Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2017, Vol. 11 Issue (1) : 14
Probing the redox process of p-benzoquinone in dimethyl sulphoxide by using fluorescence spectroelectrochemistry
Rui Lu1,2,Wei Chen2,Wen-Wei Li2,Guo-Ping Sheng2,Lian-Jun Wang1,Han-Qing Yu2()
1. Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
2. CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
 Download: PDF(973 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

Fluorescece spectroelectrochemistry is used to probe redox process of benzoquinone.

The benzoquinone reduction state has a lower fluorescence quantum efficiency.

CVF and DCVF can reveal more information about benzoquinone redox reactions.

This method can analyze compounds with fluorescence and electrochemical activities.

Quinones are common organic compounds frequently used as model dissolved organic matters in water, and their redox properties are usually characterized by either electrochemical or spectroscopic methods separately. In this work, electrochemical methodology was combined with two fluorescence spectroelectrochemical techniques, cyclic volta- fluorescence spectrometry (CVF) and derivative cyclic volta- fluorescence spectrometry (DCVF), to determine the electrochemical properties of p-benzoquinone in dimethyl sulfoxide, an aprotic solution. The CVF results show that the electrochemical reduction of p-benzoquinone resulted in the formation of radical anion and dianion, which exhibited a lower fluorescence intensity and red-shift of the emission spectra compared to that of p-benzoquinone. The fluorescence intensity was found to vary along with the electrochemical oxidation and reduction of p-benzoquinone. The CVF and DCVF results were in good consistence. Thus, the combined method offers a powerful tool to investigate the electrochemical process of p-benzoquinone and other natural organic compounds.

Keywords p-Benzoquinone      Electrochemistry      Fluorescence      Spectroelectrochemistry      Derivative cyclic volta fluorescence     
Corresponding Authors: Han-Qing Yu   
Issue Date: 08 February 2017
 Cite this article:   
Rui Lu,Wei Chen,Wen-Wei Li, et al. Probing the redox process of p-benzoquinone in dimethyl sulphoxide by using fluorescence spectroelectrochemistry[J]. Front. Environ. Sci. Eng., 2017, 11(1): 14.
Fig.1  Schematic fluorescence spectroelectrochemical cell (a) 2-dimensional top view, with 1) fluorescence excitation inlet, 2) fluorescence emission outlet, 3) reference electrode, 4) working electrode, and 5) counter electrode. (b) 3-dimensional view
Fig.2  (a) In situ fluorescence spectra of 5.0 × 10-6 mol·L-1o-tolidine in 1.0 mol·L-1 HClO4/0.50 mol·L-1 acetic acid on a gold disk electrode at different potentials: 0.40, 0.55, 0.58, 0.60, 0.61, 0.62, 0.63, 0.64, 0.65, and 0.70 V. (b) Nernst plot of applied potential versus log(CO/CR) of o-tolidine
Fig.3  CV of 2.0 × 10-3 mol·L-1 benzoquinone obtained at Pt electrodes in DMSO solution including 5.0 × 10-3 mol·L-1 NaClO4. Scan rate, 5 mV·s-1; scan range, -0.20 to -2.00 V
Fig.4  Scheme 1&chsp;p-benzoquinone redox reactions in aprotic solvent
Fig.5  Fluorescence emission spectra of benzoquinone under excitation of 361 nm and constant at potential for 300 s
Fig.6  Decay of 2.0 × 10-4 mol·L-1 benzoquinone fluorescence intensity as number of CV scan increased. Scan rate, 5 mV·s-1; scan range, -0.200 to -2.000 V
Fig.7  Multicycle thin-layer (a) CV (blue line), (b) DCVF (red line), and (c) CVF (black line) of 2.0 × 10-4 mol·L-1 benzoquinone with 5.0 × 10-3 mol·L-1 NaClO4 in DMSO. Scan rate: 5 mV·s-1, scan range: 0.4 to -2.0 V, cycling number: 3, Ex/Em: 361/410 nm
1 Reckhow D A, Singer P C, Malcolm R L. Chlorination of humic materials: byproduct formation and chemical interpretations. Environmental Science & Technology, 1990, 24(11): 1655–1664
2 Cory R M, McKnight D M. Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter. Environmental Science & Technology, 2005, 39(21): 8142–8149 pmid: 16294847
3 Lovley D R, Coates J D, Blunt-Harris E L, Phillips E J P, Woodward J C. Humic substances as electron acceptors for microbial respiration. Nature, 1996, 382(6590): 445–448
4 Davidson E A, Chorover J, Dail D B. A mechanism of abiotic immobilization of nitrate in forest ecosystems: the ferrous wheel hypothesis. Global Change Biology, 2003, 9(2): 228–236
5 Scott D T, McKnight D M, Blunt-Harris E L, Kolesar S E, Lovley D R. Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms. Environmental Science & Technology, 1998, 32(19): 2984–2989
6 Nurmi J T, Tratnyek P G. Electrochemical properties of natural organic matter (NOM), fractions of NOM, and model biogeochemical electron shuttles. Environmental Science & Technology, 2002, 36(4): 617–624 pmid: 11878375
22 Yu J S, Zhou T Y. The electrochemistry and thin-layer luminescence spectroelectrochemistry of rhodamine 6g at a 4,4'-bipyridine-modified gold electrode. Journal of Electroanalytical Chemistry, 2001, 504(1): 89–95
7 Ariese F, van Assema S, Gooijer C, Bruccoleri A G, Langford C H. Comparison of laurentian fulvic acid luminescence with that of the hydroquinone/quinone model system: evidence from low temperature fluorescence studies and epr spectroscopy. Aquatic Sciences, 2004, 66(1): 86–94
8 Newman D K, Kolter R. A role for excreted quinones in extracellular electron transfer. Nature, 2000, 405(6782): 94–97 pmid: 10811225
9 Klapper L, McKnight D M, Fulton J R, Blunt-Harris E L, Nevin K P, Lovley D R, Hatcher P G. Fulvic acid oxidation state detection using fluorescence spectroscopy. Environmental Science & Technology, 2002, 36(14): 3170–3175 pmid: 12141500
10 Fulton J R, McKnight D M, Foreman C M, Cory R M, Stedmon C, Blunt E. Changes in fulvic acid redox state through the oxycline of a permanently ice-covered antarctic lake. Aquatic Sciences, 2004, 66(1): 27–46
11 Poulsen J R, Birks J W. Photoreduction fluorescence detection of quinones in high-performance liquid chromatography. Analytical Chemistry, 1989, 61(20): 2267–2276
12 Görner H. Photoreduction of p-benzoquinones: effects of alcohols and amines on the intermediates and reactivities in solutions. Photochemistry and Photobiology, 2003, 78(5): 440–448<0440:POPEOA>2.0.CO;2 pmid: 14653574
13 Navas Diaz A. Absorption and emission spectroscopy and photochemistry of 1,10-anthraquinone derivatives: a review. Journal of Photochemistry and Photobiology A Chemistry, 1990, 53(2): 141–167
14 Aeschbacher M, Sander M, Schwarzenbach R P. Novel electrochemical approach to assess the redox properties of humic substances. Environmental Science & Technology, 2010, 44(1): 87–93 pmid: 19950897
15 Stites T E, Mitchell A E, Rucker R B. Physiological importance of quinoenzymes and the O-quinone family of cofactors. The Journal of Nutrition, 2000, 130(4): 719–727
pmid: 10736320
16 Rau J, Knackmuss H J, Stolz A. Effects of different quinoid redox mediators on the anaerobic reduction of azo dyes by bacteria. Environmental Science & Technology, 2002, 36(7): 1497–1504 pmid: 11999057
17 Tang Y H, Wu Y R, Wang Z H. Spectroelectrochemistry for electroreduction of p-benzoquinone in unbuffered aqueous solution. Journal of the Electrochemical Society, 2001, 148(4): E133–E138
18 Quan M, Sanchez D, Wasylkiw M F, Smith D K. Voltammetry of quinones in unbuffered aqueous solution: reassessing the roles of proton transfer and hydrogen bonding in the aqueous electrochemistry of quinones. Journal of the American Chemical Society, 2007, 129(42): 12847–12856 pmid: 17910453
19 Pinyayev T S, Seliskar C J, Heineman W R. Fluorescence spectroelectrochemical sensor for 1-hydroxypyrene. Analytical Chemistry, 2010, 82(23): 9743–9748 PMID:21053915
20 Wilson R A, Seliskar C J, Talaska G, Heineman W R. Spectroelectrochemical sensing of pyrene metabolites 1-hydroxypyrene and 1-hydroxypyrene-glucuronide. Analytical Chemistry, 2011, 83(10): 3725–3729 pmid: 21504209
21 Ross S E, Shi Y, Seliskar C J, Heineman W R. Spectroelectrochemical sensing: planar waveguides. Electrochimica Acta, 2003, 48(20–22): 3313–3323
23 Lei C, Hu D, Ackerman E J. Single-molecule fluorescence spectroelectrochemistry of cresyl violet. Chemical Communications (Cambridge, England), 2008, 43: 5490–5492 pmid: 18997928
24 Salverda J M, Patil A V, Mizzon G, Kuznetsova S, Zauner G, Akkilic N, Canters G W, Davis J J, Heering H A, Aartsma T J. Fluorescent cyclic voltammetry of immobilized azurin: direct observation of thermodynamic and kinetic heterogeneity. Angewandte Chemie (International ed. in English), 2010, 49(33): 5776–5779 pmid: 20629001
25 Yu J S, Yang C, Fang H Q. Variable thickness thin-layer cell for electrochemistry and in situ uv-vis absorption, luminescence and surface-enhanced raman spectroelectrochemistry. Analytica Chimica Acta, 2000, 420(1): 45–55
26 Jin B K, Li L, Huang J L, Zhang S Y, Tian Y P, Yang J X. IR spectroelectrochemical cyclic voltabsorptometry and derivative cyclic voltabsorptometry. Analytical Chemistry, 2009, 81(11): 4476–4481 pmid: 19402619
27 Astuti Y, Topoglidis E, Briscoe P B, Fantuzzi A, Gilardi G, Durrant J R. Proton-coupled electron transfer of flavodoxin immobilized on nanostructured tin dioxide electrodes: thermodynamics versus kinetics control of protein redox function. Journal of the American Chemical Society, 2004, 126(25): 8001–8009 pmid: 15212550
28 Astuti Y, Topoglidis E, Gilardi G, Durrant J R. Cyclic voltammetry and voltabsorptometry studies of redox proteins immobilised on nanocrystalline tin dioxide electrodes. Bioelectrochemistry (Amsterdam, Netherlands), 2004, 63(1–2): 55–59 pmid: 15110248
29 Lee Y F, Kirchhoff J R. Design and characterization of a spectroelectrochemistry cell for absorption and luminescence measurements. Analytical Chemistry, 1993, 65(23): 3430–3434
30 Simone M J, Heineman W R, Kreishman G P. Long optical path electrochemical cell for absorption or fluorescence spectrometers. Analytical Chemistry, 1982, 54(13): 2382–2384
31 Kim H S, Chung T D, Kim H. Voltammetric determination of the pKa of various acids in polar aprotic solvents using 1,4-benzoquinone. Journal of Electroanalytical Chemistry, 2001, 498(1–2): 209–215 doi:10.1016/S0022-0728(00)00413-7
32 Cook A R, Curtiss L A, Miller J R. Fluorescence of the 1,4-benzoquinone radical anion. Journal of the American Chemical Society, 1997, 119(24): 5729–5734
[1] Xia Hou, Liping Huang, Peng Zhou, Hua Xue, Ning Li. Response of indigenous Cd-tolerant electrochemically active bacteria in MECs toward exotic Cr(VI) based on the sensing of fluorescence probes[J]. Front. Environ. Sci. Eng., 2018, 12(4): 7-.
[2] Zhenlian Qi, Jinna Zhang, Shijie You. Effect of placement angles on wireless electrocoagulation for bipolar aluminum electrodes[J]. Front. Environ. Sci. Eng., 2018, 12(3): 9-.
[3] Yu Liu, Qiao Zhang, Yu Hong. Formation of disinfection byproducts from accumulated soluble products of oleaginous microalga after chlorination[J]. Front. Environ. Sci. Eng., 2017, 11(6): 1-.
[4] Jing Gu, Hongtao Yu, Xie Quan, Shuo Chen. Covering α-Fe2O3 protection layer on the surface of p-Si micropillar array for enhanced photoelectrochemical performance[J]. Front. Environ. Sci. Eng., 2017, 11(6): 13-.
[5] Yun Zhou, Siqing Xia, Binh T. Nguyen, Min Long, Jiao Zhang, Zhiqiang Zhang. Interactions between metal ions and the biopolymer in activated sludge: quantification and effects of system pH value[J]. Front. Environ. Sci. Eng., 2017, 11(1): 7-.
[6] Yuan ZHANG,Yan ZHANG,Tao YU. Quantitative characterization of Cu binding potential of dissolved organic matter (DOM) in sediment from Taihu Lake using multiple techniques[J]. Front.Environ.Sci.Eng., 2014, 8(5): 666-674.
[7] Gang GUO, Yayi WANG, Chong WANG, Hong WANG, Mianli PAN, Shaowei CHEN. Short-term effects of excessive anaerobic reaction time on anaerobic metabolism of denitrifying polyphosphate- accumulating organisms linked to phosphorus removal and N2O production[J]. Front Envir Sci Eng, 2013, 7(4): 616-624.
[8] Shuang XUE, Qingliang ZHAO, Liangliang WEI, Xiujuan HUI, Xiping MA, Yingzi LIN. Fluorescence spectroscopic studies of the effect of granular activated carbon adsorption on structural properties of dissolved organic matter fractions[J]. Front Envir Sci Eng, 2012, 6(6): 784-796.
[9] Xiangliang PAN, Jing LIU, Wenjuan SONG, Daoyong ZHANG. Biosorption of Cu(II) to extracellular polymeric substances (EPS) from Synechoeystis sp.: a fluorescence quenching study[J]. Front Envir Sci Eng, 2012, 6(4): 493-497.
[10] Jing ZHANG, Shigong WANG, Can WANG, Hongying HU. Chemical identification and genotoxicity analysis of petrochemical industrial wastewater[J]. Front Envir Sci Eng, 2012, 6(3): 350-359.
[11] Fang FANG, Yan YANG, Jinsong GUO, Hong ZHOU, Chuan FU, Zhe LI. Three-dimensional fluorescence spectral characterization of soil dissolved organic matters in the fluctuating water-level zone of Kai County, Three Gorges Reservoir[J]. Front Envir Sci Eng Chin, 2011, 5(3): 426-434.
[12] YING Diwen, JIA Jinping, ZHANG Lehua. Effect of denitrifying bacteria on the electrochemical reaction of activated carbon fiber in electrochemical biofilm system[J]. Front.Environ.Sci.Eng., 2007, 1(3): 305-310.
Full text