Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2017, Vol. 11 Issue (3) : 7    https://doi.org/10.1007/s11783-017-0928-4
RESEARCH ARTICLE
Odour reducing microbial-mineral additive for poultry manure treatment
Kajetan Kalus1(), Sebastian Opaliński1, Devin Maurer2, Somchai Rice2, Jacek A. Koziel2, Mariusz Korczyński1, Zbigniew Dobrzański1, Roman Kołacz1, Beata Gutarowska3
1. Department of Environment Hygiene and Animal Welfare, Wroclaw University of Environmental and Life Sciences, 50-375 Wrocław, Poland
2. Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011, USA
3. Institute of Fermentation Technology and Microbiology, Lódź University of Technology, 90-924 Łódź, Poland
 Download: PDF(597 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Topical application of microbial-mineral manure additive was investigated.

Mineral sorbent treatment reduced VOCs emissions by 31% to 83%.

Bio-additive treatment reduced VOCs emissions 9% to 96%.

There were no significant differences between applied treatments.

Aroma profile of the poultry manure has been determined.

Poultry production systems are associated with emissions of odorous volatile organic compounds (VOCs), ammonia (NH3), hydrogen sulfide (H2S), greenhouse gases, and particulate matter. Development of mitigation technologies for these emissions is important. Previous laboratory-scale research on microbial-mineral treatment has shown to be effective for mitigation of NH3, H2S and amines emissions from poultry manure. The aim of this research was to assess the effectiveness of surface application of a microbial-mineral treatment for other important odorants, i.e., phenolics and sulfur-containing VOCs. Microbial-mineral litter additive consisting of 20% (w/w) of bacteria powder (six strains of heterotrophic bacteria) and 80% of mineral carrier (perlite-bentonite) was used at a dose of 500 g?m-2 (per ~31 kg of manure). Samples of air were collected in two series, 4 and 7 days after application of additives. An odor profile of the poultry manure was determined using simultaneous chemical and sensory analysis. Reduction levels of VOCs determined on Day 4 was between 31% and 83% for mineral adsorbent treatment and in the range of 9% and 96% for microbial-mineral additive, depending on the analyzed compound. Reduction levels on Day 7 were considerably lower than on Day 4, suggesting that the odorous VOCs treatment efficacy is relatively short. There was no significant difference between treatments consisting of microbial-mineral additive and mineral carrier alone.

Keywords Odour mitigation      Poultry manure additive      GC-MS-Olfactometry      Volatile organic compounds     
Corresponding Author(s): Kajetan Kalus   
Issue Date: 13 April 2017
 Cite this article:   
Kajetan Kalus,Sebastian Opaliński,Devin Maurer, et al. Odour reducing microbial-mineral additive for poultry manure treatment[J]. Front. Environ. Sci. Eng., 2017, 11(3): 7.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-017-0928-4
https://academic.hep.com.cn/fese/EN/Y2017/V11/I3/7
Fig.1  Laboratory-scale system for controlled studies of surficial treatments of poultry manure and mitigation of odour and gaseous emissions at Iowa State University
Fig.2  Comparison of % reduction in target gas emissions, Day 4
compound RT / min spectral match with MS database Day 4 Day 7
C MA MMLA SEM P-value C MA MMLA SEM P-value
H SD H SD H SD H SD H SD H SD
1. methanethiol 2.80 86% 12723 9125 7244 4430 3516 1104 1698 0.0294 4126 1225 5339 1916 6444 3176 468 0.2269
2. dimethyl sulfide 3.17 93% 100273 71083 18316 17684 3555 971 16984 0.0463 15884 16852 11845 11439 16268 11947 2917 0.6387
3. 2-butanone 4.15 74% 72537 53920 12340 11897 2879 311 12589 0.0151 16463 17514 14830 16224 13967 9853 3074 0.8671
4. 2-butanol 5.22 79% 16139 6138 3502 2444 14640 19361 3503 0.0961 13108 15861 10728 9628 7567 4230 2294 0.9828
5. 2-pentanone 5.60 59% 15271 9187 4170 3129 2298 1098 2154 0.022 2655 1695 4304 3228 6456 3864 706 0.1572
6. s-methyl thioacetate 6.37 93% 8170 3478 1690 774 1413 442 1002 0.0066 3516 3716 2636 1980 1436 946 551 0.4263
7. dimethyl disulfide 7.25 94% 800227 790731 513895 513207 129163 126608 148947 0.2443 19666 20920 6995 1875 62689 46311 8056 0.0225
8. methyl ethyl disulfide 9.55 88% 15019 16269 9489 10108 1304 227 3160 0.0423 1001 249 3438 4942 1634 396 736 0.1389
9. 2-hepatanone 10.87 81% 9830 7951 6797 6849 1991 948 1670 0.2963 2404 1820 1822 1028 3246 1817 337 0.2758
10. 3-octanone 13.32 93% 18672 17429 8445 8031 1834 729 3327 0.0716 3036 1409 4208 3260 3150 1796 488 0.8176
11. dimethyl trisulfide 14.07 95% 441651 484344 112144 100126 50238 19648 80870 0.1129 15804 14597 5569 4293 38127 29594 4846 0.0718
12. 2-acetylfuran 14.48 54% 12110 10497 5762 5490 2650 1919 1933 0.1661 1676 853 3040 3049 1966 890 436 0.8043
13. phenol 21.87 94% 287710 173152 136910 82087 209976 132015 34648 0.3295 143685 132660 109257 144833 156696 149677 28073 0.5458
14. 4-methylphenol 23.15 94% 28404 22409 10343 5932 11713 7108 3753 0.3505 12585 11991 13431 13327 6345 2967 2312 0.7562
15. 4-ethylphenol 24.58 94% 65738 63272 25621 19660 24479 17635 10164 0.5195 41488 35413 34562 26047 28151 18146 5646 0.8190
Tab.1  Effect of investigated treatments on selected tentatively identified VOCs (mean, n = 6)
Fig.3  Comparison of % reduction in target gas emissions, Day 7
AT / min odor corresponding compound
2.89 animal/fecal methanethiol
3.20 hay/straw dimethyl sulfide
6.24 characteristic s-methyl thioacetate
6.80 sweet
7.37 fecal dimethyl disulfide
8.97 characteristic
9.24 sweet/berry
13.36 mushroom 3-octanone
14.12 sauerkraut dimethyl trisulfide
16.07 burnt bacon
16.23 soil/dusty
18.97 sour/dusty
19.37 burnt bacon
19.92 rotten eggs
Tab.2  Summary of sensory analyses on aromas and odors emitted from poultry manure
Fig.4  Gas sample comparison of aromagram (bold line) and chromatogram (thin line) resulting from a simultaneous chemical and sensory analyses. An image generated from AromaTrax software by a panelist assessing separated compounds eluting from the sniff port
Fig.5  Aroma intensity reduction of odorants eluting from GC column determined by panelist at the sniff port of GC-MS-O, Day 4
Fig.6  Aroma intensity reduction of odorants eluting from GC column determined by panelist at the sniff port of GC-MS-O, Day 7
1 European Commission. Poultry Meat—Agriculture and Rural Development. Available online at  ( accessed March 8, 2016)
2 Hayes E T, Curran  T P, Dodd  V A. Odour and ammonia emissions from intensive poultry units in Ireland. Bioresource Technology, 2006, 97(7): 933–939
https://doi.org/10.1016/j.biortech.2005.04.024 pmid: 15964188
3 Donham K, Yeggy  J, Dague R . Production rates of toxic gases from liquid swine manure: health implications for workers and animals in swine confinement buildings. Biological Wastes, 1988, 24(3): 161–173
https://doi.org/10.1016/0269-7483(88)90059-6
4 Ubeda Y, Lopez-Jimenez  P A, Nicolas  J, Calvet S . Strategies to control odours in livestock facilities: a critical review. Spanish Journal of Agricultural Research, 2013, 11(4): 1004–1015
https://doi.org/10.5424/sjar/2013114-4180
5 Maurer D L, Koziel  J A, Harmon  J D, Hoff  S J, Rieck-Hinz  A M, Andersen  D S. Summary of performance data for technologies to control gaseous, odor, and particulate emissions from livestock operations: air management practices assessment tool (AMPAT). Data in Brief, 2016, 7: 1413–1429
https://doi.org/10.1016/j.dib.2016.03.070 pmid: 27158660
6 Ye F X, Zhu  R F, Li  Y. Deodorization of swine manure slurry using horseradish peroxidase and peroxides. Journal of Hazardous Materials, 2009, 167(1–3): 148–153
https://doi.org/10.1016/j.jhazmat.2008.12.096 pmid: 19171425
7 Govere E M, Tonegawa  M, Bruns M A ,  Wheeler E F ,  Heinemann P H ,  Kephart K B ,  Dec J. Deodorization of swine manure using minced horseradish roots and peroxides. Journal of Agricultural and Food Chemistry, 2005, 53(12): 4880–4889
https://doi.org/10.1021/jf0404290 pmid: 15941330
8 Yan Z, Liu  X, Yuan Y ,  Liao Y, Li  X. Deodorization study of the swine manure with two yeast strains. Biotechnology and Bioprocess Engineering; BBE, 2013, 18(1): 135–143
https://doi.org/10.1007/s12257-012-0313-x
9 Buelna G, Dubé  R, Turgeon N . Pig manure treatment by organic bed biofiltration. Desalination, 2008, 231(1–3): 297–304
https://doi.org/10.1016/j.desal.2007.11.049
10 Chen L, Hoff  S, Cai L ,  Koziel J ,  Zelle B . Evaluation of wood chip-based biofilters to reduce odor, hydrogen sulfide, and ammonia from swine barn ventilation air. Journal of the Air & Waste Management Association, 2009, 59(5): 520–530
https://doi.org/10.3155/1047-3289.59.5.520 pmid: 19583152
11 Borowski S, Gutarowska  B, Durka K ,  Korczyński M ,  Opaliński S ,  Kołacz R . Biological deodorization of organic fertilizers. Przemysl Chemiczny, 2010, 89(4): 318–323 (in Polish)
12 Matusiak K, Borowski  S, Opaliński S ,  Bakuła T ,  Kołacz R ,  Gutarowska B . Impact of a microbial-mineral biopreparation on microbial community and deodorization of manures. Acta Biochimica Polonica, 2015, 62(4): 791–798
https://doi.org/10.18388/abp.2015_1135 pmid: 26645325
13 Maruthai Pillai S ,  Parcsi G ,  Wang X, Stuetz  R. Odour abatement of poultry litter using odour control products. Chemical Engineering Transactions, 2012, 30: 247–252
14 Czyż K, Patkowska-Sokoła  B, Dobrzański Z, Opaliński S . Application of nanosilver based preparation in ammonia reduction in broiler house. Archives Animal Breeding, 2013, 56(82): 823–832
15 Opaliński S ,  Korczyński M ,  Kołacz R ,  Dobrzański Z ,  Żmuda K . Application of selected aluminosilicates for ammonia adsorption. Przemysl Chemiczny, 2009, 88(5): 540–543 (in Polish)
16 Opaliński S ,  Korczyński M ,  Szołtysik M ,  Kołacz R ,  Dobrzański Z ,  Gbiorczyk W . Application of mineral sorbents to filtration of air contaminated by odorous compounds. Chemical Engineering Transactions, 2010, 23: 369–374
17 Cai L, Koziel  J A, Liang  Y, Nguyen A T ,  Xin H. Evaluation of zeolite for control of odorants emissions from simulated poultry manure storage. Journal of Environmental Quality, 2007, 36(1): 184–193
https://doi.org/10.2134/jeq2006.0052 pmid: 17215226
18 Matusiak K, Oleksy  M, Borowski S ,  Nowak A ,  Korczyński M ,  Dobrzański Z ,  Gutarowska B . The use of Yucca schidigera and microbial preparation for poultry manure deodorization and hygienization. Journal of Environmental Management, 2016, 170: 50–59
https://doi.org/10.1016/j.jenvman.2016.01.007 pmid: 26797046
19 Winkel A, Mosquera  J, Koerkamp P ,  Ogink N ,  Aarnink A . Emissions of particulate matter from animal houses in the Netherlands. Atmospheric Environment, 2015, 111: 202–212
https://doi.org/10.1016/j.atmosenv.2015.03.047
20 Gutarowska B, Matusiak  K, Borowski S ,  Rajkowska A ,  Brycki B . Removal of odorous compounds from poultry manure by microorganisms on perlite—bentonite carrier. Journal of Environmental Management, 2014, 141: 70–76
https://doi.org/10.1016/j.jenvman.2014.03.017 pmid: 24768836
21 Cai L, Koziel  J A, Lo  Y C, Hoff  S J. Characterization of volatile organic compounds and odorants associated with swine barn particulate matter using solid-phase microextraction and gas chromatography-mass spectrometry-olfactometry. Journal of Chromatography. A, 2006, 1102(1–2): 60–72
https://doi.org/10.1016/j.chroma.2005.10.040 pmid: 16297922
22 Tymczyna L, Chmielowiec-Korzeniowska  A, Saba L . Biological treatment of laying house air with open biofilter use. Polish Journal of Environmental Studies, 2004, 13(4): 425–428
23 Chmielowiec-Korzeniowska A ,  Tymczyna L ,  Drabik A . Use of organic and mineral materials for biofiltration of air in hatcheries. Annals of Animal Science, 2007, 7(1): 153–162
24 Opaliński S ,  Korczyński M ,  Szołtysik M ,  Dobrzański Z ,  Kołacz R . Application of aluminosilicates for mitigation of ammonia and volatile organic compound emissions from poultry manure. Open Chemistry, 2015, 13(1): 967–973
https://doi.org/10.1515/chem-2015-0115
25 Frank D, Owen  C, Patterson J . Solid phase microextraction (SPME) combined with gas-chromatography and olfactometry-mass spectrometry for characterization of cheese aroma compounds. Lebensmittel-Wissenschaft+ Technologie, 2004, 37(2): 139–154
https://doi.org/10.1016/S0023-6438(03)00144-0
26 Dunlop M W, Blackall  P J, Stuetz  R M, Burns  R, Xin H ,  Hatfield J . Odour emissions from poultry litter—A review litter properties, odour formation and odorant emissions from porous materials. Journal of Environmental Management, 2016, 177: 306–319
https://doi.org/10.1016/j.jenvman.2016.04.009 pmid: 27111649
27 Parcsi G, Stuetz  R M. Biotechniques for Air Pollution Control II. La Coruña, Spain: Universidade da Coruña-Publisher, 2007, 15–28ISBN: 978–84–9749–258–4
28 Maurer D, Koziel  J A, Bruning  K, Parker D B . Pilot scale testing of renewable biocatalyst for swine manure treatment and mitigation of odorous VOCs, ammonia, and hydrogen sulfide gas emissions. Atmospheric Environment, 2017, 150: 313–321
https://doi.org/10.1016/j.atmosenv.2016.11.021
[1] Kun Zhang, Jialuo Xu, Qing Huang, Lei Zhou, Qingyan Fu, Yusen Duan, Guangli Xiu. Precursors and potential sources of ground-level ozone in suburban Shanghai[J]. Front. Environ. Sci. Eng., 2020, 14(6): 92-.
[2] Wenjing Lu, Yawar Abbas, Muhammad Farooq Mustafa, Chao Pan, Hongtao Wang. A review on application of dielectric barrier discharge plasma technology on the abatement of volatile organic compounds[J]. Front. Environ. Sci. Eng., 2019, 13(2): 30-.
[3] Pu ZHAO,Lizhong ZHU. Optimized porous clay heterostructure for removal of acetaldehyde and toluene from indoor air[J]. Front. Environ. Sci. Eng., 2016, 10(2): 219-228.
[4] Hengyi DUAN,Xiaotu LIU,Meilin YAN,Yatao WU,Zhaorong LIU. Characteristics of carbonyls and volatile organic compounds (VOCs) in residences in Beijing, China[J]. Front. Environ. Sci. Eng., 2016, 10(1): 73-84.
[5] Jinying XI,Insun KANG,Hongying HU,Xian ZHANG. A biofilter model for simultaneous simulation of toluene removal and bed pressure drop under varied inlet loadings[J]. Front. Environ. Sci. Eng., 2015, 9(3): 554-562.
[6] Wei WEI, Shuxiao WANG, Jiming HAO, Shuiyuan CHENG. Trends of chemical speciation profiles of anthropogenic volatile organic compounds emissions in China, 2005–2020[J]. Front Envir Sci Eng, 2014, 8(1): 27-41.
[7] Junhua LI, Hong HE, Chun HU, Jincai ZHAO. The abatement of major pollutants in air and water by environmental catalysis[J]. Front Envir Sci Eng, 2013, 7(3): 302-325.
[8] Can WANG, Jinying XI, Hongying HU, Insun KANG. Effects of design parameters on performance and cost analysis of combined ultraviolet-biofilter systems treating gaseous chlorobenzene based on mathematical modeling[J]. Front Envir Sci Eng, 2012, 6(4): 588-594.
[9] Yongtao LI, Christina L. MCCARTY, Ed J. GEORGE. Determination of selected semi-volatile organic compounds in water using automated online solid-phase extraction with large-volume injection/gas chromatography/mass spectrometry[J]. Front Envir Sci Eng Chin, 2011, 5(3): 417-425.
[10] Dan WU, Chunyan ZHANG, Li HAO, Changjun GENG, Xie QUAN, . Removal of multicomponent VOCs in off-gases from an oil refining wastewater treatment plant by a compost-based biofilter system[J]. Front.Environ.Sci.Eng., 2009, 3(4): 483-491.
[11] LU Bin, JI Min, YU Xin, FENG Tao, YAO Shuiliang. Benzene conversion by manganese dioxide assisted silent discharge plasma[J]. Front.Environ.Sci.Eng., 2007, 1(4): 477-481.
[12] LU Sihua, LIU Ying, SHAO Min, HUANG Shan. Chemical speciation and anthropogenic sources of ambient volatile organic compounds (VOCs) during summer in Beijing, 2004[J]. Front.Environ.Sci.Eng., 2007, 1(2): 147-152.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed