.1016/j.seppur.2010.11.014
14 Shen Y S, Ku Y. Treatment of gas-phase volatile organic compounds (VOCs) by the UV/O3 process. Chemosphere, 1999, 38(8): 1855–1866
https://doi.org/10.1016/S0045-6535(98)00400-7
15 Alapi T, Dombi A. Direct VUV photolysis of clorinated methanes and their mixtures in an oxygen stream using an ozone producing low-pressure mercury vapour lamp. Chemosphere, 2007, 67(4): 693–701
https://doi.org/10.1016/j.chemosphere.2006.10.066
16 Zuo G M, Cheng Z X, Chen H, Li G W, Miao T. Study on photocatalytic dagradation of several volatile organic compounds. Journal of Hazardous Materials, 2006, 128(2-3): 158–163
https://doi.org/10.1016/j.jhazmat.2005.07.056
17 Zhong J, Wang J, Tao L, Gong M, Zhimin L, Chen Y. Photocatalytic degradation of gaseous benzene over TiO2/Sr2CeO4: Kinetic model and degradation mechanisms. Journal of Hazardous Materials, 2007, B139(2): 323–331
https://doi.org/10.1016/j.jhazmat.2006.06.036
18 Krishnan J, Swaminathan T. Kinetic modeling of a photocatalytic reactor designed for removal of gas-phase benzene: A study on limiting resistances using design of experiments. Latin American Applied Research, 2010, 40: 359–364
19 Bouzaza A, Vallet C, Laplanche A. Photocatalytic degradation of some VOCs in the gas phase using an annular flow reactor – Determination of the contribution of mass transfer and chemical reaction steps in the photodegradation process. Journal of Photochemistry and Photobiology A Chemistry, 2006, 177(2-3): 212–217
https://doi.org/10.1016/j.jphotochem.2005.05.027
20 Tomasic J F, Gomzi Z. Photocatalytic oxidation of toluene in the gas phase: Modelling an annular photocatalytic reactor. Catalysis Today, 2009, 137(2-4): 350–356
https://doi.org/10.1016/j.cattod.2008.05.017
21 Huang H. Removal of air pollutants by photocatalysis with ozone in a continuous-flow reactor. Environmental Engineering Science, 2010, 27(8): 651–656
https://doi.org/10.1089/ees.2009.0392
22 Shindo K, Lipsky S. Photochemistry of benzene vapor at 1849 Å. Journal of Chemical Physics, 1966, 45(6): 2292–2297
https://doi.org/10.1063/1.1727923
23 Yokoyama A, Zhao X, Hintsa E J, Continetti R E, Lee Y T. Molecular beam studies of the photodissociation of benzene at 193 and 248 nm. Journal of Chemical Physics, 1990, 92(7): 4222–4233
https://doi.org/10.1063/1.457780
24 Calvert J C, Atkinson R, Becker K H, Kamens R M, Seinfeld J H, Wallington T J, Yarwood G. The Mechanisms of Atmospheric Oxidation of Aromatic Hydrocarbons. Oxford University Press, New York, 2002
25 Chen F, Yang Q, Pehkonen S O, Ray M B. Modeling of gas-phase photodegradation of chloroform and carbon tetrachloride. Journal of the Air & Waste Management Association, 2004, 54(10): 1281–1292
https://doi.org/10.1080/10473289.2004.10470991
26 Asili V, De Visscher A. Mechanistic model for ultraviolet degradation of H2S and NOx in waste gas. Chemical Engineering Journal, 2014, 244: 597–603
https://doi.org/10.1016/j.cej.2014.01.078
27 Kuo C H, Zhang L, Wang J, Zappi M E. Vapor and liquid phase ozonation of benzene. Ozone Science and Engineering, 1977, 19(2): 109–127
https://doi.org/10.1080/01919519708547309
28 Atkinson R, Baulch D L, Cox R A, Crowley J N, Hampson R F, Hynes R G, Jenkin M E, Rossi M J, Troe J. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I – Gas phase reactions of Ox, HOx, NOx and SOx species. Atmospheric Chemistry and Physics, 2004, 4: 1461–1738
https://doi.org/10.5194/acp-4-1461-2004
29 Atkinson R, Baulch D L, Cox R A, Crowley J N, Hampson R F, Hynes R G, Jenkin M E, Rossi M J, Troe J, 0. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II – Gas phase reactions of organic species. Atmospheric Chemistry and Physics, 2006, 6(11): 3625–4055
https://doi.org/10.5194/acp-6-3625-2006
30 Atkinson R, Baulch D L, Cox R A, Crowley J N, Hampson R F, Hynes R G, Jenkin M E, Rossi M J, Troe J. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume III – Gas phase reactions of inorganic halogens. Atmospheric Chemistry and Physics, 2007, 7(4): 981–1191
https://doi.org/10.5194/acp-7-981-2007
31 Chen J, Davidson J H. Model of the negative DC corona plasma: Comparison to the positive DC corona plasma. Plasma Chemistry and Plasma Processing, 2003, 23(1): 83–102
https://doi.org/10.1023/A:1022468803203
32 Orlando J J, Tyndall G S. The atmospheric chemistry of the HC(O)CO radical. International Journal of Chemical Kinetics, 2001, 33(3): 149–156
https://doi.org/10.1002/1097-4601(200103)33:3<149::AID-KIN1008>3.0.CO;2-1
33 Olariu R I I, Barnes I, Becker K H, Klotz B. Rate coefficients for the gas-phase reaction of OH radicals with selected dihydroxybenzenes and benzoquinones. International Journal of Chemical Kinetics, 2000, 32(11): 696–702
https://doi.org/10.1002/1097-4601(2000)32:11<696::AID-KIN5>3.0.CO;2-N
34 Kwok E S C, Atkinson R. Estimation of hydroxyl radical reaction-rate constants for gas-phase organic-compounds using a structure-reactivity relationship – An update. Atmospheric Environment, 1995, 29(14): 1685–1695
https://doi.org/10.1016/1352-2310(95)00069-B
35 Brown A C, Canosas-Mas C E, Parr A D, Wayne R P. Temperature-dependence of the rate of the reaction between the OH radical and ketene. Chemical Physics Letters, 1989, 161(6): 491–496
https://doi.org/10.1016/0009-2614(89)87026-5
36 Sander S P, Friedl R R, Ravishankara A R, Golden D M, Kolb C E, Kurylo M S, Molina M J, Moortgat G K, Keller-Rudek H, Finlayson-Pitts B J, Wine P H, Huie R E, Orkin V L. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies: Evaluation Number 15. JPL Publications, 2006, 06–2
37 Volkamer R, Spietz P, Burrows J H U, Platt U. High-resolution absorption cross-section of glyoxal in the UV-vis and IR spectral ranges. Journal of Photochemistry and Photobiology A Chemistry, 2005, 172(1): 35–46
https://doi.org/10.1016/j.jphotochem.2004.11.011
38 Tang Y X, Zhu L. Photolysis of butenedial at 193, 248, 280, 308, 351, 400, and 450 nm. Chemical Physics Letters, 2005, 409(4-6): 151–156
https://doi.org/10.1016/j.cplett.2005.05.007
39 Yoshino K, Esmond J R, Cheung A S C, Freeman D E, Parkinson W H. High resolution absorption cross sections in the transmission window region of the Schumann-Runge bands and Herzberg continuum of O2. Planetary and Space Science, 1992, 40(2-3): 185–192
https://doi.org/10.1016/0032-0633(92)90056-T
40 Berndt T, Böge O. Formation of phenol and carbonyls from the atmospheric reaction of OH radicals with benzene. Physical Chemistry Chemical Physics, 2006, 8(10): 1205–1214
https://doi.org/10.1039/b514148f
41 Atkinson R J, Arey J. Atmospheric degradation of volatile organic compounds. Chemical Reviews, 2003, 103(12): 4605–4638
https://doi.org/10.1021/cr0206420
42 Jenkin M E, Saunders S M, Wagner V, Pilling M J. Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part B): Tropospheric degradation of aromatic volatile organic compounds. Atmospheric Chemistry and Physics, 2003, 3(1): 181–193
https://doi.org/10.5194/acp-3-181-2003
43 De Visscher A, Dewulf J, Van Durme J, Leys C, Morent R, Van Langenhove H. Non-thermal plasma destruction of allyl alcohol in waste gas: Kinetics and modelling. Plasma Sources Science & Technology, 2008, 17(1): 015004
https://doi.org/10.1088/0963-0252/17/1/015004
44 Bird R B, Steward W E, Lightfoot E N. Transport Phenomena, 2nd edition. New York: John Wiley & Sons, 2002
[1] FSE-16032-OF-MF_suppl_1 Download
[1] Majid Mustafa, Huijiao Wang, Richard H. Lindberg, Jerker Fick, Yujue Wang, Mats Tysklind. Identification of resistant pharmaceuticals in ozonation using QSAR modeling and their fate in electro-peroxone process[J]. Front. Environ. Sci. Eng., 2021, 15(5): 106-.
[2] Yi Qian, Weichuan Qiao, Yunhao Zhang. Toxic effect of sodium perfluorononyloxy-benzenesulfonate on Pseudomonas stutzeri in aerobic denitrification, cell structure and gene expression[J]. Front. Environ. Sci. Eng., 2021, 15(5): 100-.
[3] Ruijie Li, Mengmeng Zhou, Shilong He, Tingting Pan, Jing Liu, Jiabao Zhu. Deciphering the effect of sodium dodecylbenzene sulfonate on up-flow anaerobic sludge blanket treatment of synthetic sulfate-containing wastewater[J]. Front. Environ. Sci. Eng., 2021, 15(5): 91-.
[4] Byungjin Lee, Eun Seo Jo, Dong-Wha Park, Jinsub Choi. Submerged arc plasma system combined with ozone oxidation for the treatment of wastewater containing non-degradable organic compounds[J]. Front. Environ. Sci. Eng., 2021, 15(5): 90-.
[5] Lina Gan, Kezhi Li, Hejingying Niu, Yue Peng, Jianjun Chen, Yuandong Huang, Junhua Li. Simultaneous removal of NOx and chlorobenzene on V2O5/TiO2 granular catalyst: Kinetic study and performance prediction[J]. Front. Environ. Sci. Eng., 2021, 15(4): 70-.
[6] Minxiang Wang, Lili Yang, Xiaoyun Liu, Zheng Wang, Guorui Liu, Minghui Zheng. Hexachlorobutadiene emissions from typical chemical plants[J]. Front. Environ. Sci. Eng., 2021, 15(4): 60-.
[7] Jiangbo Jin, Yun Zhu, Jicheng Jang, Shuxiao Wang, Jia Xing, Pen-Chi Chiang, Shaojia Fan, Shicheng Long. Enhancement of the polynomial functions response surface model for real-time analyzing ozone sensitivity[J]. Front. Environ. Sci. Eng., 2021, 15(2): 31-.
[8] Kun Zhang, Jialuo Xu, Qing Huang, Lei Zhou, Qingyan Fu, Yusen Duan, Guangli Xiu. Precursors and potential sources of ground-level ozone in suburban Shanghai[J]. Front. Environ. Sci. Eng., 2020, 14(6): 92-.
[9] Yulu Qiu, Zhiqiang Ma, Weili Lin, Weijun Quan, Weiwei Pu, Yingruo Li, Liyan Zhou, Qingfeng Shi. A study of peroxyacetyl nitrate at a rural site in Beijing based on continuous observations from 2015 to 2019 and the WRF-Chem model[J]. Front. Environ. Sci. Eng., 2020, 14(4): 71-.
[10] Ouchen Cai, Yuanxiao Xiong, Haijun Yang, Jinyong Liu, Hui Wang. Phosphorus transformation under the influence of aluminum, organic carbon, and dissolved oxygen at the water-sediment interface: A simulative study[J]. Front. Environ. Sci. Eng., 2020, 14(3): 50-.
[11] Aifeng Zhai, Xiaowen Ding, Lin Liu, Quan Zhu, Guohe Huang. Total phosphorus accident pollution and emergency response study based on geographic information system in Three Gorges Reservoir area[J]. Front. Environ. Sci. Eng., 2020, 14(3): 46-.
[12] Zhenlian Qi, Shijie You, Ranbin Liu, C. Joon Chuah. Performance and mechanistic study on electrocoagulation process for municipal wastewater treatment based on horizontal bipolar electrodes[J]. Front. Environ. Sci. Eng., 2020, 14(3): 40-.
[13] Gaoling Wei, Jinhua Zhang, Jinqiu Luo, Huajian Xue, Deyin Huang, Zhiyang Cheng, Xinbai Jiang. Nanoscale zero-valent iron supported on biochar for the highly efficient removal of nitrobenzene[J]. Front. Environ. Sci. Eng., 2019, 13(4): 61-.
[14] Siyu Chen, Lee Blaney, Ping Chen, Shanshan Deng, Mamatha Hopanna, Yixiang Bao, Gang Yu. Ozonation of the 5-fluorouracil anticancer drug and its prodrug capecitabine: Reaction kinetics, oxidation mechanisms, and residual toxicity[J]. Front. Environ. Sci. Eng., 2019, 13(4): 59-.
[15] Xuehao Zhao, Yinhu Wu, Xue Zhang, Xin Tong, Tong Yu, Yunhong Wang, Nozomu Ikuno, Kazuki Ishii, Hongying Hu. Ozonation as an efficient pretreatment method to alleviate reverse osmosis membrane fouling caused by complexes of humic acid and calcium ion[J]. Front. Environ. Sci. Eng., 2019, 13(4): 55-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed