Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2017, Vol. 11 Issue (1) : 9    https://doi.org/10.1007/s11783-017-0902-1
RESEARCH ARTICLE |
Novel coprecipitation–oxidation method for recovering iron from steel waste pickling liquor
Shejiang Liu,Hongyang Yang,Yongkui Yang(),Yupeng Guo,Yun Qi
School of Environmental Science & Engineering, Tianjin University, Tianjin 300072, China
 Download: PDF(432 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Coprecipitation–oxidation method was developed to recover the iron from wastewater.

Fe3O4 nanoparticles were well synthesized from steel waste pickling liquor.

Promoters greatly improved the properties of synthesized Fe3O4 nanoparticle.

Real-time control of the Fe2+/Fe3+ molar ratio was achieved by ORP monitoring.

Waste pickling liquors (WPLs) containing high concentrations of iron and acid are hazardous waste products from the steel pickling processes. A novel combined coprecipitation–oxidation method for iron recovery by Fe3O4 nanoparticle production from the WPLs was developed in this study. An oxidation–reduction potential monitoring method was developed for real-time control of the Fe2+/Fe3+ molar ratio. The key coprecipitation–oxidation parameters were determined using the orthogonal experimental design method. The use of promoters greatly improved the Fe3O4 nanoparticle crystallinity, size, magnetization, and dispersion. X-ray diffraction patterns showed that the produced Fe3O4 nanoparticles were single phase. The Fe3O4 nanoparticles were approximately spherical and slightly agglomerated. Vibrating sample magnetometry showed that the Fe3O4 nanoparticles produced from the WPLs had good magnetic properties, with a saturation magnetization of 80.206 emu·g−1 and a remanence of 10.500 emu·g−1. The results show that this novel coprecipitation–oxidation method has great potential for recycling iron in WPLs.

Keywords Waste pickling liquor      Coprecipitation–oxidation      Fe3O4 nanoparticles      Oxidation–reduction potential      Promoter     
PACS:     
Fund: 
Corresponding Authors: Yongkui Yang   
Issue Date: 09 January 2017
 Cite this article:   
Shejiang Liu,Hongyang Yang,Yongkui Yang, et al. Novel coprecipitation–oxidation method for recovering iron from steel waste pickling liquor[J]. Front. Environ. Sci. Eng., 2017, 11(1): 9.
 URL:  
http://academic.hep.com.cn/fese/EN/10.1007/s11783-017-0902-1
http://academic.hep.com.cn/fese/EN/Y2017/V11/I1/9
No. mixture /(r·min−1) Fe2+/Fe3+ molar ratio pH size /nm
1 200 1:1.4 8 40
2 200 1:1.6 9 20
3 200 1:1.8 10 10
4 200 1:2 11 10
5 400 1:1.4 9 35
6 400 1:1.6 8 20
7 400 1:1.8 11 11
8 400 1:2 10 15
9 600 1:1.4 10 35
10 600 1:1.6 11 15
11 600 1:1.8 8 12
12 600 1:2 9 15
13 800 1:1.4 11 40
14 800 1:1.6 10 15
15 800 1:1.8 9 10
16 800 1:2 8 20
K1 80 150 92
K2 81 70 80
K3 77 43 75
K4 85 60 76
`K1 20 37.5 23
`K2 20.25 17.5 20
`K3 19.25 10.75 18.75
`K4 21.25 15 19
Ra) 2 26.75 4.25
Tab.1  Orthogonal design and analysis for the reaction stage
No. reaction temperature/°C growth temperature/°C growth time/h moment/mass/(emu·g−1)
1 20 60 0.5 55.263
2 20 70 1 60.819
3 20 80 1.5 62.527
4 20 90 2 67.074
5 30 60 1 57.089
6 30 70 0.5 61.189
7 30 80 2 65.366
8 30 90 1.5 69.905
9 40 60 1.5 61.028
10 40 70 2 63.053
11 40 80 0.5 66.116
12 40 90 1 72.226
13 50 60 2 61.477
14 50 70 1.5 63.976
15 50 80 1 68.030
16 50 90 0.5 75.133
K1 245.683 234.857 257.701
K2 253.549 249.037 258.164
K3 262.423 262.039 257.436
K4 268.616 284.338 256.970
`K1 61.421 58.714 64.425
`K2 63.387 62.259 64.541
`K3 65.606 65.510 64.359
`K4 67.154 71.084 64.242
Ra) 5.733 12.370 0.299
Tab.2  Orthogonal design and analysis for the reaction and aging stages
Fig.1  Standard curves of ORP and Fe2+/Fe3+ molar ratio at initial Fe2+concentration of 0.1 (a), 0.3 (b) and 0.5 (c) mol·L−1
Fig.2  XRD of the Fe3O4 nanoparticles from simulated wastewater using different promoters. (a) No promoters; (b) sodium citrate 12 g·kg−1 Fe; (c) PEG-4000 12 g·kg−1 Fe; (d) sodium silicate 24 g·kg−1 Fe; (e) combination of three promoters (the same concentration as above). Top lines: compared to the standard Fe3O4 sample as JCPDS No. 19-0629
Fig.3  TEM image of the Fe3O4 nanoparticles from simulated wastewater using different promoters. (a) No promoters; (b) sodium citrate 12 g·kg−1 Fe; (c) PEG-4000 12 g·kg−1 Fe; (d) sodium silicate 24 g·kg−1 Fe; (e) combination of three promoters (the same concentration as above)
Fig.4  XRD pattern of the Fe3O4 nanoparticles from simulated wastewater (a) and waste pickling liquor (b). Top lines: Compared to the standard Fe3O4 sample as JCPDS No. 19-0629
Fig.5  Magnetic hysteresis curve of the Fe3O4 nanoparticles from simulated wastewater (a) and waste pickling liquor (b)
29 Sun X, Zheng C, Zhang F, Yang Y, Wu G, Yu A, Guan N. Size-controlled synthesis of magnetite (Fe3O4) nanoparticles coated with glucose and gluconic acid from a single Fe(III) precursor by a sucrose bifunctional hydrothermal method. Journal of Physical Chemistry C, 2009, 113(36): 16002–16008
https://doi.org/10.1021/jp9038682
30 Huang R, Fang Z, Fang X, Tsang E P. Ultrasonic Fenton-like catalytic degradation of bisphenol A by ferroferric oxide (Fe3O4) nanoparticles prepared from steel pickling waste liquor. Journal of Colloid and Interface Science, 2014, 436: 258–266
https://doi.org/10.1016/j.jcis.2014.08.035 pmid: 25280370
31 Tang B, Yuan L, Shi T, Yu L, Zhu Y. Preparation of nano-sized magnetic particles from spent pickling liquors by ultrasonic-assisted chemical co-precipitation. Journal of Hazardous Materials, 2009, 163(2–3): 1173–1178
https://doi.org/10.1016/j.jhazmat.2008.07.095 pmid: 18762377
32 Cumberland S A, Lead J R. Particle size distributions of silver nanoparticles at environmentally relevant conditions. Journal of Chromatography. A, 2009, 1216(52): 9099–9105
https://doi.org/10.1016/j.chroma.2009.07.021 pmid: 19647834
33 Tejamaya M, Römer I, Merrifield R C, Lead J R. Stability of citrate, PVP, and PEG coated silver nanoparticles in ecotoxicology media. Environmental Science & Technology, 2012, 46(13): 7011–7017
https://doi.org/10.1021/es2038596 pmid: 22432856
34 Chen D, Mei C Y, Yao L H, Jin H M, Qian G R, Xu Z P. Flash fixation of heavy metals from two industrial wastes into ferrite by microwave hydrothermal co-treatment. Journal of Hazardous Materials, 2011, 192(3): 1675–1682
https://doi.org/10.1016/j.jhazmat.2011.06.091 pmid: 21840124
1 Konishi Y, Nomura T, Mizoe K. A new synthesis route from spent sulfuric acid pickling solution to ferrite nanoparticles. Hydrometallurgy, 2004, 74(1–2): 57–65
https://doi.org/10.1016/j.hydromet.2004.01.007
35 Mo Z, Zhang C, Guo R, Meng S, Zhang J. Synthesis of Fe3O4 nanoparticles using controlled ammonia vapor diffusion under ultrasonic irradiation. Industrial & Engineering Chemistry Research, 2011, 50(6): 3534–3539
https://doi.org/10.1021/ie101683x
2 Tang B, Yuan L, Shi T, Yu L, Zhu Y. Preparation of nano-sized magnetic particles from spent pickling liquors by ultrasonic-assisted chemical co-precipitation. Journal of Hazardous Materials, 2009, 163(2–3): 1173–1178
https://doi.org/10.1016/j.jhazmat.2008.07.095 pmid: 18762377
3 Regel-Rosocka M. A review on methods of regeneration of spent pickling solutions from steel processing. Journal of Hazardous Materials, 2010, 177(1–3): 57–69
https://doi.org/10.1016/j.jhazmat.2009.12.043 pmid: 20056321
4 Agrawal A, Sahu K K. An overview of the recovery of acid from spent acidic solutions from steel and electroplating industries. Journal of Hazardous Materials, 2009, 171(1–3): 61–75
https://doi.org/10.1016/j.jhazmat.2009.06.099 pmid: 19632040
5 Loos R, Carvalho R, António D C, Comero S, Locoro G, Tavazzi S, Paracchini B, Ghiani M, Lettieri T, Blaha L, Jarosova B, Voorspoels S, Servaes K, Haglund P, Fick J, Lindberg R H, Schwesig D, Gawlik B M. EU-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents. Water Research, 2013, 47(17): 6475–6487
https://doi.org/10.1016/j.watres.2013.08.024 pmid: 24091184
6 Guo H, Zhang T. Sinks of steel in China–addition to in-use stock, export and loss. Frontiers of Environmental Science & Engineering, 2016, 10(1): 141–149
https://doi.org/10.1007/s11783-014-0696-3
7 Tang B, Su W, Wang J, Fu F, Yu G, Zhang J. Minimizing the creation of spent pickling liquors in a pickling process with high-concentration hydrochloric acid solutions: mechanism and evaluation method. Journal of Environmental Management, 2012, 98: 147–154
https://doi.org/10.1016/j.jenvman.2011.12.027 pmid: 22266479
8 Devi A, Singhal A, Gupta R, Panzade P. A study on treatment methods of spent pickling liquor generated by pickling process of steel. Clean Technologies and Environmental Policy, 2014, 16(8): 1515–1527
https://doi.org/10.1007/s10098-014-0726-7
9 Narasimhan B R V, Kumar S, Sankara Narayanan T S. Synthesis of manganese zinc ferrite using ferrous pickle liquor and pyrolusite ore. Environmental Chemistry Letters, 2011, 9(2): 243–250
https://doi.org/10.1007/s10311-009-0272-4
10 Horák D, Babič M, Macková H, Beneš M J. Preparation and properties of magnetic nano- and microsized particles for biological and environmental separations. Journal of Separation Science, 2007, 30(11): 1751–1772
https://doi.org/10.1002/jssc.200700088 pmid: 17623453
11 Cai Y, Liang B, Fang Z, Xie Y, Tsang E P. Effect of humic acid and metal ions on the debromination of BDE209 by nZVM prepared from steel pickling waste liquor. Frontiers of Environmental Science & Engineering, 2015, 9(5): 879–887
https://doi.org/10.1007/s11783-014-0764-8
12 Gao J, Ran X, Shi C, Cheng H, Cheng T, Su Y. One-step solvothermal synthesis of highly water-soluble, negatively charged superparamagnetic Fe3O4 colloidal nanocrystal clusters. Nanoscale, 2013, 5(15): 7026–7033
https://doi.org/10.1039/c3nr00931a pmid: 23803791
13 Ji L, Bai X, Zhou L, Shi H, Chen W, Hua Z. One-pot preparation of graphene oxide magnetic nanocomposites for the removal of tetrabromobisphenol A. Frontiers of Environmental Science & Engineering, 2013, 7(3): 442–450
https://doi.org/10.1007/s11783-013-0515-2
14 Mollahosseini A, Toghroli M, Kamankesh M. Zeolite/Fe3O4 as a new sorbent in magnetic solid-phase extraction followed by gas chromatography for determining phthalates in aqueous samples. Journal of Separation Science, 2015, 38(21): 3750–3757
https://doi.org/10.1002/jssc.201500510 pmid: 26333673
15 Klaine S J, Alvarez P J J, Batley G E, Fernandes T F, Handy R D, Lyon D Y, Mahendra S, McLaughlin M J, Lead J R. Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environmental Toxicology and Chemistry, 2008, 27(9): 1825–1851
https://doi.org/10.1897/08-090.1 pmid: 19086204
16 Horst M F, Lassalle V, Ferreira M L. Nanosized magnetite in low cost materials for remediation of water polluted with toxic metals, azo- and antraquinonic dyes. Frontiers of Environmental Science & Engineering, 2015, 9(5): 746–769
https://doi.org/10.1007/s11783-015-0814-x
17 Vayssières L, Chanéac C, Tronc E, Jolivet J P. Size tailoring of magnetite particles formed by aqueous precipitation: an example of thermodynamic stability of nanometric oxide particles. Journal of Colloid and Interface Science, 1998, 205(2): 205–212
https://doi.org/10.1006/jcis.1998.5614 pmid: 9735184
18 Deng J, He C, Peng Y, Wang J, Long X, Li P, Chan A. Magnetic and conductive Fe3O4-polyaniline nanoparticles with core-shell structure. Synthetic Metals, 2003, 139(2): 295–301
https://doi.org/10.1016/S0379-6779(03)00166-8
19 Fan R, Chen X H, Gui Z, Liu L, Chen Z Y. A new simple hydrothermal preparation of nanocrystalline magnetite Fe3O4. Materials Research Bulletin, 2001, 36(3–4): 497–502
https://doi.org/10.1016/S0025-5408(01)00527-X
20 Szczygieł I, Winiarska K, Bieńko A, Suracka K, Gaworska-Koniarek D. The effect of the sol–gel autocombustion synthesis conditions on the Mn–Zn ferrite magnetic properties. Journal of Alloys and Compounds, 2014, 604: 1–7
https://doi.org/10.1016/j.jallcom.2014.03.109
21 Iwasaki T, Kosaka K, Yabuuchi T, Watano S, Yanagida T, Kawai T. Novel mechanochemical process for synthesis of magnetite nanoparticles using coprecipitation method. Advanced Powder Technology, 2009, 20(6): 521–528
https://doi.org/10.1016/j.apt.2009.06.002
22 Murray C B, Kagan C R, Bawendi M G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annual Review of Materials Science, 2000, 30(1): 545–610
https://doi.org/10.1146/annurev.matsci.30.1.545
23 Su L, Zhang J, Wang C, Zhang Y, Li Z, Song Y, Jin T, Ma Z. Identifying main factors of capacity fading in lithium ion cells using orthogonal design of experiments. Applied Energy, 2016, 163: 201–210
https://doi.org/10.1016/j.apenergy.2015.11.014
24 Chen S, Wu B H, Fang J B, Liu Y L, Zhang H H, Fang L C, Guan L, Li S H. Analysis of flavonoids from lotus (Nelumbo nucifera) leaves using high performance liquid chromatography/photodiode array detector tandem electrospray ionization mass spectrometry and an extraction method optimized by orthogonal design. Journal of Chromatography. A, 2012, 1227: 145–153
https://doi.org/10.1016/j.chroma.2011.12.098 pmid: 22265782
25 Cheng Y, Liao Z, Li R, Lu J, Wang K. Characterization of free radicals generated from the reaction of Fe3+/ Fe2+ with tert-butyl hydroperoxide and the effect of lanthanide ions. Applied Magnetic Resonance, 2000, 18(3): 407–417
https://doi.org/10.1007/BF03162154
26 Gerber S, Gröger H, Ensling J, Gütlich P, Krautscheid H. (Pr4N)4[Ag3Fe2(ECN)12]–anionic network structures with mutual interpenetration. Angewandte Chemie (International ed. in English), 2005, 44(47): 7787–7790
https://doi.org/10.1002/anie.200502287 pmid: 16270375
27 Agnihotri S, Mukherji S, Mukherji S. Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Advances, 2014, 4(8): 3974–3983
https://doi.org/10.1039/C3RA44507K
28 Xing A, Zhang J, Bao Z, Mei Y, Gordin A S, Sandhage K H. A magnesiothermic reaction process for the scalable production of mesoporous silicon for rechargeable lithium batteries. Chemical communications (Cambridge, England), 2013, 49(60): 6743–6745
https://doi.org/10.1039/c3cc43134g pmid: 23783092
[1] FSE-16065-OF-LSJ_suppl_1 Download
[1] Ying Xu, Ning-Yi Zhou. Microbial remediation of aromatics-contaminated soil[J]. Front. Environ. Sci. Eng., 2017, 11(2): 1-.
[2] Xiaorong Meng, Shanshan Huo, Lei Wang, Xudong Wang, Yongtao Lv, Weiting Tang, Rui Miao, Danxi Huang. Effect of electrokinetic property of charged polyether sulfone membrane on bovine serum albumin fouling behavior[J]. Front. Environ. Sci. Eng., 2017, 11(2): 2-.
[3] Weiman Li, Haidi Liu, Yunfa Chen. Promotion of transition metal oxides on the NH3-SCR performance of ZrO2-CeO2 catalyst[J]. Front. Environ. Sci. Eng., 2017, 11(2): 6-.
[4] Mingkai Zhang, He Jing, Yanchen Liu, Hanchang Shi. Estimation and optimization operation in dealing with inflow and infiltration of a hybrid sewerage system in limited infrastructure facility data[J]. Front. Environ. Sci. Eng., 2017, 11(2): 7-.
[5] Xiuhong Liu, Hongchen Wang, Qing Yang, Jianmin Li, Yuankai Zhang, Yongzhen Peng. Online control of biofilm and reducing carbon dosage in denitrifying biofilter: pilot and full-scale application[J]. Front. Environ. Sci. Eng., 2017, 11(1): 4-.
[6] Jiuxiao Hao, Xiujin Wang, Hui Wang. Investigation of polyhydroxyalkanoates (PHAs) biosynthesis from mixed culture enriched by valerate-dominant hydrolysate[J]. Front. Environ. Sci. Eng., 2017, 11(1): 5-.
[7] Si-Yu Zhang, Paul N. Williams, Jinming Luo, Yong-Guan Zhu. Microbial mediated arsenic biotransformation in wetlands[J]. Front. Environ. Sci. Eng., 2017, 11(1): 1-.
[8] Sheng Huang, Xin Zhao, Yanqiu Sun, Jianli Ma, Xiaofeng Gao, Tian Xie, Dongsheng Xu, Yi Yu, Youcai Zhao. Pollution of hazardous substances in industrial construction and demolition wastes and their multi-path risk within an abandoned pesticide manufacturing plant[J]. Front. Environ. Sci. Eng., 2017, 11(1): 12-.
[9] Ran Yu, Shiwen Zhang, Zhoukai Chen, Chuanyang Li. Isolation and application of predatory Bdellovibrio-and-like organisms for municipal waste sludge biolysis and dewaterability enhancement[J]. Front. Environ. Sci. Eng., 2017, 11(1): 10-.
[10] Yang Li, Lei Shi, Yi Qian, Jie Tang. Diffusion of municipal wastewater treatment technologies in China: a collaboration network perspective[J]. Front. Environ. Sci. Eng., 2017, 11(1): 11-.
[11] Rui Lu, Wei Chen, Wen-Wei Li, Guo-Ping Sheng, Lian-Jun Wang, Han-Qing Yu. Probing the redox process of p-benzoquinone in dimethyl sulphoxide by using fluorescence spectroelectrochemistry[J]. Front. Environ. Sci. Eng., 2017, 11(1): 14-.
[12] Chunhao Dai, Pufeng Qin, Zhangwei Wang, Jian Chen, Xianshan Zhang, Si Luo. Mercury enrichment in Brassica napus in response to elevated atmospheric mercury concentrations[J]. Front. Environ. Sci. Eng., 2017, 11(1): 2-.
[13] Yun Zhou, Siqing Xia, Binh T. Nguyen, Min Long, Jiao Zhang, Zhiqiang Zhang. Interactions between metal ions and the biopolymer in activated sludge: quantification and effects of system pH value[J]. Front. Environ. Sci. Eng., 2017, 11(1): 7-.
[14] Mengchuan Shui, Feng Ji, Rui Tang, Shoujun Yuan, Xinmin Zhan, Wei Wang, Zhenhu Hu. Impact of roxarsone on the UASB reactor performance and its degradation[J]. Front. Environ. Sci. Eng., 2016, 10(6): 4-.
[15] Linxia Yan, Senlin Tian, Jian Zhou, Xin Yuan. Catalytic hydrolysis of gaseous HCN over Cu–Ni/γ-Al2O3 catalyst: parameters and conditions[J]. Front. Environ. Sci. Eng., 2016, 10(6): 5-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed