Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2017, Vol. 11 Issue (2) : 13    https://doi.org/10.1007/s11783-017-0918-6
REVIEW ARTICLE
Microbial fuel cell with high content solid wastes as substrates: a review
Qingliang Zhao1(),Hang Yu1,Weixian Zhang1,2,Felix Tetteh Kabutey1,Junqiu Jiang1,Yunshu Zhang1,Kun Wang1,Jing Ding1
1. State Key Laboratory of Urban Water Resources and Environments (SKLURE), Harbin Institute of Technology, Harbin 150090, China
2. Shanghai Municipal Engineering Design Institute (Group) Co., Ltd., Shanghai 200092, China
 Download: PDF(506 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Fundamentals and configuration design of MFCs fueled by HCSW were reviewed.

HCSWs including sewage sludge, biomass and biowaste treated in MFCs were summarized.

HCSW based MFCs technologies covered the types of sediment, soil, wetland and plant.

Activated sludge process and composting could be coupled with HCSW-MFCs.

HCSW-MFCs could be applied in bioremediation and biosensing.

With the increasing concern about the serious global energy crisis and high energy consumption during high content solid wastes (HCSWs) treatment, microbial fuel cell (MFC) has been recognized as a promising resource utilization approach for HCSW stabilization with simultaneous electrical energy recovery. In contrast to the conventional HCSW stabilization processes, MFC has its unique advantages such as direct bio-energy conversion in a single step and mild reaction conditions (viz., ambient temperature, normal pressure, and neutral pH). This review mainly introduces some important aspects of electricity generation from HCSW and its stabilization in MFC, focusing on: (1) MFCs with different fundamentals and configurations designed and constructed to produce electricity from HCSW; (2) performance of wastes degradation and electricity generation; (3) prospect and deficiency posed by MFCs with HCSW as substrates. To date, the major drawback of MFCs fueled by HCSW is the lower power output than those using simple substrates. HCSW hydrolysis and decomposition would be a major tool to improve the performance of MFCs. The optimization of parameters is needed to push the progress of MFCs with HCSW as fuel.

Keywords Microbial fuel cell      High content solid wastes      Substrate      Bioremediation      Biosensor     
Corresponding Author(s): Qingliang Zhao   
Issue Date: 07 April 2017
 Cite this article:   
Qingliang Zhao,Hang Yu,Weixian Zhang, et al. Microbial fuel cell with high content solid wastes as substrates: a review[J]. Front. Environ. Sci. Eng., 2017, 11(2): 13.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-017-0918-6
https://academic.hep.com.cn/fese/EN/Y2017/V11/I2/13
Fig.1  Schematic illustration of MFC components and the principle of operation
Fig.2  Process of organic matter degradation and available fuel for MFC within HCSW
Fig.3  Single-chamber MFC with open air cathode
Fig.4  (a) Schematic drawing of the three-chamber biocathode MFC; (b) Schematic diagram of the MDC reactor
inoculum substrate predominant species reference
activated sludge from municipal wastewater treatment plant anaerobic sludge Proteobacteria, Bacteroidetes, uncultured bacteria, Actinobacteria, Firmicutes, Chloroflex. Zhang et al. [15]
anaerobic sludge anaerobic sludge Unclassified_Clostridiales, Clostridium XI, unclassified_Comamonadaceae, Arcobacter, Desulfobulbus, Desulfovibrio, Geobacter. Wang et al. [29]
anaerobic sludge sewage sludge Clostridium sp., Lactobacillus sp., Flavobacterium sp, Methanolinea sp., Methanospirillum sp., Methanosarcina sp., Methanosphaera sp. Xiao et al. [121]
anaerobic sludge anaerobic and aerobic activated sludge d-proteobacteria, γ-proteobacteria, Firmicutes. Gao et al. [122]
anaerobic sludge anaerobic sludge Geothrix, Geobacter, Desulfuromonas. Yoshizawa et al. [123]
aerobic sludge aerobic sludge Bacteroidetes, Nitrospirae, b-proteobacteria, Chloroflexi, Chlorobi, Gammaproteobacteria. Gao et al. [122]
anaerobic sludge food waste leachate Proteobacteria, Acidobacteria. Li et al. [124]
food wastes food wastes Proteobacteria, Bacteroidetes, Firmicutes. Jia et al. [125]
activated sludge food waste Proteobacteria, Bacteroidetes. Blanchet et al. [46]
anaerobic activated sludge dairy manure Clostridium, Ochrobactrum, Pseudomonas, Comamonas, Desulfobulbus. Zhang et al. [126]
activated sludge swine manure Clostridium. Vilajeliu-Pons et al. [127]
anaerobic consortia powder orange peel waste Proteobacteria, Bacteroidetes, Chloroflex. Miran et al. [128]
lake water sediments with cyanobacterial bloom biomass amendment Proteobacteria, Bacteroidetes, Chloroflexi, Acidobacteria, Actinobacteria, Firmicutes, Nitrospirae, Planctomyceltes, Chlorobi, Spirochaetes. Zhou et al. [64]
anaerobic sludge from anaerobic digester process Microalga Chlorella Vulgaris Proteobacteria, Bacteroidetes, Synergistertes, Chlorophyta, Spirochaetes. Lakaniemi et al. [129]
anaerobic sludge from anaerobic digester process Microalga DunallellaTertiolecta Proteobacteria, Bacteroidetes, Deferribacteres, Firmicutes. Lakaniemi et al. [129]
Tab.1  Microbial species involved in MFCs for electricity generation
section MFCs configuration inoculum source substrate pretreatment maxium power density “()” means max power density wasn't given electron acceptor reference
sewage sludge membraneless MFCs digester sludge oxygen Dentel et al. [10]
two-chamber MFCs sewage sludge sewage sludge 8.5W·m-3 K3Fe(CN)6 Jiang et al. [23]
two-chamber MFCs saline domestic sewage sludge 41W·m-3 K3Fe(CN)6 Karthikeyan and Selvam [24]
two-chamber MFCs anaerobic sludge sewage sludge 11.04W·m-3 KMnO4 Begera and Ghangrekar [25]
single chamber air cathode MFCs anaerobic mesophilic sludge anaerobic mesophilic sludge 53.3W·m-3 oxygen Martin et al. [26]
two-chamber MFCs anaerobic digestion sludge digested sludge ultrasound 12.67W·m-2 oxygen Oh et al. [28]
heat/alkaline 12.53W·m-2
two-chamber MFCs sewage sludge anaerobic sewage sludge 38.1W·m-3 K3Fe(CN)6 Wang et al. [29]
two-chamber MFCs sewage sludge sewage sludge ultrasonic and alkaline 12.5W·m-3 K3Fe(CN)6 Jiang et al. [30]
two-chamber MFCs activated sludge activated sludge microwave (42±3mW·m-2) oxygen Yusoff et al. [31]
two-chamber MFCs dairy waste activated sludge low temperature thermo-chemical 0.715W·m-3 oxygen Jayashree et al. [32]
single chamber air cathode MFCs MFCs effluent fermented primary sludge 320±10W·m-2 oxygen Yang et al. [33]
two-chamber MFCs sewage sludge sewage sludge freezing/thawing 10.2W·m-3 K3Fe(CN)6 Chen et al. [34]
two-chamber MFCs anaerobic sludge anaerobic sludge (36.8~40.1mW·m-2) oxygen Xiao et al. [35]
two-chamber MFCs Escherichia coli digested sewage sludge 3.1W·m-3 Fe3+ Fischer et al. [36]
triple-chamber MFCs (dual anode) Escherichia coli digested and dewatered sewage sludge Fe3+ Happe et al. [37]
two-chamber MFCs activated sludge activated sludge 8.7W·m-3 NaOCl Ghadge et al. [38]
two-chamber MFCs sewage sludge sewage sludge ultrasound 11.8W·m-3 K3Fe(CN)6 Jiang et al. [39]
two-chamber MFCs sewage sludge sewage sludge 9.1±0.1W·m-3 K3Fe(CN)6 Jiang et al. [40]
biowaste membraneless MFCs dried blended farm manure 5mW·m-2 oxygen Scott and Murano [14]
two-chamber MFCs biogas slurry cattle dung 220W·m-3 KMnO4 Zhao et al. [41]
single chamber air cathode MFCs anaerobic sludge food wastes oil removal 5.6W·m-3 oxygen Li et al. [130]
two-chamber MFCs digestate livestock manure and agricultural wastes 73mW·m-2 oxygen Di et al. [43]
triple-chamber MFCs (dual anode) Escherichia coli and manure leachate cattle wastes 215mW·m-2 oxygen Zheng and Nirmalakhanadan [44]
single compartment combined membrane-electrodes digested slurry livestock organic solid waste 36.6mW·m-2 oxygen Lee and Nirmalakhanadan [45]
twin-compartment brush-type anode electrodes 67mW·m-2
membraneless MFCs composite food waste oil removal 170.81mW·m-2 oxygen Mohan and Chandrasekhar [131]
two-chamber MFCs garden compost leachate dairy wastes 91mW·m-2 oxygen Cercado-Quezada et al. [132]
triple-chamber MFCs (dual anode) activated sludge food wastes dilution (21.9±2.1A·m-2) oxygen Blanchet et al. [49]
triple-chamber MFCs (dual cathode) topsoil dairy manure 14.11±0.20W·m-3 oxygen Zhang et al. [47]
two-chamber MFCs activated sludge food wastes (14.8A·m-2) oxygen Bridier et al. [48]
biomass two-chamber MFCs wastewater Scenedesmus obliquusas acid-thermal 951mW·m-3 K3Fe(CN)6 Kondaveeti et al. [19]
two-chamber MFCs anaerobic consortium Chlorella vulgaris 5.3mW·m-2 oxygen Lakaniemi et al. [49]
Dunaliella tertiolecta 15.0mW·m-2
two-chamber MFCs polluted water Microcystis aeruginosa ultrasound 4.2±0.1W·m-3 oxygen Wang et al. [50]
two-chamber MFCs domestic wastewater algae sludge alkaline 2.8W·m-3 oxygen Wang et al. [51]
membraneless MFCs sewage sludge cyanobacteria acidic fermentation 72mW·m-2 oxygen Zhao et al. [52]
Tab.2  MFCs operated with different HCSW substrates
Fig.5  Schematic illustration of (A) Sediment MFC (B) Soil MFC (C) Wetland and plant MFC
Fig.6  Schematic illustration of MFC with activated sludge process: (a) Sequencing Batch Reactor; (b) anaerobic-anoxic-oxic wastewater treatment process; (c) activated sludge wastewater treatment processes to improve nitrogen removal and reduce sludge production; (d) continue flow microbial fuel cell system
Fig.7  Schematic illustration a composting MFC with blower
Fig.8  MFC for bioremediation: (a) U-tube MFC; (b) soil MFC; (c) remediation of Chromium (VI)-contaminated soils; (d) remediation of petroleum hydrocarbon contaminated soil
1 Yang G, Zhang G, Wang H. Current state of sludge production, management, treatment and disposal in China. Water Research, 2015, 78: 60–73
https://doi.org/10.1016/j.watres.2015.04.002 pmid: 25912250
2 Wang X, Feng Y, Wang H, Qu Y, Yu Y, Ren N, Li N, Wang E, Lee H, Logan B E. Bioaugmentation for electricity generation from corn stover biomass using microbial fuel cells. Environmental Science & Technology, 2009, 43(15): 6088–6093
https://doi.org/10.1021/es900391b pmid: 19731723
3 Hassan S H A, El-Rab S M F G, Rahimnejad M, Ghasemi M, Joo J, Sik-Ok Y, Kim I S, Oh S. Electricity generation from rice straw using a microbial fuel cell. International Journal of Hydrogen Energy, 2014, 39(17): 9490–9496
https://doi.org/10.1016/j.ijhydene.2014.03.259
4 Zhang Y, Min B, Huang L, Angelidaki I. Generation of electricity and analysis of microbial communities in wheat straw biomass-powered microbial fuel cells. Applied and Environmental Microbiology, 2009, 75(11): 3389–3395
https://doi.org/10.1128/AEM.02240-08 pmid: 19376925
5 Butkovskyi A, Ni G, Hernandez Leal L, Rijnaarts H H M, Zeeman G. Mitigation of micropollutants for black water application in agriculture via composting of anaerobic sludge. Journal of Hazardous Materials, 2016, 303: 41–47
https://doi.org/10.1016/j.jhazmat.2015.10.016 pmid: 26513562
6 Katami T, Yasuhara A, Shibamoto T. Formation of dioxins from incineration of foods found in domestic garbage. Environmental Science & Technology, 2004, 38(4): 1062–1065
https://doi.org/10.1021/es030606y pmid: 14998019
7 Chon D H, Rome M, Kim Y M, Park K Y, Park C. Investigation of the sludge reduction mechanism in the anaerobic side-stream reactor process using several control biological wastewater treatment processes. Water Research, 2011, 45(18): 6021–6029
https://doi.org/10.1016/j.watres.2011.08.051 pmid: 21937073
8 Oh S T, Kim J R, Premier G C, Lee T H, Kim C, Sloan W T. Sustainable wastewater treatment: how might microbial fuel cells contribute. Biotechnology Advances, 2010, 28(6): 871–881
https://doi.org/10.1016/j.biotechadv.2010.07.008 pmid: 20688144
9 Mohan S V, Velvizhi G, Modestra J A, Srikanth S. Microbial fuel cell: critical factors regulating bio-catalyzed electrochemical process and recent advancements. Renewable & Sustainable Energy Reviews, 2014, 40: 779–797
https://doi.org/10.1016/j.rser.2014.07.109
10 Dentel S K, Strogen B, Chiu P. Direct generation of electricity from sludges and other liquid wastes. Water Science and Technology, 2004, 50(9): 161–168
pmid: 15581008
11 Lu Z, Chang D, Ma J, Huang G, Cai L, Zhang L. Behavior of metal ions in bioelectrochemical systems: a review. Journal of Power Sources, 2015, 275: 243–260
https://doi.org/10.1016/j.jpowsour.2014.10.168
12 Lu L, Yazdi H, Jin S, Zuo Y, Fallgren P H, Ren Z J. Enhanced bioremediation of hydrocarbon-contaminated soil using pilot-scale bioelectrochemical systems. Journal of Hazardous Materials, 2014, 274: 8–15
https://doi.org/10.1016/j.jhazmat.2014.03.060 pmid: 24762696
13 Md Khudzari J, Tartakovsky B, Raghavan G S V. Effect of C/N ratio and salinity on power generation in compost microbial fuel cells. Waste Management (New York, N.Y.), 2016, 48: 135–142
https://doi.org/10.1016/j.wasman.2015.11.022 pmid: 26611399
14 Scott K, Murano C. A study of a microbial fuel cell battery using manure sludge waste. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2007, 82(9): 809–817
https://doi.org/10.1002/jctb.1745
15 Zhang G, Zhao Q, Jiao Y, Wang K, Lee D J, Ren N. Efficient electricity generation from sewage sludge using biocathode microbial fuel cell. Water Research, 2012, 46(1): 43–52
https://doi.org/10.1016/j.watres.2011.10.036 pmid: 22078254
16 Meng F, Jiang J, Zhao Q, Wang K, Zhang G, Fan Q, Wei L, Ding J, Zheng Z. Bioelectrochemical desalination and electricity generation in microbial desalination cell with dewatered sludge as fuel. Bioresource Technology, 2014, 157: 120–126
https://doi.org/10.1016/j.biortech.2014.01.056 pmid: 24534793
17 Yu J, Park Y, Lee T. Effect of separator and inoculum type on electricity generation and microbial community in single-chamber microbial fuel cells. Bioprocess and Biosystems Engineering, 2014, 37(4): 667–675
https://doi.org/10.1007/s00449-013-1036-x pmid: 24009019
18 Mei X, Guo C, Liu B, Tang Y, Xing D. Shaping of bacterial community structure in microbial fuel cells by different inocula. RSC Advances, 2015, 5(95): 78136–78141
https://doi.org/10.1039/C5RA16382J
19 Kondaveeti S, Choi K S, Kakarla R, Min B. Microalgae Scenedesmus obliquus as renewable biomass feedstock for electricity generation in microbial fuel cells (MFCs). Frontiers of Environmental Science & Engineering, 2014, 8(5): 784–791
https://doi.org/10.1007/s11783-013-0590-4
20 Wang N, Chen Z, Li H, Su J, Zhao F, Zhu Y. Bacterial community composition at anodes of microbial fuel cells for paddy soils: the effects of soil properties. Journal of Soils and Sediments, 2015, 15(4): 926–936
https://doi.org/10.1007/s11368-014-1056-4
21 Sun Y, Wei J, Liang P, Huang X. Microbial community analysis in biocathode microbial fuel cells packed with different materials. AMB Express, 2012, 2(1): 21
https://doi.org/10.1186/2191-0855-2-21 pmid: 22458430
22 Zhang G, Wang K, Zhao Q, Jiao Y, Lee D J. Effect of cathode types on long-term performance and anode bacterial communities in microbial fuel cells. Bioresource Technology, 2012, 118: 249–256
https://doi.org/10.1016/j.biortech.2012.05.015 pmid: 22705531
23 Jiang J, Zhao Q, Zhang J, Zhang G, Lee D J. Electricity generation from bio-treatment of sewage sludge with microbial fuel cell. Bioresource Technology, 2009, 100(23): 5808–5812
https://doi.org/10.1016/j.biortech.2009.06.076 pmid: 19615894
24 Karthikeyan R, Selvam A, Cheng K Y, Wong J W. Influence of ionic conductivity in bioelectricity production from saline domestic sewage sludge in microbial fuel cells. Bioresource Technology, 2016, 200: 845–852
https://doi.org/10.1016/j.biortech.2015.10.101 pmid: 26590759
25 Behera M, Ghangrekar M M. Performance of microbial fuel cell in response to change in sludge loading rate at different anodic feed pH. Bioresource Technology, 2009, 100(21): 5114–5121
https://doi.org/10.1016/j.biortech.2009.05.020 pmid: 19539466
26 Martin E, Savadogo O, Guiot S R, Tartakovsky B. The influence of operational conditions on the performance of a microbial fuel cell seeded with mesophilic anaerobic sludge. Biochemical Engineering Journal, 2010, 51(3): 132–139
https://doi.org/10.1016/j.bej.2010.06.006
27 Zhang Y, Olias L G, Kongjan P, Angelidaki I. Submersible microbial fuel cell for electricity production from sewage sludge. Water Science and Technology, 2011, 64(1): 50–55
https://doi.org/10.2166/wst.2011.678 pmid: 22053457
28 Oh S E, Yoon J Y, Gurung A, Kim D J. Evaluation of electricity generation from ultrasonic and heat/alkaline pretreatment of different sludge types using microbial fuel cells. Bioresource Technology, 2014, 165: 21–26
https://doi.org/10.1016/j.biortech.2014.03.018 pmid: 24684816
29 Wang Z, Ma J, Xu Y, Yu H, Wu Z. Power production from different types of sewage sludge using microbial fuel cells: a comparative study with energetic and microbiological perspectives. Journal of Power Sources, 2013, 235: 280–288
https://doi.org/10.1016/j.jpowsour.2013.02.033
30 Jiang J Q, Zhao Q L, Wang K, Wei L L, Zhang G D, Zhang J N. Effect of ultrasonic and alkaline pretreatment on sludge degradation and electricity generation by microbial fuel cell. Water Science and Technology, 2010, 61(11): 2915–2921
https://doi.org/10.2166/wst.2010.192 pmid: 20489265
31 Yusoff M Z M, Hu A, Feng C, Maeda T, Shirai Y, Hassan M A, Yu C P. Influence of pretreated activated sludge for electricity generation in microbial fuel cell application. Bioresource Technology, 2013, 145: 90–96
https://doi.org/10.1016/j.biortech.2013.03.003 pmid: 23566463
32 Jayashree C, Janshi G, Yeom I T, Kumar S A, Banu J R. Effect of low temperature thermo-chemical pretreatment of dairy waste activated sludge on the performance of microbial fuel cell. International Journal of Electrochemical Science, 2014, 9: 5732–5742
33 Yang F, Ren L, Pu Y, Logan B E. Electricity generation from fermented primary sludge using single-chamber air-cathode microbial fuel cells. Bioresource Technology, 2013, 128: 784–787
https://doi.org/10.1016/j.biortech.2012.10.021 pmid: 23186679
34 Chen Y, Jiang J, Zhao Q. Freezing/thawing effect on sewage sludge degradation and electricity generation in microbial fuel cell. Water Science and Technology, 2014, 70(3): 444–449
https://doi.org/10.2166/wst.2014.226 pmid: 25098873
35 Xiao B, Yang F, Liu J. Enhancing simultaneous electricity production and reduction of sewage sludge in two-chamber MFC by aerobic sludge digestion and sludge pretreatments. Journal of Hazardous Materials, 2011, 189(1-2): 444–449
https://doi.org/10.1016/j.jhazmat.2011.02.058 pmid: 21398029
36 Fischer F, Bastian C, Happe M, Mabillard E, Schmidt N. Microbial fuel cell enables phosphate recovery from digested sewage sludge as struvite. Bioresource Technology, 2011, 102(10): 5824–5830
https://doi.org/10.1016/j.biortech.2011.02.089 pmid: 21411312
37 Happe M, Sugnaux M, Cachelin C P, Stauffer M, Zufferey G, Kahoun T, Salamin P A, Egli T, Comninellis C, Grogg A F, Fischer F. Scale-up of phosphate remobilization from sewage sludge in a microbial fuel cell. Bioresource Technology, 2016, 200: 435–443
https://doi.org/10.1016/j.biortech.2015.10.057 pmid: 26519694
38 Ghadge A N, Jadhav D A, Pradhan H, Ghangrekar M M. Enhancing waste activated sludge digestion and power production using hypochlorite as catholyte in clayware microbial fuel cell. Bioresource Technology, 2015, 182: 225–231
https://doi.org/10.1016/j.biortech.2015.02.004 pmid: 25700342
39 Jiang J, Zhao Q, Wei L, Wang K, Lee D J. Degradation and characteristic changes of organic matter in sewage sludge using microbial fuel cell with ultrasound pretreatment. Bioresource Technology, 2011, 102(1 1SI): 272–277
https://doi.org/10.1016/j.biortech.2010.04.066 pmid: 20483596
40 Jiang J, Zhao Q, Wei L, Wang K. Extracellular biological organic matters in microbial fuel cell using sewage sludge as fuel. Water Research, 2010, 44(7): 2163–2170
https://doi.org/10.1016/j.watres.2009.12.033 pmid: 20096436
41 Zhao G, Ma F, Wei L, Chua H, Chang C C, Zhang X J. Electricity generation from cattle dung using microbial fuel cell technology during anaerobic acidogenesis and the development of microbial populations. Waste Management (New York, N.Y.), 2012, 32(9): 1651–1658
https://doi.org/10.1016/j.wasman.2012.04.013 pmid: 22595839
42 Xue S, Zhao Q, Wei L, Jia T. Trihalomethane formation potential of organic fractions in secondary effluent. Journal of Environmental Sciences (China), 2008, 20(5): 520–527
https://doi.org/10.1016/S1001-0742(08)62089-6 pmid: 18575103
43 Li H, Tian Y, Zuo W, Zhang J, Pan X, Li L, Su X. Electricity generation from food wastes and characteristics of organic matters in microbial fuel cell. Bioresource Technology, 2016, 205: 104–110
https://doi.org/10.1016/j.biortech.2016.01.042 pmid: 26820923
44 Di Palma L, Geri A, Maccioni M, Paoletti C, Petroni G, Di Battista A, Varrone C. Experimental Assessment of a Process Including Microbial Fuel Cell for Nitrogen Removal from Digestate of Anaerobic Treatment of Livestock Manure and Agricultural Wastes. Chemical Engineering Transactions: AIDIC, 2015, 43: 2239–2244
45 Zheng X, Nirmalakhandan N. Cattle wastes as substrates for bioelectricity production via microbial fuel cells. Biotechnology Letters, 2010, 32(12): 1809–1814
https://doi.org/10.1007/s10529-010-0360-3 pmid: 20661625
46 Lee Y, Nirmalakhandan N. Electricity production in membrane-less microbial fuel cell fed with livestock organic solid waste. Bioresource Technology, 2011, 102(10): 5831–5835
https://doi.org/10.1016/j.biortech.2011.02.090 pmid: 21420293
47 Mohan S V, Chandrasekhar K. Solid phase microbial fuel cell (SMFC) for harnessing bioelectricity from composite food waste fermentation: influence of electrode assembly and buffering capacity. Bioresource Technology, 2011, 102(14): 7077–7085
https://doi.org/10.1016/j.biortech.2011.04.039 pmid: 21570830
48 Cercado-Quezada B, Delia M, Bergel A. Treatment of dairy wastes with a microbial anode formed from garden compost. Journal of Applied Electrochemistry, 2010, 40(2): 225–232
https://doi.org/10.1007/s10800-009-0001-5
49 Blanchet E, Desmond E, Erable B, Bridier A, Bouchez T, Bergel A. Comparison of synthetic medium and wastewater used as dilution medium to design scalable microbial anodes: Application to food waste treatment. Bioresource Technology, 2015, 185: 106–115
https://doi.org/10.1016/j.biortech.2015.02.097 pmid: 25765989
50 Zhang G, Zhao Q, Jiao Y, Lee D J. Long-term operation of manure-microbial fuel cell. Bioresource Technology, 2015, 180: 365–369
https://doi.org/10.1016/j.biortech.2015.01.002 pmid: 25603729
51 Bridier A, Desmond-Le Quemener E, Bureau C, Champigneux P, Renvoise L, Audic J M, Blanchet E, Bergel A, Bouchez T. Successive bioanode regenerations to maintain efficient current production from biowaste. Bioelectrochemistry (Amsterdam, Netherlands), 2015, 106(Pt A): 133–140
https://doi.org/10.1016/j.bioelechem.2015.05.007 pmid: 26026839
52 Lakaniemi A, Tuovinen O H, Puhakka J A. Production of electricity and butanol from microalgal biomass in microbial fuel cells. BioEnergy Research, 2012, 5(2): 481–491
https://doi.org/10.1007/s12155-012-9186-2
53 Wang H, Lu L, Liu D, Cui F, Wang P. Characteristic changes in algal organic matter derived from Microcystis aeruginosa in microbial fuel cells. Bioresource Technology, 2015, 195: 25–30
https://doi.org/10.1016/j.biortech.2015.06.014 pmid: 26081162
54 Wang H, Lu L, Cui F, Liu D, Zhao Z, Xu Y. Simultaneous bioelectrochemical degradation of algae sludge and energy recovery in microbial fuel cells. RSC Advances, 2012, 2(18): 7228–7234
https://doi.org/10.1039/c2ra20631e
55 Zhao J, Li X, Ren Y, Wang X, Jian C. Electricity generation from Taihu Lake cyanobacteria by sediment microbial fuel cells. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2012, 87(11): 1567–1573
https://doi.org/10.1002/jctb.3794
56 Reimers C E, Girguis P, Stecher H A I, Tender L M, Ryckelynck N, Whaling P. Microbial fuel cell energy from an ocean cold seep. Geobiology, 2006, 4(2): 123–136
https://doi.org/10.1111/j.1472-4669.2006.00071.x
57 Zhang Y, Angelidaki I. Self-stacked submersible microbial fuel cell (SSMFC) for improved remote power generation from lake sediments. Biosensors & Bioelectronics, 2012, 35(1): 265–270
https://doi.org/10.1016/j.bios.2012.02.059 pmid: 22436687
58 Zhao S, Li Y, Yin H, Liu Z, Luan E, Zhao F, Tang Z, Liu S. Three-dimensional graphene/Pt nanoparticle composites as freestanding anode for enhancing performance of microbial fuel cells. Science Advances, 2015, 1(10): e1500372
https://doi.org/10.1126/sciadv.1500372 pmid: 26702430
59 Hong S W, Kim H S, Chung T H. Alteration of sediment organic matter in sediment microbial fuel cells. Environmental Pollution, 2010, 158(1): 185–191
https://doi.org/10.1016/j.envpol.2009.07.022 pmid: 19665268
60 Morris J M, Jin S. Enhanced biodegradation of hydrocarbon-contaminated sediments using microbial fuel cells. Journal of Hazardous Materials, 2012, 213-214: 474–477
https://doi.org/10.1016/j.jhazmat.2012.02.029 pmid: 22402341
61 Song T S, Jiang H L. Effects of sediment pretreatment on the performance of sediment microbial fuel cells. Bioresource Technology, 2011, 102(22): 10465–10470
https://doi.org/10.1016/j.biortech.2011.08.129 pmid: 21967718
62 Rezaei F, Richard T L, Brennan R A, Logan B E. Substrate-enhanced microbial fuel cells for improved remote power generation from sediment-based systems. Environmental Science & Technology, 2007, 41(11): 4053–4058
https://doi.org/10.1021/es070426e pmid: 17612189
63 Sajana T K, Ghangrekar M M, Mitra A. Effect of presence of cellulose in the freshwater sediment on the performance of sediment microbial fuel cell. Bioresource Technology, 2014, 155: 84–90
https://doi.org/10.1016/j.biortech.2013.12.094 pmid: 24434698
64 Xia C, Xu M, Liu J, Guo J, Yang Y. Sediment microbial fuel cell prefers to degrade organic chemicals with higher polarity. Bioresource Technology, 2015, 190: 420–423
https://doi.org/10.1016/j.biortech.2015.04.072 pmid: 25936443
65 Xu X, Zhao Q L, Wu M S. Improved biodegradation of total organic carbon and polychlorinated biphenyls for electricity generation by sediment microbial fuel cell and surfactant addition. RSC Advances, 2015, 5(77): 62534–62538
https://doi.org/10.1039/C5RA12817J
66 Jeon H J, Seo K W, Lee S H, Yang Y H, Kumaran R S, Kim S, Hong S W, Choi Y S, Kim H J. Production of algal biomass (Chlorella vulgaris) using sediment microbial fuel cells. Bioresource Technology, 2012, 109: 308–311 doi:10.1016/j.biortech.2011.06.039
pmid: 21724390
67 Zhou Y L, Jiang H L, Cai H Y. To prevent the occurrence of black water agglomerate through delaying decomposition of cyanobacterial bloom biomass by sediment microbial fuel cell. Journal of Hazardous Materials, 2015, 287: 7–15
https://doi.org/10.1016/j.jhazmat.2015.01.036 pmid: 25621829
68 Wolińska A, Stępniewska Z, Bielecka A, Ciepielski J. Bioelectricity production from soil using microbial fuel cells. Applied Biochemistry and Biotechnology, 2014, 173(8): 2287–2296
https://doi.org/10.1007/s12010-014-1034-8 pmid: 24980749
69 Deng H, Wu Y, Zhang F, Huang Z, Chen Z, Xu H, Zhao F. Factors affecting the performance of single-chamber soil microbial fuel cells for power generation. Pedosphere, 2014, 24(3): 330–338
https://doi.org/10.1016/S1002-0160(14)60019-9
70 Domínguez-Garay A, Berná A, Ortiz-Bernad I, Esteve-Núñez A. Silica colloid formation enhances performance of sediment microbial fuel cells in a low conductivity soil. Environmental Science & Technology, 2013, 47(4): 2117–2122
https://doi.org/10.1021/es303436x pmid: 23327463
71 Logrono W, Ramirez G, Recalde C, Echeverria M, Cunachib A. Bioelectricity generation from vegetables and fruits wastes by using single chamber microbial fuel cells with high Andean soils. Clean. Energy Procedia: Elsevier, 2015, 75: 2009–2014
https://doi.org/10.1016/j.egypro.2015.07.259
72 Doherty L, Zhao Y, Zhao X, Hu Y, Hao X, Xu L, Liu R. A review of a recently emerged technology: Constructed wetland—Microbial fuel cells. Water Research, 2015, 85: 38–45
https://doi.org/10.1016/j.watres.2015.08.016 pmid: 26295937
73 Zhao Y, Collum S, Phelan M, Goodbody T, Doherty L, Hu Y. Preliminary investigation of constructed wetland incorporating microbial fuel cell: batch and continuous flow trials. Chemical Engineering Journal, 2013, 229: 364–370
https://doi.org/10.1016/j.cej.2013.06.023
74 Doherty L, Zhao Y, Zhao X, Wang W. Nutrient and organics removal from swine slurry with simultaneous electricity generation in an alum sludge-based constructed wetland Incorporating microbial fuel cell technology. Chemical Engineering Journal, 2015, 266: 74–81
https://doi.org/10.1016/j.cej.2014.12.063
75 Doherty L, Zhao Y. Operating a two-stage microbial fuel cell-constructed wetland for fuller wastewater treatment and more efficient electricity generation. Water Science and Technology, 2015, 72(3): 421–428
https://doi.org/10.2166/wst.2015.212 pmid: 26204074
76 Corbella C, Guivernau M, Viñas M, Puigagut J. Operational, design and microbial aspects related to power production with microbial fuel cells implemented in constructed wetlands. Water Research, 2015, 84: 232–242
https://doi.org/10.1016/j.watres.2015.06.005 pmid: 26253894
77 Kouzuma A, Kaku N, Watanabe K. Microbial electricity generation in rice paddy fields: recent advances and perspectives in rhizosphere microbial fuel cells. Applied Microbiology and Biotechnology, 2014, 98(23): 9521–9526
https://doi.org/10.1007/s00253-014-6138-0 pmid: 25394406
78 Timmers R A, Strik D P B T, Hamelers H V M, Buisman C J N. Electricity generation by a novel design tubular plant microbial fuel cell. Biomass and Bioenergy, 2013, 51: 60–67
https://doi.org/10.1016/j.biombioe.2013.01.002
79 Timmers R A, Strik D P B T, Hamelers H V M, Buisman C J N. Long-term performance of a plant microbial fuel cell with Spartina anglica. Applied Microbiology and Biotechnology, 2010, 86(3): 973–981
https://doi.org/10.1007/s00253-010-2440-7 pmid: 20127236
80 Helder M, Strik D P B T, Hamelers H V M, Kuijken R C P, Buisman C J N. New plant-growth medium for increased power output of the Plant-Microbial Fuel Cell. Bioresource Technology, 2012, 104: 417–423
https://doi.org/10.1016/j.biortech.2011.11.005 pmid: 22133604
81 Moqsud M A, Yoshitake J, Bushra Q S, Hyodo M, Omine K, Strik D. Compost in plant microbial fuel cell for bioelectricity generation. Waste Management (New York, N.Y.), 2015, 36: 63–69
https://doi.org/10.1016/j.wasman.2014.11.004 pmid: 25443096
82 De Schamphelaire L, Van den Bossche L, Dang H S, Höfte M, Boon N, Rabaey K, Verstraete W. Microbial fuel cells generating electricity from rhizodeposits of rice plants. Environmental Science & Technology, 2008, 42(8): 3053–3058
https://doi.org/10.1021/es071938w pmid: 18497165
83 Zhou Y, Wu H, Yan Z, Cai H, Jiang H. The enhanced survival of submerged macrophyte Potamogeton malaianus by sediment microbial fuel cells. Ecological Engineering, 2016, 87: 254–262
https://doi.org/10.1016/j.ecoleng.2015.12.016
84 van Loosdrecht M C M, Brdjanovic D. Anticipating the next century of wastewater treatment. Science, 2014, 344(6191): 1452–1453
https://doi.org/10.1126/science.1255183 pmid: 24970066
85 Liu X W, Wang Y P, Huang Y X, Sun X F, Sheng G P, Zeng R J, Li F, Dong F, Wang S G, Tong Z H, Yu H Q. Integration of a microbial fuel cell with activated sludge process for energy-saving wastewater treatment: taking a sequencing batch reactor as an example. Biotechnology and Bioengineering, 2011, 108(6): 1260–1267
https://doi.org/10.1002/bit.23056 pmid: 21290383
86 Gajaraj S, Hu Z. Integration of microbial fuel cell techniques into activated sludge wastewater treatment processes to improve nitrogen removal and reduce sludge production. Chemosphere, 2014, 117: 151–157
https://doi.org/10.1016/j.chemosphere.2014.06.013 pmid: 25014565
87 Yoshizawa T, Miyahara M, Kouzuma A, Watanabe K. Conversion of activated-sludge reactors to microbial fuel cells for wastewater treatment coupled to electricity generation. Journal of Bioscience and Bioengineering, 2014, 118(5): 533–539
https://doi.org/10.1016/j.jbiosc.2014.04.009 pmid: 24856588
88 Xie B, Dong W, Liu B, Liu H. Enhancement of pollutants removal from real sewage by embedding microbial fuel cell in anaerobic-anoxic-oxic wastewater treatment process. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2014, 89(3): 448–454
https://doi.org/10.1002/jctb.4138
89 Gong D, Qin G. Treatment of oilfield wastewater using a microbial fuel cell integrated with an up-flow anaerobic sludge blanket reactor. Desalination and Water Treatment, 2012, 49(1–3): 272–280
https://doi.org/10.1080/19443994.2012.719336
90 Yang P, Chen T, Li H. Aerobic granular sludge stabilization in biocathode chamber of newly constructed continue flow microbial fuel cell system treating synthetic and pharmaceutical wastewater. Desalination and Water Treatment, 2016, 57(8): 3414–3423
https://doi.org/10.1080/19443994.2014.985726
91 Li Z, Lu H, Ren L, He L. Experimental and modeling approaches for food waste composting: a review. Chemosphere, 2013, 93(7): 1247–1257
https://doi.org/10.1016/j.chemosphere.2013.06.064 pmid: 23876506
92 Hao R, Lu A, Wang G. Crude-oil-degrading thermophilic bacterium isolated from an oil field. Canadian Journal of Microbiology, 2004, 50(3): 175–182
https://doi.org/10.1139/w03-116 pmid: 15105884
93 Lee I B, Kim P J, Chang K W. Evaluation of stability of compost prepared with Korean food wastes. Soil Science and Plant Nutrition, 2002, 48(1): 1–8
https://doi.org/10.1080/00380768.2002.10409164
94 Yu H, Jiang J, Zhao Q, Wang K, Zhang Y, Zheng Z, Hao X. Bioelectrochemically-assisted anaerobic composting process enhancing compost maturity of dewatered sludge with synchronous electricity generation. Bioresource Technology, 2015, 193: 1–7
https://doi.org/10.1016/j.biortech.2015.06.057 pmid: 26115526
95 Wang C, Lee Y, Liao F. Effect of composting parameters on the power performance of solid microbial fuel cells. Sustainability, 2015, 7(9): 12634–12643
https://doi.org/10.3390/su70912634
96 Parot S, Delia M, Bergel A. Acetate to enhance electrochemical activity of biofilms from garden compost. Electrochimica Acta, 2008, 53(6): 2737–2742
https://doi.org/10.1016/j.electacta.2007.10.059
97 Wang C, Liao F, Liu K. Electrical analysis of compost solid phase microbial fuel cell. International Journal of Hydrogen Energy, 2013, 38(25): 11124–11130
https://doi.org/10.1016/j.ijhydene.2013.02.120
98 Li W W, Yu H Q. Stimulating sediment bioremediation with benthic microbial fuel cells. Biotechnology Advances, 2015, 33(1): 1–12
https://doi.org/10.1016/j.biotechadv.2014.12.011 pmid: 25560929
99 Wang X, Cai Z, Zhou Q, Zhang Z, Chen C. Bioelectrochemical stimulation of petroleum hydrocarbon degradation in saline soil using U-tube microbial fuel cells. Biotechnology and Bioengineering, 2012, 109(2): 426–433
https://doi.org/10.1002/bit.23351 pmid: 22006588
100 Mohan S V, Chandrasekhar K. Self-induced bio-potential and graphite electron accepting conditions enhances petroleum sludge degradation in bio-electrochemical system with simultaneous power generation. Bioresource Technology, 2011, 102(20): 9532–9541
https://doi.org/10.1016/j.biortech.2011.07.038 pmid: 21865036
101 Sherafatmand M, Ng H Y. Using sediment microbial fuel cells (SMFCs) for bioremediation of polycyclic aromatic hydrocarbons (PAHs). Bioresource Technology, 2015, 195: 122–130
https://doi.org/10.1016/j.biortech.2015.06.002 pmid: 26081161
102 Huang D, Zhou S, Chen Q, Zhao B, Yuan Y, Zhuang L. Enhanced anaerobic degradation of organic pollutants in a soil microbial fuel cell. Chemical Engineering Journal, 2011, 172(2–3): 647–653
https://doi.org/10.1016/j.cej.2011.06.024
103 Cao X, Song H L, Yu C Y, Li X N. Simultaneous degradation of toxic refractory organic pesticide and bioelectricity generation using a soil microbial fuel cell. Bioresource Technology, 2015, 189: 87–93
https://doi.org/10.1016/j.biortech.2015.03.148 pmid: 25864035
104 Wang C, Deng H, Zhao F. The remediation of Chromium (VI)—Contaminated soils using microbial fuel cells. Soil & Sediment Contamination, 2016, 25(1): 1–12 doi:10.1080/15320383.2016.1085833
105 Ryu E Y, Kim M, Lee S J. Characterization of microbial fuel cells enriched using Cr(VI)-containing sludge. Journal of Microbiology and Biotechnology, 2011, 21(2): 187–191
https://doi.org/10.4014/jmb.1008.08019 pmid: 21364302
106 Li X, Wang X, Ren Z J, Zhang Y, Li N, Zhou Q. Sand amendment enhances bioelectrochemical remediation of petroleum hydrocarbon contaminated soil. Chemosphere, 2015, 141: 62–70
https://doi.org/10.1016/j.chemosphere.2015.06.025 pmid: 26135976
107 Zhang Y, Wang X, Li X, Cheng L, Wan L, Zhou Q. Horizontal arrangement of anodes of microbial fuel cells enhances remediation of petroleum hydrocarbon-contaminated soil. Environmental Science and Pollution Research International, 2015, 22(3): 2335–2341
https://doi.org/10.1007/s11356-014-3539-7 pmid: 25189807
108 Habibul N, Hu Y, Wang Y K, Chen W, Yu H Q, Sheng G P. Bioelectrochemical Chromium(VI) removal in plant-microbial fuel cells. Environmental Science & Technology, 2016, 50(7): 3882–3889
https://doi.org/10.1021/acs.est.5b06376 pmid: 26962848
109 Yang H, Zhou M, Liu M, Yang W, Gu T. Microbial fuel cells for biosensor applications. Biotechnology Letters, 2015, 37(12): 2357–2364
https://doi.org/10.1007/s10529-015-1929-7 pmid: 26272393
110 Sun J Z, Peter Kingori G, Si R W, Zhai D D, Liao Z H, Sun D Z, Zheng T, Yong Y C. Microbial fuel cell-based biosensors for environmental monitoring: a review. Water Science and Technology, 2015, 71(6): 801–809
https://doi.org/10.2166/wst.2015.035 pmid: 25812087
111 `Khater D Z, El-Khatib K M, Hazaa M M, Hassan R Y A. Development of bioelectrochemical system for monitoring the biodegradation performance of activated sludge. Applied Biochemistry and Biotechnology, 2015, 175(7): 3519–3530
https://doi.org/10.1007/s12010-015-1522-5 pmid: 25637512
112 Liu Z, Liu J, Li B, Zhang Y, Xing X. Focusing on the process diagnosis of anaerobic fermentation by a novel sensor system combining microbial fuel cell, gas flow meter and pH meter. International Journal of Hydrogen Energy, 2014, 39(25): 13658–13664
https://doi.org/10.1016/j.ijhydene.2014.04.076
113 Ma J, Wang Z, Zhu C, Xu Y, Wu Z. Electrogenesis reduces the combustion efficiency of sewage sludge. Applied Energy, 2014, 114(SI): 283–289
114 Touch N, Hibino T, Nagatsu Y, Tachiuchi K. Characteristics of electricity generation and biodegradation in tidal river sludge-used microbial fuel cells. Bioresource Technology, 2014, 158: 225–230
https://doi.org/10.1016/j.biortech.2014.02.035 pmid: 24607458
115 Jiang J Q, Zhao Q L, Wang K, Wei L L, Zhang G D, Zhang J N. Effect of ultrasonic and alkaline pretreatment on sludge degradation and electricity generation by microbial fuel cell. Water Science and Technology, 2010, 61(11): 2915–2921
https://doi.org/10.2166/wst.2010.192 pmid: 20489265
116 Sui P, Nishimura F, Nagare H, Hidaka T, Nakagawa Y, Tsuno H. Behavior of inorganic elements during sludge ozonation and their effects on sludge solubilization. Water Research, 2011, 45(5): 2029–2037
https://doi.org/10.1016/j.watres.2010.12.011 pmid: 21215984
117 Gardoni D, Ficara E, Fornarelli R, Parolini M, Canziani R. Long-term effects of the ozonation of the sludge recycling stream on excess sludge reduction and biomass activity at full-scale. Water Science and Technology, 2011, 63(9): 2032–2038
https://doi.org/10.2166/wst.2011.456 pmid: 21902046
118 Chen W, Jia Y Y, Zheng W, Li X M, Zhou J, Yang Q, Luo K. Influence of extracellular polymeric substance on enzyme hydrolysis of sludge under anaerobic condition. Environmental Sciences, 2011, 32(8): 2334–2339 (in Chinese)
pmid: 22619959
119 Sa Da Rocha O R, Dantas R F, Menezes B, Duarte M M. Sludge treatment by photocatalysis applying black and white light. Chemical Engineering Journal, 2010, 157(1): 80–85
https://doi.org/10.1016/j.cej.2009.10.050
120 Wang L, Ma J, Liu T Z, Li C M, Zhang H Y. Efficacy of ferrate oxidation and hydrolyze remnant activated sludge. Environmental Sciences, 2011, 32(7): 2019–2022 (in Chinese)
pmid: 21922824
121 Yu Y, Chan W I, Liao P H, Lo K V. Disinfection and solubilization of sewage sludge using the microwave enhanced advanced oxidation process. Journal of Hazardous Materials, 2010, 181(1-3): 1143–1147
https://doi.org/10.1016/j.jhazmat.2010.05.134 pmid: 20591564
122 Zhang Y, Angelidaki I. Innovative self-powered submersible microbial electrolysis cell (SMEC) for biohydrogen production from anaerobic reactors. Water Research, 2012, 46(8): 2727–2736
https://doi.org/10.1016/j.watres.2012.02.038 pmid: 22402271
123 Zhang Y, Angelidaki I. Microbial electrolysis cells turning to be versatile technology: recent advances and future challenges. Water Research, 2014, 56: 11–25
https://doi.org/10.1016/j.watres.2014.02.031 pmid: 24631941
124 Xiao B, Han Y, Liu X, Liu J. Relationship of methane and electricity production in two-chamber microbial fuel cell using sewage sludge as substrate. International Journal of Hydrogen Energy, 2014, 39(29): 16419–16425
https://doi.org/10.1016/j.ijhydene.2014.08.024
125 Gao C, Wang A, Wu W M, Yin Y, Zhao Y G. Enrichment of anodic biofilm inoculated with anaerobic or aerobic sludge in single chambered air-cathode microbial fuel cells. Bioresource Technology, 2014, 167: 124–132
https://doi.org/10.1016/j.biortech.2014.05.120 pmid: 24973773
126 Yoshizawa T, Miyahara M, Kouzuma A, Watanabe K. Conversion of activated-sludge reactors to microbial fuel cells for wastewater treatment coupled to electricity generation. Journal of Bioscience and Bioengineering, 2014, 118(5): 533–539
https://doi.org/10.1016/j.jbiosc.2014.04.009 pmid: 24856588
127 Li X M, Cheng K Y, Selvam A, Wong J W C. Bioelectricity production from acidic food waste leachate using microbial fuel cells: Effect of microbial inocula. Process Biochemistry, 2013, 48(2): 283–288
https://doi.org/10.1016/j.procbio.2012.10.001
128 Jia J, Tang Y, Liu B, Wu D, Ren N, Xing D. Electricity generation from food wastes and microbial community structure in microbial fuel cells. Bioresource Technology, 2013, 144: 94–99
https://doi.org/10.1016/j.biortech.2013.06.072 pmid: 23859985
129 Zhang G, Zhao Q, Jiao Y, Wang K, Lee D J, Ren N. Biocathode microbial fuel cell for efficient electricity recovery from dairy manure. Biosensors & Bioelectronics, 2012, 31(1): 537–543
https://doi.org/10.1016/j.bios.2011.11.036 pmid: 22169813
130 Vilajeliu-Pons A, Puig S, Pous N, Salcedo-Dávila I, Bañeras L, Balaguer M D, Colprim J. Microbiome characterization of MFCs used for the treatment of swine manure. Journal of Hazardous Materials, 2015, 288: 60–68
https://doi.org/10.1016/j.jhazmat.2015.02.014 pmid: 25698567
131 Miran W, Nawaz M, Jang J, Lee D S. Conversion of orange peel waste biomass to bioelectricity using a mediator-less microbial fuel cell. Science of the Total Environment, 2016, 547: 197–205
https://doi.org/10.1016/j.scitotenv.2016.01.004 pmid: 26780146
132 Lakaniemi A M, Tuovinen O H, Puhakka J A. Anaerobic conversion of microalgal biomass to sustainable energy carriers: a review. Bioresource Technology, 2013, 135: 222–231
https://doi.org/10.1016/j.biortech.2012.08.096 pmid: 23021960
[1] Karla Ilić Đurđić, Raluca Ostafe, Olivera Prodanović, Aleksandra Đurđević Đelmaš, Nikolina Popović, Rainer Fischer, Stefan Schillberg, Radivoje Prodanović. Improved degradation of azo dyes by lignin peroxidase following mutagenesis at two sites near the catalytic pocket and the application of peroxidase-coated yeast cell walls[J]. Front. Environ. Sci. Eng., 2021, 15(2): 19-.
[2] Quan Yuan, Hui Gong, Hao Xi, Kaijun Wang. Aerobic granular sludge formation based on substrate availability: Effects of flow pattern and fermentation pretreatment[J]. Front. Environ. Sci. Eng., 2020, 14(3): 49-.
[3] Tiancui Li, Yaocheng Fan, Deshou Cun, Yanran Dai, Wei Liang. Dibutyl phthalate adsorption characteristics using three common substrates in aqueous solutions[J]. Front. Environ. Sci. Eng., 2020, 14(2): 26-.
[4] Xingguo Guo, Qiuying Wang, Ting Xu, Kajia Wei, Mengxi Yin, Peng Liang, Xia Huang, Xiaoyuan Zhang. One-step ball milling-prepared nano Fe2O3 and nitrogen-doped graphene with high oxygen reduction activity and its application in microbial fuel cells[J]. Front. Environ. Sci. Eng., 2020, 14(2): 30-.
[5] Ling Huang, Syed Bilal Shah, Haiyang Hu, Ping Xu, Hongzhi Tang. Pollution and biodegradation of hexabromocyclododecanes: A review[J]. Front. Environ. Sci. Eng., 2020, 14(1): 11-.
[6] Xiaoxue Mei, Heming Wang, Dianxun Hou, Fernanda Leite Lobo, Defeng Xing, Zhiyong Jason Ren. Shipboard bilge water treatment by electrocoagulation powered by microbial fuel cells[J]. Front. Environ. Sci. Eng., 2019, 13(4): 53-.
[7] Yuqin Lu, Xiao Bian, Hailong Wang, Xinhua Wang, Yueping Ren, Xiufen Li. Simultaneously recovering electricity and water from wastewater by osmotic microbial fuel cells: Performance and membrane fouling[J]. Front. Environ. Sci. Eng., 2018, 12(4): 5-.
[8] Lifeng Cao, Weihua Sun, Yuting Zhang, Shimin Feng, Jinyun Dong, Yongming Zhang, Bruce E. Rittmann. Competition for electrons between reductive dechlorination and denitrification[J]. Front. Environ. Sci. Eng., 2017, 11(6): 14-.
[9] Ying Xu, Ning-Yi Zhou. Microbial remediation of aromatics-contaminated soil[J]. Front. Environ. Sci. Eng., 2017, 11(2): 1-.
[10] Yong XIAO,Yue ZHENG,Song WU,Zhao-Hui YANG,Feng ZHAO. Nitrogen recovery from wastewater using microbial fuel cells[J]. Front. Environ. Sci. Eng., 2016, 10(1): 185-191.
[11] Jingya SHEN,Yuliang SUN,Liping HUANG,Jinhui YANG. Microbial electrolysis cells with biocathodes and driven by microbial fuel cells for simultaneous enhanced Co(II) and Cu(II) removal[J]. Front. Environ. Sci. Eng., 2015, 9(6): 1084-1095.
[12] Wendi XU,Shuhai GUO,Gang LI,Fengmei LI,Bo WU,Xinhong GAN. Combination of the direct electro-Fenton process and bioremediation for the treatment of pyrene-contaminated soil in a slurry reactor[J]. Front. Environ. Sci. Eng., 2015, 9(6): 1096-1107.
[13] Mary Beth LEIGH,Wei-Min WU,Erick CARDENAS,Ondrej UHLIK,Sue CARROLL,Terry GENTRY,Terence L. MARSH,Jizhong ZHOU,Philip JARDINE,Craig S. CRIDDLE,James M. TIEDJE. Microbial communities biostimulated by ethanol during uranium (VI) bioremediation in contaminated sediment as shown by stable isotope probing[J]. Front. Environ. Sci. Eng., 2015, 9(3): 453-464.
[14] Sanath KONDAVEETI,Kwang Soon CHOI,Ramesh KAKARLA,Booki MIN. Microalgae Scenedesmus obliquus as renewable biomass feedstock for electricity generation in microbial fuel cells (MFCs)[J]. Front.Environ.Sci.Eng., 2014, 8(5): 784-791.
[15] Jun QIAO, Chengdong ZHANG, Shuiming LUO, Wei CHEN. Bioremediation of highly contaminated oilfield soil: Bioaugmentation for enhancing aromatic compounds removal[J]. Front Envir Sci Eng, 2014, 8(2): 293-304.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed