Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2017, Vol. 11 Issue (3) : 6    https://doi.org/10.1007/s11783-017-0927-5
RESEARCH ARTICLE
Transformation of triclosan by a novel cold-adapted laccase from Botrytissp. FQ
Yuanyuan Shi1, Deyang Kong2, Jiayang Liu3(), Junhe Lu1(), Xiaoming Yin1, Quansuo Zhou1
1. College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
2. Nanjing Institute of Environmental Science, Ministry of Environmental Protection of PRC, Nanjing 210042, China
3. School of Bioengineering, Huanghuai University, Zhumadian 463000, China
 Download: PDF(1276 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A cold-adapt laccase excreted by a fungi from rotten tomato was characterized.

The laccase can effectively transform triclosan to form polymerized products.

The reaction rate is first order to the concentrations of both laccase and triclosan.

The reaction was inhibited by humic acid.

This work investigated the transformation of triclosan (TCS) by laccase produced by a pathogen isolated from rotten tomato. The pathogen was characterized asBotrytis sp. FQ, belonging to subphylum Deuteromycotina. The laccase exhibited cold-adaptation with relatively high activity at 20°C. The laccase could effectively transform TCS. Approximately 62% TCS could be removed at dose of 1.0 unit·mL1 in 120 min. The reaction rate appeared to be pseudo-first-order to the concentration of the substrate, suggesting the laccase activity remained stable during the reaction. Transformation products of TCS were analyzed by mass spectrometry and it was revealed that TCS dimers were formed via radical coupling pathways. During this process, laccase catalyzed oxidation of TCS to form a radical intermediate is the rate limiting step. However, this step can be reversed by humic acid. Overall, the laccase showed great potential in the treatment of phenolic contaminants. Since laccase is widely presented in natural environment, this study also revealed an important pathway involved in the transformation of phenolic contaminants in the environment.

Keywords Laccase      Botrytis cinerea      Triclosan      Transformation      Kinetics     
Corresponding Author(s): Jiayang Liu,Junhe Lu   
Issue Date: 13 April 2017
 Cite this article:   
Yuanyuan Shi,Deyang Kong,Jiayang Liu, et al. Transformation of triclosan by a novel cold-adapted laccase from Botrytissp. FQ[J]. Front. Environ. Sci. Eng., 2017, 11(3): 6.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-017-0927-5
https://academic.hep.com.cn/fese/EN/Y2017/V11/I3/6
Fig.1  (a) Top View of the fungus growing on PDA plate for 7 days at 4℃. (b) Decolorization of RBBR by the fungus on PDA plate for 7 days’ cultivation at 4℃. (c) Conidium of the fungus by SEM (1500 ×). (d) Conidiophore of the fungus by SEM (1200 ×)
Fig.2  Laccase production by Botrytis sp. FQ via liquid fermentation at varying temperatures.
Fig.3  Effects of pH (a) and temperature (b) on activity of crude laccase by Botrytis sp. FQ.
Fig.4  Kinetic plot of TCS degradation at varying laccase dose. Insert is the relationship of kobs versus laccase dose. Experimental conditions: [TCS]0 = 3.5 mmol·L-1, T = 20℃, pH= 6.8
Fig.5  MS of TCS transformation products by laccase: [TCS]0 = 3.5 mmol·L-1, [laccase]0 = 1.0 unit·mL-1, T = 20°C, pH= 6.8, V = 100 mL, and reaction time= 120 min
Fig.6  Kinetic plot of TCS degradation in laccase catalytic process in the presence of HA. Insert is the relationship betweenkobs and HA concentration. Experimental conditions: [TCS]0 = 3.5 mmol·L-1, [laccase]0 = 1.0 unit·mL-1
1 Gujjala L K S ,  Bandyopadhyay T K ,  Banerjee R . Kinetic modelling of laccase mediated delignification of Lantana camara. Bioresource Technology, 2016, 212: 47–54
https://doi.org/10.1016/j.biortech.2016.04.006 pmid: 27082268
2 Nguyen L N, Hai  F I, Dosseto  A, Richardson C ,  Price W E ,  Nghiem L D . Continuous adsorption and biotransformation of micropollutants by granular activated carbon-bound laccase in a packed-bed enzyme reactor. Bioresource Technology, 2016, 210: 108–116
https://doi.org/10.1016/j.biortech.2016.01.014 pmid: 26803903
3 Mao L, Huang  Q, Luo Q ,  Lu J, Yang  X, Gao S . Ligninase-mediated removal of 17 b-estradiol from water in the presence of natural organic matter: efficiency and pathways. Chemosphere, 2010, 80(4): 469–473
https://doi.org/10.1016/j.chemosphere.2010.03.054 pmid: 20416920
4 Mao L, Lu  J, Habteselassie M ,  Luo Q, Gao  S, Cabrera M ,  Huang Q . Ligninase-mediated removal of natural and synthetic estrogens from water: II. Reactions of 17 b-estradiol. Environmental Science & Technology, 2010, 44(7): 2599–2604 doi:10.1021/es903058k
pmid: 20230031
5 Litthauer D, van Vuuren  M J, van Tonder  A, Wolfaardt F W . Purification and kinetics of a thermostable laccase from Pycnoporus sanguineus (SCC 108). Enzyme and Microbial Technology, 2007, 40(4): 563568
https://doi.org/10.1016/j.enzmictec.2006.05.011
6 Liu J Y, Cai  Y J, Liao  X R, Huang  Q G, Hao  Z H, Hu  M M, Zhang  D B, Li  Z L. Efficiency of laccase production in a 65-liter air-lift reactor for potential green industrial and environmental application. Journal of Cleaner Production, 2013, 39(1): 154160
7 Wang Z X, Cai  Y J, Liao  X R, Tao  G J, Li  Y Y, Zhang  F, Zhang D B . Purification and characterization of two thermostable laccases with high cold adapted characteristics from Pycnoporus sp. SYBC-L1. Process Biochemistry, 2010, 45(10): 17201729
https://doi.org/10.1016/j.procbio.2010.07.011
8 Buth J M, Steen  P O, Sueper  C, Blumentritt D ,  Vikesland P J ,  Arnold W A ,  McNeill K . Dioxin photoproducts of triclosan and its chlorinated derivatives in sediment cores. Environmental Science & Technology, 2010, 44(12): 4545–4551
https://doi.org/10.1021/es1001105 pmid: 20476764
9 Halden R U. On the need and speed of regulating triclosan and triclocarban in the United States. Environmental Science & Technology, 2014, 48(7): 3603–3611
https://doi.org/10.1021/es500495p pmid: 24588513
10 Dann A B, Hontela  A. Triclosan: environmental exposure, toxicity and mechanisms of action. Journal of Applied Toxicology, 2011, 31(4): 285–311
https://doi.org/10.1002/jat.1660 pmid: 21462230
11 Fiss E M, Rule  K L, Vikesland  P J. Formation of chloroform and other chlorinated byproducts by chlorination of triclosan-containing antibacterial products. Environmental Science & Technology, 2007, 41(7): 2387–2394
https://doi.org/10.1021/es062227l pmid: 17438791
12 Fiss E M, Rule  K L, Vikesland  P J. Formation of chloroform and other chlorinated byproducts by chlorination of triclosan-containing products. Environmental Science & Technology, 2008, 42(3): 976976
https://doi.org/10.1021/es702530r pmid: 17438791
13 Latch D E, Packer  J L, Stender  B L, VanOverbeke  J, Arnold W A ,  McNeill K . Aqueous photochemistry of triclosan: formation of 2,4-dichlorophenol, 2,8-dichlorodibenzo-p-dioxin, and oligomerization products. Environmental Toxicology and Chemistry, 2005, 24(3): 517–525
https://doi.org/10.1897/04-243R.1 pmid: 15779749
14 Zhang H, Huang  C H. Oxidative transformation of triclosan and chlorophene by manganese oxides. Environmental Science & Technology, 2003, 37(11): 2421–2430
https://doi.org/10.1021/es026190q pmid: 12831027
15 Li J, Peng  J, Zhang Y ,  Ji Y, Shi  H, Mao L ,  Gao S. Removal of triclosan via peroxidases-mediated reactions in water: reaction kinetics, products and detoxification. Journal of Hazardous Materials, 2016, 310: 152–160
https://doi.org/10.1016/j.jhazmat.2016.02.037 pmid: 26921508
16 Diwaniyan S, Kharb  D, Raghukumar C ,  Kuhad R . Decolorization of synthetic dyes and textile effluents by basidiomycetous fungi. Water, Air, and Soil Pollution, 2010, 210(1–4): 409419
17 Tien M, Kirk  T K. Lignin peroxidase of Phanerochaete chrysosporium. Methods in Enzymology, 1988, 161: 238249
https://doi.org/10.1016/0076-6879(88)61025-1
18 Camarero S, Ibarra  D, Martínez M J ,  Martínez A T . Lignin-derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes. Applied and Environmental Microbiology, 2005, 71(4): 1775–1784
https://doi.org/10.1128/AEM.71.4.1775-1784.2005 pmid: 15812000
19 Yu H, Sutton  J C. Morphological development and interactions of Gliocladium roseum and Botrytis cinerea in raspberry. Canadian Journal of Plant Pathology-Revue Canadienne De Phytopathologie, 1997, 19(3): 237246
https://doi.org/10.1080/07060669709500518
20 Morgan W M. The effect of night temperature and glasshouse ventilation on the incidence of Botrytis cinerea in a late-planted tomato crop. Crop Protection (Guildford, Surrey), 1984, 3(2): 243251
https://doi.org/10.1016/0261-2194(84)90058-9
21 Swadling I R, Jeffries  P. Antagonistic properties of two bacterial biocontrol agents of grey mould disease. Biocontrol Science and Technology, 1998, 8(3): 439448
https://doi.org/10.1080/09583159830234
22 Amerine M A. The search for good wine. Science, 1966, 154(3757): 1621–1628
https://doi.org/10.1126/science.154.3757.1621 pmid: 5332386
23 Zouari N, Romette  J L, Thomas  D. Purification and properties of two laccase isoenzymes produced by Botrytis cinerea. Applied Biochemistry and Biotechnology, 1987, 15(3): 213225
https://doi.org/10.1007/BF02798450
24 Baldrian P. Fungal laccases—Occurrence and properties. FEMS Microbiology Reviews, 2006, 30(2): 215–242 PMID:16472305 doi:10.1111/j.1574-4976.2005.00010.x
25 Kim Y, Yeo  S, Kim M K ,  Choi H T . Removal of estrogenic activity from endocrine-disrupting chemicals by purified laccase of Phlebia tremellosa. FEMS Microbiology Letters, 2008, 284(2): 172–175
https://doi.org/10.1111/j.1574-6968.2008.01189.x pmid: 18503545
26 Wang Z, Cai  Y, Liao X ,  Zhang F ,  Zhang D ,  Li Z. Production and characterization of a novel laccase with cold adaptation and high thermal stability from an isolated fungus. Applied Biochemistry and Biotechnology, 2010, 162(1): 280–294 doi:10.1007/s12010-009-8801-y
pmid: 19842067
27 Auriol M, Filali-Meknassi  Y, Adams C D ,  Tyagi R D . Natural and synthetic hormone removal using the horseradish peroxidase enzyme: temperature and pH effects. Water Research, 2006, 40(15): 2847–2856
https://doi.org/10.1016/j.watres.2006.05.032 pmid: 16849026
28 Lu J, Huang  Q, Mao L . Removal of acetaminophen using enzyme-mediated oxidative coupling processes: I. Reaction rates and pathways. Environmental Science & Technology, 2009, 43(18): 7062–7067
https://doi.org/10.1021/es9002422 pmid: 19806742
29 Murray C A, Parsons  S A. Removal of NOM from drinking water: Fenton’s and photo-Fenton’s processes. Chemosphere, 2004, 54(7): 1017–1023
https://doi.org/10.1016/j.chemosphere.2003.08.040 pmid: 14637360
[1] Weichuan Qiao, Rong Li, Tianhao Tang, Achuo Anitta Zuh. Removal, distribution and plant uptake of perfluorooctane sulfonate (PFOS) in a simulated constructed wetland system[J]. Front. Environ. Sci. Eng., 2021, 15(2): 20-.
[2] Milan Malhotra, Anurag Garg. Characterization of value-added chemicals derived from the thermal hydrolysis and wet oxidation of sewage sludge[J]. Front. Environ. Sci. Eng., 2021, 15(1): 13-.
[3] Jianzhi Huang, Huichun Zhang. Redox reactions of iron and manganese oxides in complex systems[J]. Front. Environ. Sci. Eng., 2020, 14(5): 76-.
[4] Yiquan Wu, Ying Xu, Ningyi Zhou. A newly defined dioxygenase system from Mycobacterium vanbaalenii PYR-1 endowed with an enhanced activity of dihydroxylation of high-molecular-weight polyaromatic hydrocarbons[J]. Front. Environ. Sci. Eng., 2020, 14(1): 14-.
[5] Nan Zhao, Huu Hao Ngo, Yuyou Li, Xiaochang Wang, Lei Yang, Pengkang Jin, Guangxi Sun. A comprehensive simulation approach for pollutant bio-transformation in the gravity sewer[J]. Front. Environ. Sci. Eng., 2019, 13(4): 62-.
[6] Bao Yu, Guodi Zheng, Xuedong Wang, Min Wang, Tongbin Chen. Biodegradation of triclosan and triclocarban in sewage sludge during composting under three ventilation strategies[J]. Front. Environ. Sci. Eng., 2019, 13(3): 41-.
[7] G. S. Muthu Iswarya, B. Nirkayani, A. Kavithakani, V. C. Padmanaban. Statistical modeling of radiolytic (60Co g) degradation of Ofloxacin, antibiotic: Synergetic effect, kinetic studies & assessment of its degraded metabolites[J]. Front. Environ. Sci. Eng., 2019, 13(3): 42-.
[8] Xiaoxia Ou, Jianfang Yan, Fengjie Zhang, Chunhua Zhang. Accelerated degradation of orange G over a wide pH range in the presence of FeVO4[J]. Front. Environ. Sci. Eng., 2018, 12(1): 7-.
[9] Hui ZHANG,Le XU,Yifei ZHANG,Mengchan JIANG. The transformation of PAHs in the sewage sludge incineration treatment[J]. Front. Environ. Sci. Eng., 2016, 10(2): 336-340.
[10] Xiuning HUA,Wei WANG,Feng WANG. Performance and kinetics of iron-based oxygen carriers reduced by carbon monoxide for chemical looping combustion[J]. Front. Environ. Sci. Eng., 2015, 9(6): 1130-1138.
[11] Xiaoliu HUANGFU,Yaan WANG,Yongze LIU,Xixin LU,Xiang ZHANG,Haijun CHENG,Jin JIANG,Jun MA. Effects of humic acid and surfactants on the aggregation kinetics of manganese dioxide colloids[J]. Front. Environ. Sci. Eng., 2015, 9(1): 105-111.
[12] Pengfei LIN,Yuan ZHANG,Xiaojian ZHANG,Chao CHEN,Yuefeng XIE,Irwin H SUFFET. The influence of chlorinated aromatics' structure on their adsorption characteristics on activated carbon to tackle chemical spills in drinking water source[J]. Front. Environ. Sci. Eng., 2015, 9(1): 138-146.
[13] XIA Qing,KONG Deyang,LIU Guoqiang,HUANG Qingguo,ALALEWI Aamr,LU Junhe. Removal of 17β-estradiol in laccase catalyzed treatment processes[J]. Front.Environ.Sci.Eng., 2014, 8(3): 372-378.
[14] Jian XU, Yan HE, Yuan ZHANG, Changsheng GUO, Lei LI, Yuqiu WANG. Removal of sulfadiazine from aqueous solution on kaolinite[J]. Front Envir Sci Eng, 2013, 7(6): 836-843.
[15] Wei SUN, Meiying XU, Chunyu XIA, Anhua LI, Guoping SUN. Enhanced production of laccase by Coriolus hirsutus using molasses distillery wastewater[J]. Front Envir Sci Eng, 2013, 7(2): 200-210.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed