Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2017, Vol. 11 Issue (2) : 1    https://doi.org/10.1007/s11783-017-0894-x
FEATURE ARTICLE
Microbial remediation of aromatics-contaminated soil
Ying Xu,Ning-Yi Zhou()
State Key Laboratory of Microbial Metabolism & School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
 Download: PDF(189 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Aromatics-contaminated soils were successfully remediated with adding single strains.

Bacterial or fungal consortia were successfully used in the cases of bioaugmentation.

Microbes combined with chemical or biological factors increase remediation efficiency.

The environmental factors had appreciable impacts on the bioaugmentation.

Aromatics-contaminated soil is of particular environmental concern as it exhibits carcinogenic and mutagenic properties. Bioremediation, a biological approach for the removal of soil contaminants, has several advantages over traditional soil remediation methodologies including high efficiency, complete pollutant removal, low expense and limited or no secondary pollution. Bioaugmentation, defined as the introduction of specific competent strains or consortia of microorganisms, is a widely applied bioremediation technology for soil remediation. In this review, it is concluded which several successful studies of bioaugmentation of aromatics-contaminated soil by single strains or mixed consortia. In recent decades, a number of reports have been published on the metabolic machinery of aromatics degradation by microorganisms and their capacity to adapt to aromatics-contaminated environments. Thus, microorganisms are major players in site remediation. The bioremediation/bioaugmentation process relies on the immense metabolic capacities of microbes for transformation of aromatic pollutants into essentially harmless or, at least, less toxic compounds. Aromatics-contaminated soils are successfully remediated with adding not only single strains but also bacterial or fungal consortia. Furthermore several novel approaches, which microbes combined with physical, chemical or biological factors, increase remediation efficiency of aromatics-contaminated soil. Meanwhile, the environmental factors also have appreciable impacts on the bioaugmentation process. The biostatistics method is recommended for analysis of the effects of bioaugmentation treatments.

Keywords Aromatics-contaminated soil      Bacteria      Bioaugmentation      Bioremediation      Fungi     
PACS:     
Fund: 
Corresponding Author(s): Ning-Yi Zhou   
Issue Date: 01 December 2016
 Cite this article:   
Ying Xu,Ning-Yi Zhou. Microbial remediation of aromatics-contaminated soil[J]. Front. Environ. Sci. Eng., 2017, 11(2): 1.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-017-0894-x
https://academic.hep.com.cn/fese/EN/Y2017/V11/I2/1
1 O’Neil M J, Heckelman P E, Dobbelaar P H, Roman K J, Kenny C M, Karaffa L S. The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals. 15th ed. London: The Royal Society of Chemistry, 2013
2 Toyoshima E, Mayer R F, Max S R, Eccles C. 2,4-Dichlorophenoxyacetic acid (2,4-D) does not cause polyneuropathy in the rat. Journal of the Neurological Sciences, 1985, 70(2): 225–229
https://doi.org/10.1016/0022-510X(85)90089-9 pmid: 2997403
3 Xiao Y, Zhang J J, Liu H, Zhou N Y. Molecular characterization of a novel ortho-nitrophenol catabolic gene cluster in Alcaligenes sp. strain NyZ215. Journal of Bacteriology, 2007, 189(18): 6587–6593
https://doi.org/10.1128/JB.00654-07 pmid: 17616586
4 Zhang J J, Liu H, Xiao Y, Zhang X E, Zhou N Y. Identification and characterization of catabolic para-nitrophenol 4-monooxygenase and para-benzoquinone reductase from Pseudomonas sp. strain WBC-3. Journal of Bacteriology, 2009, 191(8): 2703–2710
https://doi.org/10.1128/JB.01566-08 pmid: 19218392
5 Zhen D, Liu H, Wang S J, Zhang J J, Zhao F, Zhou N Y. Plasmid-mediated degradation of 4-chloronitrobenzene by newly isolated Pseudomonas putida strain ZWL73. Applied Microbiology and Biotechnology, 2006, 72(4): 797–803
https://doi.org/10.1007/s00253-006-0345-2 pmid: 16583229
6 Yin Y, Xiao Y, Liu H Z, Hao F, Rayner S, Tang H, Zhou N Y. Characterization of catabolic meta-nitrophenol nitroreductase from Cupriavidus necator JMP134. Applied Microbiology and Biotechnology, 2010, 87(6): 2077–2085
https://doi.org/10.1007/s00253-010-2666-4 pmid: 20508930
7 Pérez-Pantoja D, De la Iglesia R, Pieper D H, González B. Metabolic reconstruction of aromatic compounds degradation from the genome of the amazing pollutant-degrading bacterium Cupriavidus necator JMP134. FEMS Microbiology Reviews, 2008, 32(5): 736–794
https://doi.org/10.1111/j.1574-6976.2008.00122.x pmid: 18691224
8 Shen X H, Zhou N Y, Liu S J. Degradation and assimilation of aromatic compounds by Corynebacterium glutamicum: another potential for applications for this bacterium? Applied Microbiology and Biotechnology, 2012, 95(1): 77–89
https://doi.org/10.1007/s00253-012-4139-4 pmid: 22588501
9 Liu H, Wang S J, Zhang J J, Dai H, Tang H, Zhou N Y. Patchwork assembly of nag-like nitroarene dioxygenase genes and the 3-chlorocatechol degradation cluster for evolution of the 2-chloronitrobenzene catabolism pathway in Pseudomonas stutzeri ZWLR2-1. Applied and Environmental Microbiology, 2011, 77(13): 4547–4552
https://doi.org/10.1128/AEM.02543-10 pmid: 21602392
10 Min J, Zhang J J, Zhou N Y. A two-component para-nitrophenol monooxygenase initiates a novel 2-chloro-4-nitrophenol catabolism pathway in Rhodococcus imtechensis RKJ300. Applied and Environmental Microbiology, 2016, 82(2): 714–723
https://doi.org/10.1128/AEM.03042-15 pmid: 26567304
11 Chao H J, Chen Y F, Fang T, Xu Y, Huang W E, Zhou N Y. HipH catalyzes the hydroxylation of 4-hydroxyisophthalate to protocatechuate in 2,4-xylenol catabolism by Pseudomonas putida NCIMB 9866. Applied and Environmental Microbiology, 2016, 82(2): 724–731
https://doi.org/10.1128/AEM.03105-15 pmid: 26567311
12 Azubuike C C, Chikere C B, Okpokwasili G C. Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World Journal of Microbiology and Biotechnology, 2016, 32(11): 180
https://doi.org/10.1007/s11274-016-2137-x pmid: 27638318
13 El Fantroussi S, Agathos S N. Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Current Opinion in Microbiology, 2005, 8(3): 268–275
https://doi.org/10.1016/j.mib.2005.04.011 pmid: 15939349
14 Dechesne A, Pallud C, Bertolla F, Grundmann G L. Impact of the microscale distribution of a Pseudomonas strain introduced into soil on potential contacts with indigenous bacteria. Applied and Environmental Microbiology, 2005, 71(12): 8123–8131
https://doi.org/10.1128/AEM.71.12.8123-8131.2005 pmid: 16332794
15 Martín-Hernández M, Suárez-Ojeda M E, Carrera J. Bioaugmentation for treating transient or continuous p-nitrophenol shock loads in an aerobic sequencing batch reactor. Bioresource Technology, 2012, 123: 150–156
https://doi.org/10.1016/j.biortech.2012.07.014 pmid: 22940312
16 Vogel T M. Bioaugmentation as a soil bioremediation approach. Current Opinion in Biotechnology, 1996, 7(3): 311–316
https://doi.org/10.1016/S0958-1669(96)80036-X pmid: 8785436
17 Jasper D A. Bioremediation of agricultural and forestry soils with symbiotic micro-organisms. Soil Research, 1994, 32(6): 1301–1319
https://doi.org/10.1071/SR9941301
18 Menashe O, Kurzbaum E. A novel bioaugmentation treatment approach using a confined microbial environment: a case study in a Membrane Bioreactor wastewater treatment plant. Environmental Technology, 37(12): 1–23
https://doi.org/10.1080/09593330.2015.1121293 pmid: 26581124
19 Chi X Q, Zhang J J, Zhao S, Zhou N Y. Bioaugmentation with a consortium of bacterial nitrophenol-degraders for remediation of soil contaminated with three nitrophenol isomers. Environmental Pollution, 2013, 172: 33–41
https://doi.org/10.1016/j.envpol.2012.08.002 pmid: 22982551
20 Wang L M, Chi X Q, Zhang J J, Sun D L, Zhou N Y. Bioaugmentation of a methyl parathion contaminated soil with Pseudomonas sp strain WBC-3. International Biodeterioration & Biodegradation, 2014, 87(1): 116–121
https://doi.org/10.1016/j.ibiod.2013.11.008
21 Zhao S, Ramette A, Niu G L, Liu H, Zhou N Y. Effects of nitrobenzene contamination and of bioaugmentation on nitrification and ammonia-oxidizing bacteria in soil. FEMS Microbiology Ecology, 2009, 70(2): 315–323
https://doi.org/10.1111/j.1574-6941.2009.00773.x pmid: 19825042
22 Niu G L, Zhang J J, Zhao S, Liu H, Boon N, Zhou N Y. Bioaugmentation of a 4-chloronitrobenzene contaminated soil with Pseudomonas putida ZWL73. Environmental Pollution, 2009, 157(3): 763–771
https://doi.org/10.1016/j.envpol.2008.11.024 pmid: 19108939
23 Liu L, Jiang C Y, Liu X Y, Wu J F, Han J G, Liu S J. Plant-microbe association for rhizoremediation of chloronitroaromatic pollutants with Comamonas sp. strain CNB-1. Environmental Microbiology, 2007, 9(2): 465–473
https://doi.org/10.1111/j.1462-2920.2006.01163.x pmid: 17222144
24 Hong Q, Zhang Z H, Hong Y F, Li S. A microcosm study on bioremediation of fenitrothion-contaminated soil using Burkholderia sp. FDS-1. International Biodeterioration & Biodegradation, 2007, 59(1): 55–61
https://doi.org/10.1016/j.ibiod.2006.07.013
25 Dams R I, Paton G, Killham K. Bioaugmentation of pentachlorophenol in soil and hydroponic systems. International Biodeterioration & Biodegradation, 2007, 60(3): 171–177
https://doi.org/10.1016/j.ibiod.2007.02.006
26 26. Qiao J, Zhang C D, Luo S M, Chen W. Bioremediation of highly contaminated oilfield soil: bioaugmentation for enhancing aromatic compounds removal. Frontiers of Environmental Science & Engineering, 2014, 8(2): 293–304
https://doi.org/10.1007/s11783-013-0561-9
27 Xu W D, Guo S H, Li G, Li F M, Wu B, Gan X H. Combination of the direct electro-Fenton process and bioremediation for the treatment of pyrene-contaminated soil in a slurry reactor. Frontiers of Environmental Science & Engineering, 2015, 9(6): 1096–1107
https://doi.org/10.1007/s11783-015-0804-z
28 Jézéquel K, Lebeau T. Soil bioaugmentation by free and immobilized bacteria to reduce potentially phytoavailable cadmium. Bioresource Technology, 2008, 99(4): 690–698
https://doi.org/10.1016/j.biortech.2007.02.002 pmid: 17379510
29 Beolchini F, Dell’Anno A, De Propris L, Ubaldini S, Cerrone F, Danovaro R. Auto- and heterotrophic acidophilic bacteria enhance the bioremediation efficiency of sediments contaminated by heavy metals. Chemosphere, 2009, 74(10): 1321–1326
https://doi.org/10.1016/j.chemosphere.2008.11.057 pmid: 19118863
30 Lebeau T, Braud A, Jézéquel K. Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: a review. Environmental Pollution, 2008, 153(3): 497–522
https://doi.org/10.1016/j.envpol.2007.09.015 pmid: 17981382
31 Gavrilescu M, Pavel L V, Cretescu I. Characterization and remediation of soils contaminated with uranium. Journal of Hazardous Materials, 2009, 163(2–3): 475–510
https://doi.org/10.1016/j.jhazmat.2008.07.103 pmid: 18771850
32 Kumar R, Singh S, Singh O V. Bioremediation of radionuclides: emerging technologies. OMICS: A Journal of Integrative Biology, 2007, 11(3): 295–304
https://doi.org/10.1089/omi.2007.0013 pmid: 17883340
33 Sun Y B, Zhao D, Xu Y M, Wang L, Liang X F, Shen Y. Effects of sepiolite on stabilization remediation of heavy metal-contaminated soil and its ecological evaluation. Frontiers of Environmental Science & Engineering, 2016, 10(1): 85–92
https://doi.org/10.1007/s11783-014-0689-2
34 Xiao Y, Wu J F, Liu H, Wang S J, Liu S J, Zhou N Y. Characterization of genes involved in the initial reactions of 4-chloronitrobenzene degradation in Pseudomonas putida ZWL73. Applied Microbiology and Biotechnology, 2006, 73(1): 166–171
https://doi.org/10.1007/s00253-006-0441-3 pmid: 16642329
35 Zhang Z H, Hong Q, Xu J H, Zhang X, Li S. Isolation of fenitrothion-degrading strain Burkholderia sp. FDS-1 and cloning of mpd gene. Biodegradation, 2006, 17(3): 275–283
https://doi.org/10.1007/s10532-005-7130-2 pmid: 16715406
36 Jain R K, Dreisbach J H, Spain J C. Biodegradation of p-nitrophenol via 1,2,4-benzenetriol by an Arthrobacter sp. Applied and Environmental Microbiology, 1994, 60(8): 3030–3032
pmid: 8085840
37 Kadiyala V, Spain J C. A two-component monooxygenase catalyzes both the hydroxylation of p-nitrophenol and the oxidative release of nitrite from 4-nitrocatechol in Bacillus sphaericus JS905. Applied and Environmental Microbiology, 1998, 64(7): 2479–2484
pmid: 9647818
38 Spain J C, Gibson D T. Pathway for Biodegradation of p-Nitrophenol in a Moraxella sp. Applied and Environmental Microbiology, 1991, 57(3): 812–819
pmid: 16348446
39 Labana S, Pandey G, Paul D, Sharma N K, Basu A, Jain R K. Pot and field studies on bioremediation of p-nitrophenol contaminated soil using Arthrobacter protophormiae RKJ100. Environmental Science & Technology, 2005, 39(9): 3330–3337
https://doi.org/10.1021/es0489801 pmid: 15926586
40 Liu H, Zhang J J, Wang S J, Zhang X E, Zhou N Y. Plasmid-borne catabolism of methyl parathion and p-nitrophenol in Pseudomonas sp. strain WBC-3. Biochemical and Biophysical Research Communications, 2005, 334(4): 1107–1114
https://doi.org/10.1016/j.bbrc.2005.07.006 pmid: 16039612
41 Middaugh D P, Thomas R L, Lantz S E, Heard C S, Mueller J G. Field scale testing of a hyperfiltration unit for removal of creosote and pentachlorophenol from ground water: chemical and biological assessment. Archives of Environmental Contamination and Toxicology, 1994, 26(3): 309–319
https://doi.org/10.1007/BF00203557
42 Cai M, Xun L. Organization and regulation of pentachlorophenol-degrading genes in Sphingobium chlorophenolicum ATCC 39723. Journal of Bacteriology, 2002, 184(17): 4672–4680
https://doi.org/10.1128/JB.184.17.4672-4680.2002 pmid: 12169590
43 Dams R I, Paton G I, Killham K. Rhizoremediation of pentachlorophenol by Sphingobium chlorophenolicum ATCC 39723. Chemosphere, 2007, 68(5): 864–870
https://doi.org/10.1016/j.chemosphere.2007.02.014 pmid: 17376504
44 Jernberg C, Jansson J K. Impact of 4-chlorophenol contamination and/or inoculation with the 4-chlorophenol-degrading strain, Arthrobacter chlorophenolicus A6L, on soil bacterial community structure. FEMS Microbiology Ecology, 2002, 42(3): 387–397
https://doi.org/10.1111/j.1574-6941.2002.tb01028.x pmid: 19709298
45 Wu J F, Jiang C Y, Wang B J, Ma Y F, Liu Z P, Liu S J. Novel partial reductive pathway for 4-chloronitrobenzene and nitrobenzene degradation in Comamonas sp. strain CNB-1. Applied and Environmental Microbiology, 2006, 72(3): 1759–1765
https://doi.org/10.1128/AEM.72.3.1759-1765.2006 pmid: 16517619
46 Ma Y F, Wu J F, Wang S Y, Jiang C Y, Zhang Y, Qi S W, Liu L, Zhao G P, Liu S J. Nucleotide sequence of plasmid pCNB1 from Comamonas strain CNB-1 reveals novel genetic organization and evolution for 4-chloronitrobenzene degradation. Applied and Environmental Microbiology, 2007, 73(14): 4477–4483
https://doi.org/10.1128/AEM.00616-07 pmid: 17526790
47 Xiao Y, Liu T T, Dai H, Zhang J J, Liu H, Tang H, Leak D J, Zhou N Y. OnpA, an unusual flavin-dependent monooxygenase containing a cytochrome b5 domain. Journal of Bacteriology, 2012, 194(6): 1342–1349
https://doi.org/10.1128/JB.06411-11 pmid: 22267507
48 Kästner M, Breuer-Jammali M, Mahro B. Impact of inoculation protocols, salinity, and pH on the degradation of polycyclic aromatic hydrocarbons (PAHs) and survival of PAH-degrading bacteria introduced into soil. Applied and Environmental Microbiology, 1998, 64(1): 359–362
pmid: 9435090
49 Choi H, Harrison R, Komulainen H, Delgado-Saborit J M. Polycyclic aromatic hydrocarbons. In: World Health Organization, Regional Office for Europe, eds. Selected Pollutants: WHO Guidelines for Indoor Air Quality. Geneva: World Health Organization, 2010, 289–325
50 Johnsen A R, Wick L Y, Harms H. Principles of microbial PAH-degradation in soil. Environmental Pollution, 2005, 133(1): 71–84
https://doi.org/10.1016/j.envpol.2004.04.015 pmid: 15327858
51 Yu S H, Ke L, Wong Y S, Tam N F Y. Degradation of polycyclic aromatic hydrocarbons by a bacterial consortium enriched from mangrove sediments. Environment International, 2005, 31(2): 149–154
https://doi.org/10.1016/j.envint.2004.09.008 pmid: 15661275
52 Gramss G, Voigt K D, Kirsche B. Degradation of polycyclic aromatic hydrocarbons with three to seven aromatic rings by higher fungi in sterile and unsterile soils. Biodegradation, 1999, 10(1): 51–62
https://doi.org/10.1023/A:1008368923383 pmid: 10423841
53 Bamforth S M, Singleton I. Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2005, 80(7): 723–736
https://doi.org/10.1002/jctb.1276
54 Eibes G, Cajthaml T, Moreira M T, Feijoo G, Lema J M. Enzymatic degradation of anthracene, dibenzothiophene and pyrene by manganese peroxidase in media containing acetone. Chemosphere, 2006, 64(3): 408–414
https://doi.org/10.1016/j.chemosphere.2005.11.075 pmid: 16445965
55 Silva I S, Grossman M, Durranta L R. Degradation of polycyclic aromatic hydrocarbons (2–7 rings) under microaerobic and very-low-oxygen conditions by soil fungi. International Biodeterioration & Biodegradation, 2009, 63(2): 224–229
https://doi.org/10.1016/j.ibiod.2008.09.008
56 Garon D, Sage L, Wouessidjewe D, Seigle-Murandi F. Enhanced degradation of fluorene in soil slurry by Absidia cylindrospora and maltosyl-cyclodextrin. Chemosphere, 2004, 56(2): 159–166
https://doi.org/10.1016/j.chemosphere.2004.02.019 pmid: 15120562
57 Potin O, Rafin C, Veignie E. Bioremediation of an aged polycyclic aromatic hydrocarbons (PAHs)-contaminated soil by flamentous fungi isolated from the soil. International Biodeterioration & Biodegradation, 2004, 54(1): 45–52
https://doi.org/10.1016/j.ibiod.2004.01.003
58 Jacques R J S, Okeke B C, Bento F M, Teixeira A S, Peralba M C R, Camargo F A O. Microbial consortium bioaugmentation of a polycyclic aromatic hydrocarbons contaminated soil. Bioresource Technology, 2008, 99(7): 2637–2643
https://doi.org/10.1016/j.biortech.2007.04.047 pmid: 17572084
59 Jacques R J S, Okeke B C, Bento F M, Peralba M C R, Camargo F A O. Characterization of a polycyclic aromatic hydrocarbon degrading microbial consortium from a petrochemical sludge landfarming site. Bioremediation Journal, 2007, 11(1): 1–11
https://doi.org/10.1080/10889860601185822
60 Silva I S, Santos E C, Menezes C R, Faria A F, Franciscon E, Grossman M, Durrant L R. Bioremediation of a polyaromatic hydrocarbon contaminated soil by native soil microbiota and bioaugmentation with isolated microbial consortia. Bioresource Technology, 2009, 100(20): 4669–4675
https://doi.org/10.1016/j.biortech.2009.03.079 pmid: 19477638
61 Pemberton J M, Corney B, Don R H. Evolution and spread of pesticide degrading ability among soil micro-organisms, In: Timmis KN, Puhler A, eds. Plasmids of Medical, Environmental and Commercial Importance. Amsterdam, Netherlands: Elsevier/North-Holland Biomedical, 1979, 287–299
62 Don R H, Pemberton J M. Genetic and physical map of the 2,4-dichlorophenoxyacetic acid-degradative plasmid pJP4. Journal of Bacteriology, 1985, 161(1): 466–468
pmid: 3968031
63 Daane L L, Häggblom M M. Earthworm egg capsules as vectors for the environmental introduction of biodegradative bacteria. Applied and Environmental Microbiology, 1999, 65(6): 2376–2381
pmid: 10347016
64 Nam K, Kukor J J. Combined ozonation and biodegradation for remediation of mixtures of polycyclic aromatic hydrocarbons in soil. Biodegradation, 2000, 11(1): 1–9
https://doi.org/10.1023/A:1026592324693 pmid: 11194968
65 Bouchez T, Patureau D, Dabert P, Juretschko S, Doré J, Delgenès P, Moletta R, Wagner M. Ecological study of a bioaugmentation failure. Environmental Microbiology, 2000, 2(2): 179–190
https://doi.org/10.1046/j.1462-2920.2000.00091.x pmid: 11220304
66 Singer A C, van der Gast C J, Thompson I P. Perspectives and vision for strain selection in bioaugmentation. Trends in Biotechnology, 2005, 23(2): 74–77
https://doi.org/10.1016/j.tibtech.2004.12.012 pmid: 15661343
67 Cunliffe M, Kertesz M A. Effect of Sphingobium yanoikuyae B1 inoculation on bacterial community dynamics and polycyclic aromatic hydrocarbon degradation in aged and freshly PAH-contaminated soils. Environmental Pollution, 2006, 144(1): 228–237
https://doi.org/10.1016/j.envpol.2005.12.026 pmid: 16524654
68 Chi X Q, Liu K, Zhou N Y. Effects of bioaugmentation in para-nitrophenol-contaminated soil on the abundance and community structure of ammonia-oxidizing bacteria and archaea. Applied Microbiology and Biotechnology, 2015, 99(14): 6069–6082
https://doi.org/10.1007/s00253-015-6462-z pmid: 25725631
69 Kennedy T A, Naeem S, Howe K M, Knops J M H, Tilman D, Reich P. Biodiversity as a barrier to ecological invasion. Nature, 2002, 417(6889): 636–638
https://doi.org/10.1038/nature00776 pmid: 12050662
70 Mrozik A, Piotrowska-Seget Z. Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds. Microbiological Research, 2010, 165(5): 363–375
https://doi.org/10.1016/j.micres.2009.08.001 pmid: 19735995
[1] Mengzhi Ji, Zichen Liu, Kaili Sun, Zhongfang Li, Xiangyu Fan, Qiang Li. Bacteriophages in water pollution control: Advantages and limitations[J]. Front. Environ. Sci. Eng., 2021, 15(5): 84-.
[2] Shujuan Meng, Rui Wang, Kaijing Zhang, Xianghao Meng, Wenchao Xue, Hongju Liu, Dawei Liang, Qian Zhao, Yu Liu. Transparent exopolymer particles (TEPs)-associated protobiofilm: A neglected contributor to biofouling during membrane filtration[J]. Front. Environ. Sci. Eng., 2021, 15(4): 64-.
[3] Manman Ma, Bo Zhang, Ye Chen, Wenrong Feng, Tiezhu Mi, Jianhua Qi, Wenshuai Li, Zhigang Yu, Yu Zhen. Characterization of bacterial communities during persistent fog and haze events in the Qingdao coastal region[J]. Front. Environ. Sci. Eng., 2021, 15(3): 42-.
[4] Min Gao, Ziye Yang, Yajie Guo, Mo Chen, Tianlei Qiu, Xingbin Sun, Xuming Wang. The size distribution of airborne bacteria and human pathogenic bacteria in a commercial composting plant[J]. Front. Environ. Sci. Eng., 2021, 15(3): 39-.
[5] Caihong Xu, Jianmin Chen, Zhikai Wang, Hui Chen, Hao Feng, Lujun Wang, Yuning Xie, Zhenzhen Wang, Xingnan Ye, Haidong Kan, Zhuohui Zhao, Abdelwahid Mellouki. Diverse bacterial populations of PM2.5 in urban and suburb Shanghai, China[J]. Front. Environ. Sci. Eng., 2021, 15(3): 37-.
[6] Zhijian Liu, Haiyang Liu, Hang Yin, Rui Rong, Guoqing Cao, Qihong Deng. Prevention of surgical site infection under different ventilation systems in operating room environment[J]. Front. Environ. Sci. Eng., 2021, 15(3): 36-.
[7] Karla Ilić Đurđić, Raluca Ostafe, Olivera Prodanović, Aleksandra Đurđević Đelmaš, Nikolina Popović, Rainer Fischer, Stefan Schillberg, Radivoje Prodanović. Improved degradation of azo dyes by lignin peroxidase following mutagenesis at two sites near the catalytic pocket and the application of peroxidase-coated yeast cell walls[J]. Front. Environ. Sci. Eng., 2021, 15(2): 19-.
[8] Xuewen Yi, Zhanqi Gao, Lanhua Liu, Qian Zhu, Guanjiu Hu, Xiaohong Zhou. Acute toxicity assessment of drinking water source with luminescent bacteria: Impact of environmental conditions and a case study in Luoma Lake, East China[J]. Front. Environ. Sci. Eng., 2020, 14(6): 109-.
[9] Binbin Sheng, Depeng Wang, Xianrong Liu, Guangxing Yang, Wu Zeng, Yiqing Yang, Fangang Meng. Taxonomic and functional variations in the microbial community during the upgrade process of a full-scale landfill leachate treatment plant – from conventional to partial nitrification-denitrification[J]. Front. Environ. Sci. Eng., 2020, 14(6): 93-.
[10] Haiyan Yang, Shangping Xu, Derek E. Chitwood, Yin Wang. Ceramic water filter for point-of-use water treatment in developing countries: Principles, challenges and opportunities[J]. Front. Environ. Sci. Eng., 2020, 14(5): 79-.
[11] Xinjie Wang, Yang Li, Jian Zhao, Hong Yao, Siqi Chu, Zimu Song, Zongxian He, Wen Zhang. Magnetotactic bacteria: Characteristics and environmental applications[J]. Front. Environ. Sci. Eng., 2020, 14(4): 56-.
[12] Zhen Bi, Deqing Wanyan, Xiang Li, Yong Huang. Biological conversion pathways of sulfate reduction ammonium oxidation in anammox consortia[J]. Front. Environ. Sci. Eng., 2020, 14(3): 38-.
[13] Fang Zhang, Hao Zhang, Ying Yuan, Dun Liu, Chenyu Zhu, Di Zheng, Guanghe Li, Yuquan Wei, Dan Sun. Different response of bacterial community to the changes of nutrients and pollutants in sediments from an urban river network[J]. Front. Environ. Sci. Eng., 2020, 14(2): 28-.
[14] Ling Huang, Syed Bilal Shah, Haiyang Hu, Ping Xu, Hongzhi Tang. Pollution and biodegradation of hexabromocyclododecanes: A review[J]. Front. Environ. Sci. Eng., 2020, 14(1): 11-.
[15] Siqi Li, Min Zheng, Shuang Wu, Yu Xue, Yanchen Liu, Chengwen Wang, Xia Huang. The impact of ultrasonic treatment on activity of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria in activated sludge[J]. Front. Environ. Sci. Eng., 2019, 13(6): 82-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed