Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2017, Vol. 11 Issue (4) : 3    https://doi.org/10.1007/s11783-017-0925-7
RESEARCH ARTICLE
Peroxyacetyl nitrate measurements by thermal dissociation–chemical ionization mass spectrometry in an urban environment: performance and characterizations
Xinfeng Wang1, Tao Wang1,2, Likun Xue1(), Wei Nie3, Zheng Xu3, Steven C. N. Poon2, Wenxing Wang1
1. Environment Research Institute, Shandong University, Jinan 250100, China
2. Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong 999077, China
3. Institute for Climate and Global Change Research & School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
 Download: PDF(1832 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The loss degree of PAN signal in a TD-CIMS caused by NO is tested and quantified.

TD-CIMS is applicable for PAN measurement in urban areas with necessary correction.

The PAN formation efficiency in urban Hong Kong increased with NO2 concentration.

Peroxyacetyl nitrate (PAN) is an important indicator of photochemical smog and has adverse effects on human health and vegetation growth. A rapid and highly selective technique of thermal dissociation–chemical ionization mass spectrometry (TD-CIMS) was recently developed to measure the abundance of PAN in real time; however, it may be subject to artifact in the presence of nitric oxide (NO). In this study, we tested the interference of the PAN signal induced by NO, evaluated the performance of TD-CIMS in an urban environment, and investigated the concentration and formation of PAN in urban Hong Kong. NO caused a significant underestimation of the PAN signal in TD-CIMS, with the underestimation increasing sharply with NO concentration and decreasing slightly with PAN abundance. A formula was derived to link the loss of PAN signal with the concentrations of NO and PAN, which can be used for data correction in PAN measurements. The corrected PAN data from TD-CIMS were consistent with those from the commonly used gas chromatography with electron capture detection, which confirms the utility of TD-CIMS in an urban environment in which NO is abundant. In autumn of 2010, the hourly average PAN mixing ratio varied from 0.06 ppbv to 5.17 ppbv, indicating the occurrence of photochemical pollution in urban Hong Kong. The formation efficiency of PAN during pollution episodes was as high as 3.9 to 5.9 ppbv per 100 ppbv ozone. PAN levels showed a near-linear increase with NOx concentration, suggesting a control policy of NOx reduction for PAN pollution.

Keywords TD-CIMS      Peroxyacetyl nitrate      Interference      Photochemical pollution      Formation efficiency     
Corresponding Author(s): Likun Xue   
Issue Date: 13 April 2017
 Cite this article:   
Xinfeng Wang,Tao Wang,Likun Xue, et al. Peroxyacetyl nitrate measurements by thermal dissociation–chemical ionization mass spectrometry in an urban environment: performance and characterizations[J]. Front. Environ. Sci. Eng., 2017, 11(4): 3.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-017-0925-7
https://academic.hep.com.cn/fese/EN/Y2017/V11/I4/3
Fig.1  Schematic diagram of the TD-CIMS used for laboratory tests and field measurements
Fig.2  Mass spectra of ambient air by TD-CIMS in urban Hong Kong during daytime and nighttime
Fig.3  Raw signal at 59 amu for PAN calibration in the night of Nov. 14, 2010. Insert shows the calibration curve
Fig.4  Effect of NO and PAN concentrations on signal loss at 59 amu
Fig.5  Scatter plot of corrected PAN concentration by TD-CIMS versus that by GC-ECD
Fig.6  Time series of concentrations of PAN, O3, NO, and NO2, and meteorological parameters of solar radiation and temperature for the field measurements
Fig.7  Diurnal variation of PAN, O3, NO, and NO2 for the field measurements. Error bars represent half of the standard error
Fig.8  Scatter plots of PAN versus ozone for three pollution episodes on Oct. 24, Nov. 22, and Dec. 2, 2010. The slope indicates the relative formation efficiency of PAN
1 Stephens E R. The formation, reactions, and properties of peroxyacyl nitrates (PANs) in photochemical air pollution. Advances in Environmental Science and Technology, 1969, 1: 119–146
2 Vyskocil A, Viau  C, Lamy S . Peroxyacetyl nitrate: review of toxicity. Human & Experimental Toxicology, 1998, 17(4): 212–220
https://doi.org/10.1177/096032719801700403 pmid: 9617633
3 Parrish D D, Xu  J, Croes B ,  Shao M. Air quality improvement in Los Angeles—Perspectives for developing cities. Frontiers of Environmental Science & Engineering, 2016, 10(5): 11
https://doi.org/10.1007/s11783-016-0859-5
4 Taylor O C. Importance of peroxyacetyl nitrate (PAN) as a phytotoxic air pollutant. Journal of the Air Pollution Control Association, 1969, 19(5): 347–351
https://doi.org/10.1080/00022470.1969.10466498 pmid: 5797495
5 Temple P J, Taylor  O C. World-wide ambient measurements of peroxyacetyl nitrate (PAN) and implications for plant injury. Atmospheric Environment, 1983, 17(8): 1583–1587
6 Ridley B A, Shetter  J D, Gandrud  B W, Salas  L J, Singh  H B, Carroll  M A, Hübler  G, Albritton D L ,  Hastie D R ,  Schiff H I ,  Mackay G I ,  Karechi D R ,  Davis D D ,  Bradshaw J D ,  Rodgers M O ,  Sandholm S T ,  Torres A L ,  Condon E P ,  Gregory G L ,  Beck S M . Ratios of peroxyacetyl nitrate to active nitrogen observed during aircraft flights over the eastern pacific oceans and continental United States. Journal of Geophysical Research, 1990, 95(D7): 10179–10192
https://doi.org/10.1029/JD095iD07p10179
7 Singh H B, Salas  L J, Ridley  B A, Shetter  J D, Donahue  N M, Fehsenfeld  F C, Fahey  D W, Parrish  D D, Williams  E J, Liu  S C, Hubler  G, Murphy P C . Relationship between peroxyacetyl nitrate and nitrogen oxides in the clean troposphere. Nature, 1985, 318(6044): 347–349
https://doi.org/10.1038/318347a0
8 Orlando J J, Tyndall  G S, Calvert  J G. Thermal decomposition pathways for peroxyacetyl nitrate (PAN): implications for atmospheric methyl nitrate levels. Atmospheric Environment. Part A, General Topics, 1992, 26(17): 3111–3118
https://doi.org/10.1016/0960-1686(92)90468-Z
9 Singh H B, Salas  L J, Viezee  W. Global distribution of peroxyacetyl nitrate. Nature, 1986, 321(6070): 588–591
https://doi.org/10.1038/321588a0 pmid: 3713843
10 Gaffney J S, Marley  N A, Cunningham  M M, Doskey  P V. Measurements of peroxyacyl nitrates (PANS) in Mexico City: implications for megacity air quality impacts on regional scales. Atmospheric Environment, 1999, 33(30): 5003–5012
https://doi.org/10.1016/S1352-2310(99)00263-0
11 Zhang J B, Xu  Z, Yang G ,  Wang B. Peroxyacetyl nitrate (PAN) and peroxypropionyl nitrate (PPN) in urban and suburban atmospheres of Beijing, China. Atmospheric Chemistry and Physics Discussion, 2011, 11(3): 8173–8206
https://doi.org/10.5194/acpd-11-8173-2011
12 Williams J, Roberts  J M, Bertman  S B, Stroud  C A, Fehsenfeld  F C, Baumann  K, Buhr M P ,  Knapp K ,  Murphy P C ,  Nowick M ,  Williams E J . A method for the airborne measurement of PAN, PPN, and MPAN. Journal of Geophysical Research, 2000, 105(D23): 28943–28960
https://doi.org/10.1029/2000JD900373
13 Flocke F, Weinheimer  A, Swanson A ,  Roberts J ,  Schmitt R ,  Shertz S . On the measurement of PANs by gas chromatography and electron capture detection. Journal of Atmospheric Chemistry, 2005, 52(1): 19–43
https://doi.org/10.1007/s10874-005-6772-0
14 Zhang G, Mu  Y, Liu J ,  Mellouki A . Direct and simultaneous determination of trace-level carbon tetrachloride, peroxyacetyl nitrate, and peroxypropionyl nitrate using gas chromatography-electron capture detection. Journal of Chromatography. A, 2012, 1266(2012): 110–115
https://doi.org/10.1016/j.chroma.2012.09.092 pmid: 23107119
15 Zheng W, Flocke  F M, Tyndall  G S, Swanson  A, Orlando J J ,  Roberts J M ,  Huey L G ,  Tanner D J . Characterization of a thermal decomposition chemical ionization mass spectrometer for the measurement of peroxy acyl nitrates (PANs) in the atmosphere. Atmospheric Chemistry and Physics, 2011, 11(13): 6529–6547
https://doi.org/10.5194/acp-11-6529-2011
16 Hastie D R, Gray  J, Langford V S ,  Maclagan R G A R ,  Milligan D B ,  McEwan M J . Real-time measurement of peroxyacetyl nitrate using selected ion flow tube mass spectrometry. Rapid Communications in Mass Spectrometry, 2010, 24(3): 343–348
https://doi.org/10.1002/rcm.4400 pmid: 20049885
17 Huey L G. Measurement of trace atmospheric species by chemical ionization mass spectrometry: speciation of reactive nitrogen and future directions. Mass Spectrometry Reviews, 2007, 26(2): 166–184
https://doi.org/10.1002/mas.20118 pmid: 17243143
18 Slusher D L, Huey  L G, Tanner  D J, Flocke  F M, Roberts  J M. A thermal dissociation-chemical ionization mass spectrometry (TD-CIMS) technique for the simultaneous measurement of peroxyacyl nitrates and dinitrogen pentoxide. Journal of Geophysical Research, 2004, 109(D19): D19315
https://doi.org/10.1029/2004JD004670
19 Wolfe G M, Thornton  J A, McNeill  V F, Jaffe  D A, Reidmiller  D, Chand D ,  Smith J ,  Swartzendruber P ,  Flocke F ,  Zheng W . Influence of trans-Pacific pollution transport on acyl peroxy nitrate abundances and speciation at Mount Bachelor Observatory during INTEX-B. Atmospheric Chemistry and Physics, 2007, 7(20): 5309–5325
https://doi.org/10.5194/acp-7-5309-2007
20 Turnipseed A A ,  Huey L G ,  Nemitz E ,  Stickel R ,  Higgs J ,  Tanner D J ,  Slusher D L ,  Sparks J P ,  Flocke F ,  Guenther A . Eddy covariance fluxes of peroxyacetyl nitrates (PANs) and NOy to a coniferous forest. Journal of Geophysical Research, D, Atmospheres, 2006, 111(D9): D09304
https://doi.org/10.1029/2005JD006631
21 Wolfe G M, Thornton  J A, Yatavelli  R L N, McKay  M, Goldstein A H ,  LaFranchi B ,  Min K E ,  Cohen R C . Eddy covariance fluxes of acyl peroxy nitrates (PAN, PPN and MPAN) above a Ponderosa pine forest. Atmospheric Chemistry and Physics, 2009, 9(2): 615–634
https://doi.org/10.5194/acp-9-615-2009
22 LaFranchi B, Wolfe  G, Thornton J ,  Harrold S ,  Browne E ,  Min K, Wooldridge  P, Gilman J ,  Kuster W ,  Goldan P ,  de Gouw J A ,  McKay M ,  Goldstein A H ,  Ren X, Mao  J, Cohen R C . Closing the peroxy acetyl nitrate budget: observations of acyl peroxy nitrates (PAN, PPN, and MPAN) during BEARPEX 2007. Atmospheric Chemistry and Physics, 2009, 9(19): 7623–7641
https://doi.org/10.5194/acp-9-7623-2009
23 Roiger A, Aufmhoff  H, Stock P ,  Arnold F ,  Schlager H . An aircraft-borne chemical ionization- ion trap mass spectrometer (CI-ITMS) for fast PAN and PPN measurements. Atmospheric Measurement Techniques, 2011, 4(2): 173–188
https://doi.org/10.5194/amt-4-173-2011
24 Phillips G J, Pouvesle  N, Thieser J ,  Schuster G ,  Axinte R ,  Fischer H ,  Williams J ,  Lelieveld J ,  Crowley J N . Peroxyacetyl nitrate (PAN) and peroxyacetic acid (PAA) measurements by iodide chemical ionisation mass spectrometry: first analysis of results in the boreal forest and implications for the measurement of PAN fluxes. Atmospheric Chemistry and Physics, 2013, 13(3): 1129–1139
https://doi.org/10.5194/acp-13-1129-2013
25 Wang Z, Shao  M, Chen L ,  Tao M, Zhong  L, Chen D ,  Fan M, Wang  Y, Wang X . Space view of the decadal variation for typical air pollutants in the Pearl River Delta (PRD) region in China. Frontiers of Environmental Science & Engineering, 2016, 10(5): 9
https://doi.org/10.1007/s11783-016-0853-y
26 Xue L, Wang  T, Wang X ,  Blake D R ,  Gao J, Nie  W, Gao R ,  Gao X, Xu  Z, Ding A ,  Huang Y ,  Lee S, Chen  Y, Wang S ,  Chai F, Zhang  Q, Wang W . On the use of an explicit chemical mechanism to dissect peroxy acetyl nitrate formation. Environmental Pollution, 2014, 195(195): 39–47
https://doi.org/10.1016/j.envpol.2014.08.005 pmid: 25194270
27 Wang X, Wang  T, Yan C ,  Tham Y J ,  Xue L, Xu  Z, Zha Q . Large daytime signals of N2O5 and NO3 inferred at 62 amu in a TD-CIMS: chemical interference or a real atmospheric phenomenon? Atmospheric Measurement Techniques, 2014, 7(1): 1–12
https://doi.org/10.5194/amt-7-1-2014
28 Zhang J, Wang  T, Ding A ,  Zhou X, Xue  L, Poon C ,  Wu W, Gao  J, Zuo H ,  Chen J, Zhang  X C, Fan  S J. Continuous measurement of peroxyacetyl nitrate (PAN) in suburban and remote areas of western China. Atmospheric Environment, 2009, 43(2): 228–237
https://doi.org/10.1016/j.atmosenv.2008.09.070
29 Xu Z, Wang  T, Xue L ,  Louie P K K ,  Luk C W Y ,  Gao J, Wang  S, Chai F ,  Wang W. Evaluating the uncertainties of thermal catalytic conversion in measuring atmospheric nitrogen dioxide at four differently polluted sites in China. Atmospheric Environment, 2013, 76(2013): 221–226
https://doi.org/10.1016/j.atmosenv.2012.09.043
30 Lee G, Jang  Y, Lee H ,  Han J S ,  Kim K R ,  Lee M. Characteristic behavior of peroxyacetyl nitrate (PAN) in Seoul megacity, Korea. Chemosphere, 2008, 73(4): 619–628
https://doi.org/10.1016/j.chemosphere.2008.05.060 pmid: 18632134
31 Grosjean E, Grosjean  D, Fraser M P ,  Cass G R . Air quality model evaluation data for organics. 3. Peroxyacetyl nitrate and peroxypropionyl nitrate in Los Angeles air. Environmental Science & Technology, 1996, 30(9): 2704–2714
https://doi.org/10.1021/es9508535
32 Xu Z, Xue  L, Wang T ,  Xia T, Gao  Y, Louie P K K ,  Luk C W Y . Measurements of peroxyacetyl nitrate at a background site in the Pearl River delta region: production efficiency and regional transport. Aerosol and Air Quality Research, 2015, 15(1): 833–841
33 Liu Z, Wang  Y, Gu D ,  Zhao C, Huey  L G, Stickel  R, Liao J ,  Shao M, Zhu  T, Zeng L ,  Liu S C ,  Chang C C ,  Amoroso A ,  Costabile F . Evidence of reactive aromatics as a major source of peroxy acetyl nitrate over China. Environmental Science & Technology, 2010, 44(18): 7017–7022
https://doi.org/10.1021/es1007966 pmid: 20707413
34 Zhang J M. Measurement of atmospheric peroxyacetyl nitrate (PAN) and the implications to photochemical pollution. Dissertation for the Master Degree. Hong Kong: The Hong Kong Polytechnic University, 2009
35 Wang B, Shao  M, Roberts J ,  Yang G, Yang  F, Hu M ,  Zeng L, Zhang  Y, Zhang J . Ground-based on-line measurements of peroxyacetyl nitrate (PAN) and peroxypropionyl nitrate (PPN) in the Pearl River Delta, China. International Journal of Environmental Analytical Chemistry, 2010, 90(7): 548–559
https://doi.org/10.1080/03067310903194972
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed