Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2017, Vol. 11 Issue (1) : 13    https://doi.org/10.1007/s11783-017-0904-z
REVIEW ARTICLE
Global sources, emissions, transport and deposition of dust and sand and their effects on the climate and environment: a review
Feng Wang1(), Xueqiu Zhao2, Cynthia Gerlein-Safdi3, Yue Mu1, Dongfang Wang1, Qi Lu1()
1. Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China
2. School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
3. Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544, USA
 Download: PDF(266 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

he main sources of sand and dust lie in deserts and semi-deserts, such as the Sahara Desert in Africa and the deserts in Central and Western Asia.

Dust aerosols directly alter the radiation balance of the earth-atmosphere system by scattering and absorbing short- and long-wave radiation.

Dust aerosols indirectly alter the albedo and rainfall patterns by acting as cloud condensation nuclei (CCN) or ice nuclei (IN).

Dust aerosols mitigate global warming by altering the amount of CO2 absorbed by the marine phytoplankton.

Dust and Sand Storms (DSS) originating in deserts in arid and semi-arid regions are events raising global public concern. An important component of atmospheric aerosols, dust aerosols play a key role in climatic and environmental changes at the regional and the global scale. Deserts and semi-deserts are the main source of dust and sand, but regions that undergo vegetation deterioration and desertification due to climate change and human activities also contribute significantly to DSS. Dust aerosols are mainly composed of dust particles with an average diameter of 2 mm, which can be transported over thousands of kilometers. Dust aerosols influence the radiation budget of the earth-atmosphere system by scattering solar short-wave radiation and absorbing surface long-wave radiation. They can also change albedo and rainfall patterns because they can act as cloud condensation nuclei (CCN) or ice nuclei (IN). Dust deposition is an important source of both marine nutrients and contaminants. Dust aerosols that enter marine ecosystems after long-distance transport influence phytoplankton biomass in the oceans, and thus global climate by altering the amount of CO2 absorbed by phytoplankton. In addition, the carbonates carried by dust aerosols are an important source of carbon for the alkaline carbon pool, which can buffer atmospheric acidity and increase the alkalinity of seawater. DSS have both positive and negative impacts on human society: they can exert adverse impacts on human’s living environment, but can also contribute to the mitigation of global warming and the reduction of atmospheric acidity.

Keywords Dust and sand storm      Climate effects      Radiative forcing      Cloud condensation nuclei      Precipitation      Iron fertilizer     
Corresponding Author(s): Feng Wang,Qi Lu   
Issue Date: 24 January 2017
 Cite this article:   
Feng Wang,Xueqiu Zhao,Cynthia Gerlein-Safdi, et al. Global sources, emissions, transport and deposition of dust and sand and their effects on the climate and environment: a review[J]. Front. Environ. Sci. Eng., 2017, 11(1): 13.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-017-0904-z
https://academic.hep.com.cn/fese/EN/Y2017/V11/I1/13
1 UNEP. WMO, UNCCD. Global Assessment of Sand and Dust Storms — WMO SDS-WAS. United Nations Environment Programme. Nairobi, 2016
2 X Xi, I N Sokolik. Quantifying the anthropogenic dust emission from agricultural land use and desiccation of the Aral Sea in Central Asia. Journal of Geophysical Research, D, Atmospheres, 2016, 121(20): 12270–12281
https://doi.org/10.1002/2016JD025556
3 O A Chadwick, L A Derry, P M Vitousek, B J Huebert, L O Hedin. Changing sources of nutrients during four million years of ecosystem development. Nature, 1999, 397(6719): 491–497
https://doi.org/10.1038/17276
4 H Yu, L A Remer, M Chin, H Bian, Q Tan, T Yuan, Y Zhang. Aerosols from overseas rival domestic emissions over North America. American Scientist, 2012, 337(6094): 566–569
https://doi.org/10.1126/science.1217576 pmid: 22859485
5 S Satheesh, K Krishnamoorthy. Radiative effects of natural aerosols: a review. Atmospheric Environment, 2005, 39(11): 2089–2110
https://doi.org/10.1016/j.atmosenv.2004.12.029
6 F Lambert, J S Kug, R J Park, N Mahowald, G Winckler, A Abe-Ouchi, R O’ishi, T Takemura, J H Lee. The role of mineral-dust aerosols in polar temperature amplification. Nature Climate Change, 2013, 3(5): 487–491
https://doi.org/10.1038/nclimate1785
7 J Haywood, O Boucher. Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: a review. Reviews of Geophysics, 2000, 38(4): 513–543
https://doi.org/10.1029/1999RG000078
8 T L Anderson, R J Charlson, S E Schwartz, R Knutti, O Boucher, H Rodhe, J Heintzenberg. Atmospheric science. Climate forcing by aerosol—A hazy picture. Science, 2003, 300(5622): 1103–1104
https://doi.org/10.1126/science.1084777 pmid: 12750507
9 M Pósfai, P R Buseck. Nature and climate effects of individual tropospheric aerosol particles. Annual Review of Earth and Planetary Sciences, 2010, 38(1): 17–43
https://doi.org/10.1146/annurev.earth.031208.100032
10 J M Creamean, K J Suski, D Rosenfeld, A Cazorla, P J DeMott, R C Sullivan, A B White, F M Ralph, P Minnis, J M Comstock, J M Tomlinson, K A Prather. Dust and biological aerosols from the Sahara and Asia influence precipitation in the western U.S. Science, 2013, 339(6127): 1572–1578
https://doi.org/10.1126/science.1227279 pmid: 23449996
11 P G Falkowski, R T Barber, V Smetacek. Biogeochemical controls and feedbacks on ocean primary production. Science, 1998, 281(5374): 200–207
https://doi.org/10.1126/science.281.5374.200 pmid: 9660741
12 J M Prospero, J E Bullard, R Hodgkins. High-latitude dust over the North Atlantic: inputs from Icelandic proglacial dust storms. Science, 2012, 335(6072): 1078–1082
https://doi.org/10.1126/science.1217447 pmid: 22383844
13 F Lamy, R Gersonde, G Winckler, O Esper, A Jaeschke, G Kuhn, J Ullermann, A Martinez-Garcia, F Lambert, R Kilian. Increased dust deposition in the Pacific Southern Ocean during glacial periods. Science, 2014, 343(6169): 403–407
https://doi.org/10.1126/science.1245424 pmid: 24458637
14 J J Cao, S C Lee, X Y Zhang, J C Chow, Z S An, K F Ho, J G Watson, K Fung, Y Q Wang, Z X Shen. Characterization of airborne carbonate over a site near Asian dust source regions during spring 2002 and its climatic and environmental significance. Journal of Geophysical Research, D, Atmospheres, 2005, 110(D3): D03203
https://doi.org/10.1029/2004JD005244
15 P D Broxton, X Zeng, W Scheftic, P A Troch. A MODIS-Based Global 1-km maximum green vegetation fraction dataset. Journal of Applied Meteorology and Climatology, 2014, 53(8): 1996–2004 doi:10.1175/JAMC-D-13-0356.1
16 P Ginoux, J M Prospero, T E Gill, N C Hsu, M Zhao. Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Reviews of Geophysics, 2012, 50(3): RG3005
https://doi.org/10.1029/2012RG000388
17 J M Prospero, P Ginoux, O Torres, S E Nicholson, T E Gill. Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 total ozone mapping spectrometer (TOMS) absorbing aerosol product. Reviews of Geophysics, 2002, 40(1): 1002 doi:10.1029/2000RG000095
18 D A Ridley, C L Heald, J R Pierce, M J Evans. Toward resolution-independent dust emissions in global models: impacts on the seasonal and spatial distribution of dust. Geophysical Research Letters, 2013, 40(11): 2873–2877
https://doi.org/10.1002/grl.50409
19 T Stanelle, I Bey, T Raddatz, C Reick, I Tegen. Anthropogenically induced changes in twentieth century mineral dust burden and the associated impact on radiative forcing. Journal of Geophysical Research, D, Atmospheres, 2014, 119(23): 13526–13546
https://doi.org/10.1002/2014JD022062
20 I Tegen, I Fung. Modeling of mineral dust in the atmosphere: sources, transport, and optical thickness. Journal of Geophysical Research, 1994, 99(D11): 22897
https://doi.org/10.1029/94JD01928
21 C S Zender, R L R L Miller, I Tegen. Quantifying mineral dust mass budgets: terminology, constraints, and current estimates. Eos (Washington D.C.), 2004, 85(48): 509–512
https://doi.org/10.1029/2004EO480002
22 X Y Zhang, R Arimoto, Z S An. Dust emission from Chinese desert sources linked to variations in atmospheric circulation. Journal of Geophysical Research: Atmospheres (1984–2012), 1997, 102(D23): 28041–28047
23 X Y Zhang, S L Gong, Z X Shen, F M Mei, X X Xi, L C Liu, Z J Zhou, D Wang, Y Q Wang, Y Cheng. Characterization of soil dust aerosol in China and its transport and distribution during 2001 ACE-Asia: 1. Network observations. Journal of Geophysical Research, D, Atmospheres, 2003, 108(D9):4261
24 N Mahowald, S Albani, J F Kok, S Engelstaeder, R Scanza, D S Ward, M G Flanner. The size distribution of desert dust aerosols and its impact on the Earth system. Aeolian Research, 2014, 15: 53–71
https://doi.org/10.1016/j.aeolia.2013.09.002
25 S L Gong, X Y Zhang, T L Zhao, I G McKendry, D A Jaffe, N M Lu. Characterization of soil dust aerosol in China and its transport and distribution during 2001 ACE-Asia: 2. Model simulation and validation. Journal of Geophysical Research, D, Atmospheres, 2003, 108(D9):
https://doi.org/10.1029/2002JD002633
26 S L Gong, X Y Zhang, T L Zhao, X B Zhang, L A Barrie, I G McKendry, C S Zhao. A simulated climatology of Asian dust aerosol and its trans-Pacific transport. Part II: Interannual variability and climate connections. Journal of Climate, 2006, 19(1): 104–122
https://doi.org/10.1175/JCLI3606.1
27 H Steltzer, C Landry, T H Painter, J Anderson, E Ayres. Biological consequences of earlier snowmelt from desert dust deposition in alpine landscapes. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(28): 11629–11634
https://doi.org/10.1073/pnas.0900758106 pmid: 19564599
28 I G McKendry, J P Hacker, R Stull, S Sakiyama, D Mignacca, K Reid. Long-range transport of Asian dust to the Lower Fraser Valley, British Columbia, Canada. Journal of Geophysical Research, 2001, 106(D16): 18361–18370
https://doi.org/10.1029/2000JD900359
29 R A Duce, C K Unni, B J Ray, J M Prospero, J T Merrill. Long-range atmospheric transport of soil dust from Asia to the tropical north pacific: temporal variability. Science, 1980, 209(4464): 1522–1524
https://doi.org/10.1126/science.209.4464.1522 pmid: 17745962
30 T Murayama, N Sugimoto, I Uno, K Kinoshita, K Aoki, N Hagiwara, Z Liu, I Matsui, T Sakai, T Shibata, K Arao, B J Sohn, J G Won, S C Yoon, T Li, J Zhou, H Hu, M Abo, K Iokibe, R Koga, Y Iwasaka. Ground-based network observation of Asian dust events of April 1998 in East Asia. Journal of Geophysical Research, 2001, 106(D16): 18345–18360
https://doi.org/10.1029/2000JD900554
31 J Merrill, E Arnold, M Leinen, C Weaver. Mineralogy of aeolian dust reaching the North Pacific Ocean: 2. Relationship of mineral assemblages to atmospheric transport patterns. Journal of Geophysical Research: Atmospheres (1984–2012), 1994, 99(D10): 21025–21032
32 Y Chun, K O Boo, J Kim, S U Park, M Lee. Synopsis, transport, and physical characteristics of Asian dust in Korea. Journal of Geophysical Research, 2001, 106(D16): 18067–18074
https://doi.org/10.1029/2001JD900184
33 I Uno, K Eguchi, K Yumimoto, T Takemura, A Shimizu, M Uematsu, Z Liu, Z Wang, Y Hara, N Sugimoto. Asian dust transported one full circuit around the globe. Nature Geoscience, 2009, 2(8): 557–560
https://doi.org/10.1038/ngeo583
34 J L Hand, N M Mahowald, Y Chen, R L Siefert, C Luo, A Subramaniam, I Fung. Estimates of atmospheric-processed soluble iron from observations and a global mineral aerosol model: Biogeochemical implications. Journal of Geophysical Research: Atmospheres (1984–2012), 2004, 109(17): 1781–1795
35 T D Jickells, Z S An, K K Andersen, A R Baker, G Bergametti, N Brooks, J J Cao, P W Boyd, R A Duce, K A Hunter, H Kawahata, N Kubilay, J laRoche, P S Liss, N Mahowald, J M Prospero, A J Ridgwell, I Tegen, R Torres. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science, 2005, 308(5718): 67–71
https://doi.org/10.1126/science.1105959 pmid: 15802595
36 X Y Zhang, R Arimoto, Z S An. Glacial and interglacial patterns for Asian dust transport. Quaternary Science Reviews, 1999, 18(6): 811–819
https://doi.org/10.1016/S0277-3791(98)00028-6
37 V Ramanathan, P J Crutzen, J T Kiehl, D Rosenfeld. Aerosols, climate, and the hydrological cycle. Science, 2001, 294(5549): 2119–2124
https://doi.org/10.1126/science.1064034 pmid: 11739947
38 D Rosenfeld. Aerosols, clouds, and climate. Science, 2006, 312(5778): 1323–1324 doi:10.1126/science.1128972
pmid: 16741104
39 S Twomey. The influence of pollution on the shortwave albedo of clouds. Journal of the Atmospheric Sciences, 1977, 34(7): 1149–1152
https://doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2
40 D T McCoy, S M Burrows, R Wood, D P Grosvenor, S M Elliott, P L Ma, P J Rasch, D L Hartmann. Natural aerosols explain seasonal and spatial patterns of Southern Ocean cloud albedo. Science Advances, 2015, 1(6): e1500157 doi:10.1126/sciadv.1500157
pmid: 26601216
41 Y J Kaufman, D Tanré, O Boucher. A satellite view of aerosols in the climate system. Nature, 2002, 419(6903): 215–223
https://doi.org/10.1038/nature01091 pmid: 12226676
42 R J Allen, W Landuyt, S T Rumbold. An increase in aerosol burden and radiative effects in a warmer world. Nature Climate Change, 2016, 6(3): 269–274
https://doi.org/10.1038/nclimate2827
43 P Forster, V Ramaswamy, P Artaxo, T Berntsen, R Betts, D W Fahey, J Haywood, J Lean, D C Lowe, G Myhre, J Nganga, R Prinn, G Raga, M Schulz, R Van Dorland. Changes in atmospheric constituents and in radiative forcing. Chapter 2. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K B, Tignor M, Miller, H L. Climate Change 2007. Cambridge: Cambridge University Press, 2007, 129–234
44 M Kulmala, J Kontkanen, H Junninen, K Lehtipalo, H E Manninen, T Nieminen, T Petäjä, M Sipilä, S Schobesberger, P Rantala, A Franchin, T Jokinen, E Järvinen, M Äijälä, J Kangasluoma, J Hakala, P P Aalto, P Paasonen, J Mikkilä, J Vanhanen, J Aalto, H Hakola, U Makkonen, T Ruuskanen, R L Mauldin 3rd, J Duplissy, H Vehkamäki, J Bäck, A Kortelainen, I Riipinen, T Kurtén, M V Johnston, J N Smith, M Ehn, T F Mentel, K E J Lehtinen, A Laaksonen, V M Kerminen, D R Worsnop. Direct observations of atmospheric aerosol nucleation. Science, 2013, 339(6122): 943–946
https://doi.org/10.1126/science.1227385 pmid: 23430652
45 B A Albrecht. Aerosols, cloud microphysics, and fractional cloudiness. Science, 1989, 245(4923): 1227–1230
https://doi.org/10.1126/science.245.4923.1227 pmid: 17747885
46 W Wang, A T Evan, C Flamant, C Lavaysse. On the decadal scale correlation between African dust and Sahel rainfall: the role of Saharan heat low-forced winds. Science Advances, 2015, 1(9): e1500646
https://doi.org/10.1126/sciadv.1500646 pmid: 26601301
47 Y Yin, S Wurzler, Z Levin, T G Reisin. Interactions of mineral dust particles and clouds: Effects on precipitation and cloud optical properties. Journal of Geophysical Research: Atmospheres (1984–2012), 2002, 107(D23): AAC 19-1–AAC 19-14
48 A Teller, Z Levin. The effects of aerosols on precipitation and dimensions of subtropical clouds: a sensitivity study using a numerical cloud model. Atmospheric Chemistry and Physics, 2006, 6(1): 67–80
https://doi.org/10.5194/acp-6-67-2006
49 Y Rudich, O Khersonsky, D Rosenfeld. Treating clouds with a grain of salt. Geophysical Research Letters, 2002, 29(22): 17–1
https://doi.org/10.1029/2002GL016055
50 Y Yin, Z Levin, T G Reisin, S Tzivion. The effects of giant cloud condensation nuclei on the development of precipitation in convective clouds—A numerical study. Atmospheric Research, 2000, 53(1): 91–116
https://doi.org/10.1016/S0169-8095(99)00046-0
51 H Yu, Y J Kaufman, M Chin, G Feingold, L A Remer, T L Anderson, Y Balkanski, N Bellouin, O Boucher, S Christopher, P DeCola, R Kahn, D Koch, N Loeb, M S Reddy, M Schulz, T Takemura, M Zhou. A review of measurement-based assessments of the aerosol direct radiative effect and forcing. Atmospheric Chemistry and Physics, 2006, 6(3): 613–666
https://doi.org/10.5194/acp-6-613-2006
52 G Myhre. Consistency between satellite-derived and modeled estimates of the direct aerosol effect. Science, 2009, 325(5937): 187–190
https://doi.org/10.1126/science.1174461 pmid: 19541952
53 M Park, J Oh, K Park. Development of a cloud condensation nuclei (CCN) counter using a laser and charge-coupled device (CCD) camera. Frontiers of Environmental Science & Engineering in China, 2011, 5(3): 313–319 doi:10.1007/s11783-011-0346-y
54 A Martínez-García, D M Sigman, H Ren, R F Anderson, M Straub, D A Hodell, S L Jaccard, T I Eglinton, G H Haug. Iron fertilization of the Subantarctic ocean during the last ice age. Science, 2014, 343(6177): 1347–1350
https://doi.org/10.1126/science.1246848 pmid: 24653031
55 T M Conway, E W Wolff, R Röthlisberger, R Mulvaney, H E Elderfield. Constraints on soluble aerosol iron flux to the Southern Ocean at the Last Glacial Maximum. Nature Communications, 2015, 6: 7850
https://doi.org/10.1038/ncomms8850 pmid: 26204562
56 G Zhuang, Z Yi, R A Duce, P R Brown. Chemistry of iron in marine aerosols. Global Biogeochemical Cycles, 1992, 6(2): 161–173
https://doi.org/10.1029/92GB00756
57 A W Schroth, J Crusius, E R Sholkovitz, B C Bostick. Iron solubility driven by speciation in dust sources to the ocean. Nature Geoscience, 2009, 2(5): 337–340
https://doi.org/10.1038/ngeo501
58 T M Conway, S G John. Quantification of dissolved iron sources to the North Atlantic Ocean. Nature, 2014, 511(7508): 212–215
https://doi.org/10.1038/nature13482 pmid: 25008528
59 R W Young, K L Carder, P R Betzer, D K Costello, R A Duce, G R DiTullio, N W Tindale, E A Laws, M Uematsu, J T Merrill, R A Feely. Atmospheric iron inputs and primary productivity: Phytoplankton responses in the North Pacific. Global Biogeochemical Cycles, 1991, 5(2): 119–134
https://doi.org/10.1029/91GB00927
60 J K Bishop, R E Davis, J T Sherman. Robotic observations of dust storm enhancement of carbon biomass in the North Pacific. Science, 2002, 298(5594): 817–821
https://doi.org/10.1126/science.1074961 pmid: 12399588
61 N Cassar, M L Bender, B A Barnett, S Fan, W J Moxim, H Levy 2nd, B Tilbrook. The Southern Ocean biological response to aeolian iron deposition. Science, 2007, 317(5841): 1067–1070
https://doi.org/10.1126/science.1144602 pmid: 17717181
62 M M Mills, C Ridame, M Davey, J La Roche, R J Geider. Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic. Nature, 2004, 429(6989): 292–294
https://doi.org/10.1038/nature02550 pmid: 15152251
63 R A Duce, J LaRoche, K Altieri, K R Arrigo, A R Baker, D G Capone, S Cornell, F Dentener, J Galloway, R S Ganeshram, R J Geider, T Jickells, M M Kuypers, R Langlois, P S Liss, S M Liu, J J Middelburg, C M Moore, S Nickovic, A Oschlies, T Pedersen, J Prospero, R Schlitzer, S Seitzinger, L L Sorensen, M Uematsu, O Ulloa, M Voss, B Ward, L Zamora. Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science, 2008, 320(5878): 893–897
https://doi.org/10.1126/science.1150369 pmid: 18487184
64 A Paytan, K R Mackey, Y Chen, I D Lima, S C Doney, N Mahowald, R Labiosa, A F Post. Toxicity of atmospheric aerosols on marine phytoplankton. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(12): 4601–4605
https://doi.org/10.1073/pnas.0811486106 pmid: 19273845
65 E A Shinn, G W Smith, J M Prospero, P Betzer, M L Hayes, V Garrison, R T Barber. African dust and the demise of Caribbean coral reefs. Geophysical Research Letters, 2000, 27(19): 3029–3032
https://doi.org/10.1029/2000GL011599
[1] Lingchen Kong, Xitong Liu. Emerging electrochemical processes for materials recovery from wastewater: Mechanisms and prospects[J]. Front. Environ. Sci. Eng., 2020, 14(5): 90-.
[2] Zhan Qu, Ting Su, Yu Chen, Xue Lin, Yang Yu, Suiyi Zhu, Xinfeng Xie, Mingxin Huo. Effective enrichment of Zn from smelting wastewater via an integrated Fe coagulation and hematite precipitation method[J]. Front. Environ. Sci. Eng., 2019, 13(6): 94-.
[3] Huosheng Li, Hongguo Zhang, Jianyou Long, Ping Zhang, Yongheng Chen. Combined Fenton process and sulfide precipitation for removal of heavy metals from industrial wastewater: Bench and pilot scale studies focusing on in-depth thallium removal[J]. Front. Environ. Sci. Eng., 2019, 13(4): 49-.
[4] Shejiang Liu, Hongyang Yang, Yongkui Yang, Yupeng Guo, Yun Qi. Novel coprecipitation–oxidation method for recovering iron from steel waste pickling liquor[J]. Front. Environ. Sci. Eng., 2017, 11(1): 9-.
[5] Xuying WANG, Bin ZHANG. Modeling radiative effects of haze on summer-time convective precipitation over North China: a case study[J]. Front. Environ. Sci. Eng., 2016, 10(4): 1-.
[6] Chengyuan SU,Weiguang LI,Xingzhe LIU,Xiaofei HUANG,Xiaodan YU. Fe-Mn-sepiolite as an effective heterogeneous Fenton-like catalyst for the decolorization of reactive brilliant blue[J]. Front. Environ. Sci. Eng., 2016, 10(1): 37-45.
[7] Shuai MA,Siyu ZENG,Xin DONG,Jining CHEN,Gustaf OLSSON. Modification of the activated sludge model for chemical dosage[J]. Front. Environ. Sci. Eng., 2015, 9(4): 694-701.
[8] Wei LI, Xiaowen DING, Min LIU, Yuewen GUO, Lei LIU. Optimization of process parameters for mature landfill leachate pretreatment using MAP precipitation[J]. Front Envir Sci Eng, 2012, 6(6): 892-900.
[9] Mikyung PARK, Jinkwan OH, Kihong PARK. Development of a cloud condensation nuclei (CCN) counter using a laser and charge-coupled device (CCD) camera[J]. Front Envir Sci Eng Chin, 2011, 5(3): 313-319.
[10] Shucheng YANG, Yanling HE, Charles CHOU, Pengxiang ZHANG, Dongqi WANG, Yonghong LIU, . Effect of wastewater composition on the calcium carbonate precipitation in upflow anaerobic sludge blanket reactors[J]. Front.Environ.Sci.Eng., 2010, 4(2): 142-149.
[11] Michael B. MCELROY. Challenge of global climate change: Prospects for a new energy paradigm[J]. Front.Environ.Sci.Eng., 2010, 4(1): 2-11.
[12] Xiaojian ZHANG , Chao CHEN , . Emergency drinking water treatment in source water pollution incident-technology and practice in China[J]. Front.Environ.Sci.Eng., 2009, 3(3): 364-368.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed