Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2017, Vol. 11 Issue (3) : 5    https://doi.org/10.1007/s11783-017-0924-8
RESEARCH ARTICLE
The speciation, leachability and bioaccessibility of Cu and Zn in animal manure-derived biochar: effect of feedstock and pyrolysis temperature
Qi Lin1,2(), Xin Xu1, Lihua, Wang1, Qian Chen1, Jing Fang1, Xiaodong Shen3, Liping Lou1,2, Guangming Tian1,2()
1. Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
2. Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou 310058, China
3. Institute of Hangzhou Environmental Science, Hangzhou 310014, China
 Download: PDF(648 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Pyrolysis altered the speciation and lability of Cu/Zn in animal manure.

The predominant species of Cu in two kinds of biochars differed with temperatures.

Temperatures didn’t change the predominant species of Zn in manures and biochars .

The bioaccessibility of Cu/Zn in biochars decreased with pyrolysis temperatures.

The leaching of Cu/Zn with SPLP decreased with pyrolysis temperatures.

Biochars derived from animal manures may accumulate potentially toxic metals and cause a potential risk to ecosystem. The synchrotron-based X-ray spectroscopy, sequential fractionation schemes, bioaccessibility extraction and leaching procedure were performed on poultry and swine manure-derived biochars (denoted PB and SB, respectively) to evaluate the variance of speciation and activity of Cu and Zn as affected by the feedstock and pyrolysis temperature. The results showed that Cu speciation was dependent on the feedstock with Cu-citrate-like in swine manure and species resembling Cu-glutathione and CuO in poultry manure. Pyrolyzed products, however, had similar Cu speciation mainly with species resembling Cu-citrate, CuO and CuS/Cu2S. Organic bound Zn and Zn3(PO4)2-like species were dominant in both feedstock and biochars. Both Cu and Zn leaching with synthetic precipitation leaching procedure (SPLP) and toxicity characteristic leaching procedure (TCLP) decreased greatly with the rise of pyrolysis temperature, which were consistent with the sequential extraction results that pyrolysis converted Cu and Zn into less labile phases such as organic/sulfide and residual fractions. The potential bioaccessibility of Zn decreased for both the PB and SB, closely depending on the content of non-residual Zn. The bioaccessibility of Cu, however, increased for the SB prepared at 300°C–700°C, probably due to the increased proportion of CuO. Concerning the results of sequential fractionation schemes, bioaccessibility extraction and leaching procedure, pyrolysis at 500°C was suggested as means of reducing Cu/Zn lability and poultry manure was more suitable for pyrolysis treatment.

Keywords Animal manure      Biochar      Metals      Molecular species      Pyrolysis     
Corresponding Author(s): Qi Lin,Guangming Tian   
Issue Date: 13 April 2017
 Cite this article:   
Qi Lin,Xin Xu,Lihua, Wang, et al. The speciation, leachability and bioaccessibility of Cu and Zn in animal manure-derived biochar: effect of feedstock and pyrolysis temperature[J]. Front. Environ. Sci. Eng., 2017, 11(3): 5.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-017-0924-8
https://academic.hep.com.cn/fese/EN/Y2017/V11/I3/5
Fig.1  Elemental maps from XRF line by line scanning on particles from poultry manure (PM), poultry manure derived-biochar under pyrolysis temperature of 500 °C (PB500), swine manure (SM) and swine manure derived-biochar under pyrolysis temperature of 500°C (SB500). S: particle size less than 63 µm; M: particle size ranging from 63–800 µm; L: particle size over 800 µm
Fig.2  Cu K-edge XANES (A) and Zn K-edge XANES (B) for the reference compounds, poultry manure (PM), poultry manure derived-biochar under pyrolysis temperature of 500°C and 700 °C (PB500, PB700), swine manure (SM) and swine manure derived-biochar under pyrolysis temperature of 500°C and 700 °C (SB500, SB700). Solid lines represent experimental spectra, dots corresponding LCF spectra (Table 1 and Table 2)
Cu-citrate/%CuO/%CuS/%Cu2S/%Cu –glutathione/%RSSbdifferencec
PMd048.60051.40.400.63
PB700e43.612.444.1000.190.44
SMf10000001.031.02
SB500g41.511.035.212.200.130.36
SB500<63µm47.4824.919.800.320.56
SB500 63–800µm35.318.940.35.400.250.50
SB500>800µm41.96.140.711.300.110.33
SB700h37.320.442.3000.440.67
Tab.1  Cu speciation in the manure and manure derived-biochars estimated by lest-squares fitting of XANES spectraa
Zn-citrate/%ZnAc2/%ZnS/%Zn3(PO4)2 /%ZnO/%RSSbdifferencec
PMd21.424.0045.09.61.021.01
PB500e036.57.646.79.20.530.73
SMf040.26.747.85.30.190.44
SB500g026.731.834.17.50.260.51
SB500 63–800µm041.26.446.55.80.520.72
SB500>800µm040.512.741.25.60.680.83
Tab.2  Zn speciation in the manure and manure derived-biochars estimated by lest-squares fitting of XANES spectraa
Fig.3  Distribution of Cu and Zn in the five fractions of sequential extractions for manures and biochars prepared under different pyrolysis temperatures. poultry manure (PM), poultry manure derived-biochar under different pyrolysis temperature (PB200, 300, 400, 500, 700), swine manure (SM) and swine manure derived-biochar under different pyrolysis temperature (SB200, 300, 400, 500, 700)
sample IDCu/(mg·L–1)Zn/(mg·L–1)
TCLPSPLPTotalcTCLPSPLPTotal
PMd0.97±0.021.87±0.049.223.31±0.120.75±0.1116.09
PB200e1.19±0.041.36±0.079.401.85±0.070.41±0.0316.59
PB3000.49±0.010.34±0.0112.451.45±0.030.07±0.0222.43
PB4000.08±0.000.03±0.0015.640.49±0.030.01±0.0028.29
PB5000.04±0.000.01±0.0018.550.37±0.020.00±0.0033.22
PB7000.04±0.000.01±0.0019.910.27±0.010.00±0.0031.66
SMf0.69±0.101.04±0.0230.674.56±0.370.90±0.1052.21
SB200g0.56±0.030.83±0.0231.424.91±0.150.85±0.1456.08
SB3000.79±0.040.62±0.0237.755.67±0.230.53±0.0261.78
SB4000.63±0.010.23±0.0144.084.09±0.100.18±0.0172.51
SB5000.34±0.000.02±0.0047.853.49±0.120.03±0.0180.98
SB7000.21±0.040.00±0.0051.624.88±0.450.00±0.0079.95
Tab.3  Concentrations of Cu and Zn measured in TCLPa and SPLPb leachates
Fig.4  The correlation of SPLP and TCLP with solid-phase metal concentration solubilized in the exchangeable, carbonate and Fe/Mn oxides
Fig.5  The bioaccessibility of Cu and Zn in the manures and biochars prepared under different pyrolysis temperatures. Poultry manure (PM), poultry manure derived-biochar under different pyrolysis temperature (PB200, 300, 400, 500, 700), swine manure (SM) and swine manure derived-biochar under different pyrolysis temperature (SB200, 300, 400, 500, 700)
Fig.6  The correlation of Cu and Zn concentrations in the 0.4 mol·L–1 glycine (pH 1.5) extracts with the non-residual (a, b) and reactive metal pools (c, d)
1 Yu X Y, Mu C L, Gu C, Liu C, Liu X J. Impact of woodchip biochar amendment on the sorption and dissipation of pesticide acetamiprid in agricultural soils. Chemosphere, 2011, 85(8): 1284–1289
https://doi.org/10.1016/j.chemosphere.2011.07.031
2 Galinato S P, Yoder J K, Granatstein D. The economic value of biochar in crop production and carbon sequestration. Energy Policy, 2011, 39(10): 6344–6350
https://doi.org/10.1016/j.enpol.2011.07.035
3 Bird M I, Wurster C M, de Paula Silva P H, Bass A M, de Nys R. Algal biochar production and properties. Bioresource Technology, 2011, 102(2): 1886–1891
https://doi.org/10.1016/j.biortech.2010.07.106
4 Roberts D A, Paul N A, Dworjanyn S A, Bird M I, Nys R D. Biochar from commercially cultivated seaweed for soil amelioration. Scientific Reports, 2015, 5: 9665
https://doi.org/10.1038/srep09665
5 Hale S E, Jensen J, Jakob L, Oleszczuk P, Hartnik T, Henriksen T, Okkenhaug G, Martinsen V, Cornelissen G. Short-term effect of the soil amendments activated carbon, biochar, and ferric oxyhydroxide on bacteria and invertebrates. Environmental Science & Technology, 2013, 47(15): 8674–8683
https://doi.org/10.1021/es400917g
6 Lehmann J, Rillig M C, Thies J, Masiello C A, Hockaday W C, Crowley D. Biochar effects on soil biota: a review. Soil Biology & Biochemistry, 2011, 43(9): 1812–1836
https://doi.org/10.1016/j.soilbio.2011.04.022
7 Shan J, Ji R, Yu Y J, Xie Z B, Yan X Y. Biochar, activated carbon, and carbon nanotubes have different effects on fate of 14C-catechol and microbial community in soil. Scientific Reports, 2015, 5: 16000; doi: 10.1038/srep 16000
8 Cao X D, Ma L N, Gao B, Harris W. Dairy-manure derived biochar effectively sorbs lead and atrazine. Environmental Science & Technology, 2009, 43(9): 3285–3291
https://doi.org/10.1021/es803092k
9 Nag S K, Kookana R, Smith L, Krull E, Macdonald L M, Gill G. Poor efficacy of herbicides in biochar-amended soils as affected by their chemistry and mode of action. Chemosphere, 2011, 84(11): 1572–1577
https://doi.org/10.1016/j.chemosphere.2011.05.052
10 Qian L B, Chen B L, Hu D F. Effective alleviation of aluminum phytotoxicity by manure-derived biochar. Environmental Science & Technology, 2013, 47(6): 2737–2745
https://doi.org/10.1021/es3047872
11 Uchimiya M, Klasson K T, Wartelle L H, Lima I M. Influence of soil properties on heavy metal sequestration by biochar amendment: 1. Copper sorption isotherms and the release of cations. Chemosphere, 2011, 82(10): 1431–1437
https://doi.org/10.1016/j.chemosphere.2010.11.050
12 Uchimiya M, Lima I M, Klasson K T, Chang S C, Wartelle L H, Rodgers J E. Immobilization of heavy metal ions (Cu-II, Cd-II, Ni-II, and Pb-II) by broiler litter-derived biochars in water and soil. Journal of Agricultural and Food Chemistry, 2010, 58(9): 5538–5544
https://doi.org/10.1021/jf9044217
13 Zhao L, Cao X D, Zheng W, John W S, Brajendra K S, Chen X. Copyrolysis of biomass with phosphate fertilizers to improve biochar carbon retention, slow nutrient release, and stabilize heavy metals in soil. ACS Sustainable Chemistry & Engineering, 2016, 4(3): 1630–1636
https://doi.org/10.1021/acssuschemeng.5b01570
14 Nunes A A, Franca A S, Oliveira L S. Activated carbons from waste biomass: an alternative use for biodiesel production solid residues. Bioresource Technology, 2009, 100(5): 1786–1792
https://doi.org/10.1016/j.biortech.2008.09.032
15 Huang Y, Dong H, Shang B, Xin H, Zhu Z. Characterization of animal manure and cornstalk ashes as affected by incineration temperature. Applied Energy, 2011, 88(3): 947–952
https://doi.org/10.1016/j.apenergy.2010.08.011
16 Uchimiya M, Bannon D I, Wartelle L H, Lima I M, Klasson K T. Lead retention by broiler litter biochars in small arms range soil: impact of pyrolysis temperature. Journal of Agricultural and Food Chemistry, 2012, 60(20): 5035–5044
https://doi.org/10.1021/jf300825n
17 Nicholson F A, Chambers B J, Williams J R, Unwin R J. Heavy metal contents of livestock feeds and animal manures in England and Wales. Bioresource Technology, 1999, 70(1): 23–31
https://doi.org/10.1016/S0960-8524(99)00017-6
18 Cang L, Wang Y J, Zhou D M, Dong Y H. Heavy metals pollution in poultry and livestock feeds and manures under intensive farming in Jiangsu Province, China. Journal of Environmental Sciences (China), 2004, 16: 371–374
19 Verheijen F G A, Jeffery S, Bastos A C, van der Velde M, Diafas I. Biochar application to soils —A critical scientific review of effects on soil properties, processes and functions. Office for the official publications of the European Communities, Luxembourg, 2009
20 Lin Q, Liang L, Wang L H, Ni Q L, Yang K, Zhang J, Chen D L, Yang J J, Shen X D. Roles of pyrolysis on availability, species and distribution of Cu and Zn in the swine manure: chemical extractions and high-energy synchrotron analyses. Chemosphere, 2013, 93(9): 2094–2100
https://doi.org/10.1016/j.chemosphere.2013.07.053
21 Ressler T. WinXAS: a program for X-ray absorption spectroscopy data analysis under MS-windows. Journal of Synchrotron Radiation, 1998, 5(2): 118–122
https://doi.org/10.1107/S0909049597019298
22 Paktunc D, Foster A, Heald S, Laflamme G. Speciation and characterization of arsenic in gold ores and cyanidation tailings using X-ray absorption spectroscopy. Geochimica et Cosmochimica Acta, 2004, 68(5): 969–983
https://doi.org/10.1016/j.gca.2003.07.013
23 Shi J, Wu B, Yuan X, Cao Y Y, Chen X C, Chen Y X, Hu T D. An X-ray absorption spectroscopy investigation of speciation and biotransformation of copper in Elsholtzia splendens. Plant and Soil, 2008, 302(1-2): 163–174
https://doi.org/10.1007/s11104-007-9463-6
24 Tessier A, Campbell P G C, Bisson M. Sequential extraction procedure for speciation of particulate trace metals. Analytical Chemistry, 1979, 51(7): 844–851
https://doi.org/10.1021/ac50043a017
25 Shinogi Y, Kanri Y. Pyrolysis of plant, animal and human waste: physical and chemical characterization of the pyrolytic products. Bioresource Technology, 2003, 90(3): 241–247
https://doi.org/10.1016/S0960-8524(03)00147-0
26 Kopittke P M, Menzies N W, de Jonge M D, McKenna B A, Donner E, Webb R I, Paterson D J, Howard D L, Ryan C G, Glover C J, Scheckel K G, Lombi E. In situ distribution and speciation of toxic copper, nickel, and zinc in hydrated roots of Cowpea. Plant Physiology, 2011, 156(2): 663–673
https://doi.org/10.1104/pp.111.173716
27 Faridullah Irshad M, Yamamoto S, Honna T, Eneji A E. Characterization of trace elements in chicken and duck litter ash. Waste Management (New York, N.Y.), 2009, 29(1): 265–271
https://doi.org/10.1016/j.wasman.2008.03.009
28 Chen C Y, Wang H P, Wei Y L, Jou C J G, Huang Y C. Observations of nano copper in waste heat boiler fly ashes. Radiation Physics and Chemistry, 2006, 75(11): 1913–1915
https://doi.org/10.1016/j.radphyschem.2005.10.034
29 Legros S, Doelsch E, Masion A, Rose J, Borshneck D, Proux O, Hazemann J L, Saint-Macary H, Bottero J Y. Combining size fractionation, scanning electron microscopy, and X-ray absorption spectroscopy to probe zinc speciation in pig slurry. Journal of Environmental Quality, 2010, 39(2): 531–540
https://doi.org/10.2134/jeq2009.0096
30 Li A F, Zhang M K. Nutrient substances and pollutant elements in chicken manure from intensive poultry farms. Journal of Ecology and Rural Environment, 2009, 25: 64–67 (in Chinese)
31 Dubey B, Townsend T. Arsenic and lead leaching from the waste derived fertilizer ironite. Environmental Science & Technology, 2004, 38(20): 5400–5404
https://doi.org/10.1021/es0493392
32 Hao X Z, Zhou D M, Chen H M, Dong Y H. Leaching of copper and zinc in a garden soil receiving poultry and livestock manures from intensive farming. Pedosphere, 2008, 18(1): 69–76
https://doi.org/10.1016/S1002-0160(07)60104-0
33 Lin Q, Xu X, Bao Q B, Oh K, Chen D L, Zhang L J, Shen X. Influence of water-dispersible colloids from organic manure on the mechanism of metal transport in historically contaminated soils: coupling colloid fractionation with high-energy synchrotron analysis. Journal of Soils and Sediments, 2016, 16(2): 349–359
https://doi.org/10.1007/s11368-015-1233-0
34 Smith E, Kempson I M, Juhasz A L, Weber J, Rofe A, Gancarz D, Naidu R, McLaren R G, Gäfe M. In vivo–in vitro and XANES spectroscopy assessments of lead bioavailability in contaminated periurban soils. Environmental Science & Technology, 2011, 45(14): 6145–6152
https://doi.org/10.1021/es200653k
35 Rodrigues S M, Cruz N, Coelho C, Henriques B, Carvalho L, Duarte A C, Pereira E, Römkens P F A M. Risk assessment for Cd, Cu, Pb and Zn in urban soils: chemical availability as the central concept. Environmental Pollution, 2013, 183: 234–242
https://doi.org/10.1016/j.envpol.2012.10.006
[1] FSE-17015-OF-LQ_suppl_1 Download
[1] Shiguan Yang, Xinrui Fan, Ji Liu, Wei Zhao, Bin Hu, Qiang Lu. Mechanism insight into the formation of H2S from thiophene pyrolysis: A theoretical study[J]. Front. Environ. Sci. Eng., 2021, 15(6): 120-.
[2] Chengjie Xue, Juan Wu, Kuang Wang, Yunqiang Yi, Zhanqiang Fang, Wen Cheng, Jianzhang Fang. Effects of different types of biochar on the properties and reactivity of nano zero-valent iron in soil remediation[J]. Front. Environ. Sci. Eng., 2021, 15(5): 101-.
[3] Shanwei Ma, Hang Li, Guan Zhang, Tahir Iqbal, Kai Li, Qiang Lu. Catalytic fast pyrolysis of walnut shell for alkylphenols production with nitrogen-doped activated carbon catalyst[J]. Front. Environ. Sci. Eng., 2021, 15(2): 25-.
[4] Om Prakash, Stefan J. Green, Pooja Singh, Puja Jasrotia, Joel E. Kostka. Stress-related ecophysiology of members of the genus Rhodanobacter isolated from a mixed waste contaminated subsurface[J]. Front. Environ. Sci. Eng., 2021, 15(2): 23-.
[5] Xianke Lin, Xiaohong Chen, Sichang Li, Yangmei Chen, Zebin Wei, Qitang Wu. Sewage sludge ditch for recovering heavy metals can improve crop yield and soil environmental quality[J]. Front. Environ. Sci. Eng., 2021, 15(2): 22-.
[6] Xiling Li, Tianwei Hao, Yuxin Tang, Guanghao Chen. A “Seawater-in-Sludge” approach for capacitive biochar production via the alkaline and alkaline earth metals activation[J]. Front. Environ. Sci. Eng., 2021, 15(1): 3-.
[7] Marzieh Mokarram, Hamid Reza Pourghasemi, Huichun Zhang. Predicting non-carcinogenic hazard quotients of heavy metals in pepper (Capsicum annum L.) utilizing electromagnetic waves[J]. Front. Environ. Sci. Eng., 2020, 14(6): 114-.
[8] Wenzhong Tang, Liu Sun, Limin Shu, Chuang Wang. Evaluating heavy metal contamination of riverine sediment cores in different land-use areas[J]. Front. Environ. Sci. Eng., 2020, 14(6): 104-.
[9] Sana Ullah, Xuejun Guo, Xiaoyan Luo, Xiangyuan Zhang, Siwen Leng, Na Ma, Palwasha Faiz. Rapid and long-effective removal of broad-spectrum pollutants from aqueous system by ZVI/oxidants[J]. Front. Environ. Sci. Eng., 2020, 14(5): 89-.
[10] Wenqing Xu, Mark L. Segall, Zhao Li. Reactivity of Pyrogenic Carbonaceous Matter (PCM) in mediating environmental reactions: Current knowledge and future trends[J]. Front. Environ. Sci. Eng., 2020, 14(5): 86-.
[11] Zihao Li, Yang Geng, Lei Ma, Xiaoyin Chen, Junhua Li, Huazhen Chang, Johannes W. Schwank. Catalytic oxidation of CO over Pt/Fe3O4 catalysts: Tuning O2 activation and CO adsorption[J]. Front. Environ. Sci. Eng., 2020, 14(4): 65-.
[12] Nima Kamali, Abdollah Rashidi Mehrabadi, Maryam Mirabi, Mohammad Ali Zahed. Synthesis of vinasse-dolomite nanocomposite biochar via a novel developed functionalization method to recover phosphate as a potential fertilizer substitute[J]. Front. Environ. Sci. Eng., 2020, 14(4): 70-.
[13] Alisa Salimova, Jian’e Zuo, Fenglin Liu, Yajiao Wang, Sike Wang, Konstantin Verichev. Ammonia and phosphorus removal from agricultural runoff using cash crop waste-derived biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 48-.
[14] Ziwen Du, Chuyi Huang, Jiaqi Meng, Yaru Yuan, Ze Yin, Li Feng, Yongze Liu, Liqiu Zhang. Sorption of aromatic organophosphate flame retardants on thermally and hydrothermally produced biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 43-.
[15] Zhenyu Yang, Rong Xing, Wenjun Zhou, Lizhong Zhu. Adsorption characteristics of ciprofloxacin onto g-MoS2 coated biochar nanocomposites[J]. Front. Environ. Sci. Eng., 2020, 14(3): 41-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed