Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2017, Vol. 11 Issue (3) : 8    https://doi.org/10.1007/s11783-017-0929-3
RESEARCH ARTICLE
Comparative study on microbial community in intermittently aerated sequencing batch reactors (SBR) and a traditional SBR treating digested piggery wastewater
Xiaolin Sheng1, Rui Liu1(), Xiaoyan Song1, Lujun Chen1,2(), Kawagishi Tomoki3
1. Zhejiang Provincial Key Laboratory of Water Science and Technology, Department of Environment in Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Jiaxing 314006, China
2. School of Environment, Tsinghua University, Beijing 100084, China
3. Aqua Development Center, Mitsubishi Rayon Co. Ltd., Toyohashi 4408601, Japan
 Download: PDF(1879 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

IASBRs achieved a higher level of TN and NH4+-N removals than the SBR.

IASBRs had higher abundance of denitrification–related bacteria than the SBR.

The denitrifiers abundance was correlated with the TN removal rate.

The NH4+–N removal rate might relate to the AOB activity.

A traditional sequencing batch reactor (SBR) and two intermittently aerated sequencing batch reactors (IASBRs) were parallelly operated for treating digested piggery wastewater. Their microbial communities were analyzed, and the nitrogen removal performance was compared during the long–term run. IASBRs demonstrated higher removal rates of total nitrogen (TN) and ammonium nitrogen (NH4+-N) than the SBR, and also demonstrated higher resistance against TN shock load. It was found that the more switch times between aerobic/anoxic in an IASBR, the higher the removal rates of TN and NH4+–N. All the reactors were predominated by Thauera, Nitrosomonas and Nitrobacter, which were considered to be species of denitrifiers, ammonium oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB), respectively. However, the abundance and diversity was of great difference. Compared with SBR, IASBRs achieved higher abundance of denitrification–related bacteria. IASBR 1 with four aerobic/anoxic switch times was detected with 25.63% of Thauera, higher than that in IASBR 2 with two aerobic/anoxic switch times (11.57% of Thauera), and much higher than that in the SBR (only 6.19% of Thauera). IASBR 2 had the highest percentage of AOB, while IASBR 1 had the lowest percentage. The denitrifiers abundance was significantly positive correlated with the TN removal rate. However, the NH4+–N removal rate showed no significant correlation with the AOB abundance, but might relate to the AOB activity which was influenced by the average free ammonium (FA) concentration. Nitrobacter was the only NOB genus detectable in all reactors, and were less than 0.03%.

Keywords Digested piggery wastewater      Intermittent aeration      Microbial community      Partial nitrification–denitrification process      Sequencing batch reactor (SBR)     
Corresponding Author(s): Rui Liu,Lujun Chen   
Issue Date: 19 April 2017
 Cite this article:   
Xiaolin Sheng,Rui Liu,Xiaoyan Song, et al. Comparative study on microbial community in intermittently aerated sequencing batch reactors (SBR) and a traditional SBR treating digested piggery wastewater[J]. Front. Environ. Sci. Eng., 2017, 11(3): 8.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-017-0929-3
https://academic.hep.com.cn/fese/EN/Y2017/V11/I3/8
stage1
(1 – 61 d)
stage2
(62 – 107 d)
stage3
(108 – 149 d)
HRT/d533
TN volumetric load/ kg? (m3?d)–10.250.400.40
COD/TN2.52.13.0
Cycle of operation mode (8 h–cycles per day)IASBR 1#filling, switched four times between aerobic (60 min) /anoxic (40 min), settling and drawing
IASBR 2#filling, switched twice between aerobic (120 min) /anoxic (80 min), settling and drawing
SBRfilling, switched once between aerobic (240 min) / anoxic (160 min), settling and drawing
Tab.1  Operational conditions in the three reactors
Fig.1  Profile of NH4+–N, TN, NO2–N and COD in three reactors
Fig.2  Profiles of FA in a typical operational cycle of the three reactors
reactorsOUTsgood’s coverage/%Chao–1 indexShannon indexACE index
IASBR 1#161296.739744.185766
IASBR 2#153397.230784.384472
SBR115797.623154.003114
Tab.2  Diversity of microbial community in the three reactors
Fig.3  Bacterial community structure at phylum level (a), the classes in Proteobacteria (b) and evolution of bacterial community at genus level (c)
Fig.4  Bacterial community structure at genus level in IASBR 1# (a), IASBR 2# (b) and SBR (c)
1 Wang L K, Zeng G M, Yang Z H, Luo L L, Xu H Y, Huang J. Operation of partial nitrification to nitrite of landfill leachate and its performance with respect to different oxygen conditions. Biochemical Engineering Journal, 2014, 87: 62–68
https://doi.org/10.1016/j.bej.2014.03.013
2 Okabe S, Oshiki M, Takahashi Y, Satoh H. Development of long–term stable partial nitrification and subsequent anammox process. Bioresource Technology, 2011, 102(13): 6801–6807
https://doi.org/10.1016/j.biortech.2011.04.011
3 Katsogiannis A, Kornaros M, Lyberatos G. Enhanced nitrogen removal in SBRs bypassing nitrate generation accomplished by multiple aerobic/anoxic phase pairs. Water Science and Technology, 2003, 47(11): 53–59
4 Li J, Elliott D, Nielsen M, Healy M G, Zhan X. Long–term partial nitrification in an intermittently aerated sequencing batch reactor (SBR) treating ammonium–rich wastewater under controlled oxygen–limited conditions. Biochemical Engineering Journal, 2011, 55(3): 215–222
https://doi.org/10.1016/j.bej.2011.05.002
5 Li J, Meng J, Li J, Wang C, Deng K, Sun K, Buelna G. The effect and biological mechanism of COD/TN ratio on nitrogen removal in a novel upflow microaerobic sludge reactor treating manure–free piggery wastewater. Bioresource Technology, 2016, 209: 360–368
https://doi.org/10.1016/j.biortech.2016.03.008
6 Sotres A, Cerrillo M, Viñas M, Bonmatí A. Nitrogen removal in a two–chambered microbial fuel cell: establishment of a nitrifying–denitrifying microbial community on an intermittent aerated cathode. Chemical Engineering Journal, 2016, 284: 905–916
https://doi.org/10.1016/j.cej.2015.08.100
7 MEPPRC (Ministry Environmental Protection of People’s Republic of China). Standard Methods for Water and Wastewater Monitoring and Analysis. 4th ed. Beijing: China Environmental Science Press, 2002, 238–239; 252–256; 260–263; 266–269; 345–356
8 Zhang J, Lv C, Tong J, Tong J, Wei Y. Optimization and microbial community analysis of anaerobic co-digestion of food waste and sewage sludge based on microwave pretreatment. Bioresource Technology, 2016, 200(2): 253–261
https://doi.org/10.1016/j.biortech.2015.10.037
9 Kornaros M S N D, Lyberatos G. Partial nitrification/denitrification can be attributed to the slow response of nitrite oxidizing bacteria to periodic anoxic disturbances. Environmental Science & Technology, 2010, 44(19): 7245–7253
https://doi.org/10.1021/es100564j
10 Alzate M J C, Caravelli A H, Zaritzky N E. Nitrification and aerobic denitrification in anoxic–aerobic sequencing batch reactor. Bioresource Technology, 2016, 200: 380–387
https://doi.org/10.1016/j.biortech.2015.10.024
11 Zhang G, Jiao Y, Lee D J. Leachate treatment using anoxic/oxic–bioelectrochemical reactor with intermittent aeration. Journal of the Taiwan Institute of Chemical Engineers, 2015, 58: 401–406
https://doi.org/10.1016/j.jtice.2015.06.019
12 Chen A C, Chang J S, Yang L, Yang Y H. Nitrogen removal from sewage by continuous flow SBR system with intermittent aeration. Environmental Technology, 2001, 22(5): 553–559
https://doi.org/10.1080/09593332208618262
13 Li J, Healy M G, Zhan X, Nortan D, Rodgers M. Effect of aeration rate on nutrient removal from slaughterhouse wastewater in intermittently aerated sequencing batch reactors. Water, Air, and Soil Pollution, 2008, 192(1–4): 251–261
https://doi.org/10.1007/s11270-008-9652-9
14 Li H, Zhou S, Huang G, Xu B. Partial nitritation of landfill leachate with varying influent composition under intermittent aeration conditions. Process Safety and Environmental Protection, 2013, 91(4): 285–294
https://doi.org/10.1016/j.psep.2012.05.009
15 Zhang M, Lawlor P G, Wu G, Lynch B, Zhan X. Partial nitrification and nutrient removal in intermittently-aerated sequencing batch reactors treating separated digestate liquid after anaerobic digestion of pig manure. Bioprocess and Biosystems Engineering, 2011, 34(9): 1049–1056
https://doi.org/10.1007/s00449-011-0556-5
16 Anthonisen A C, Loehr R C, Prakasam T B S, Srinath E G. Inhibition of nitrification by ammonia and nitrous acid. Journal- Water Pollution Control Federation, 1976, 48(5): 835–852
17 Bae W, Baek S, Chung J, Lee Y. Optimal operational factors for nitrite accumulation in batch reactors. Biodegradation, 2001, 12(5): 359–366
https://doi.org/10.1023/A:1014308229656
18 Yang S F, Tay J H, Liu Y. Inhibition of free ammonia to the formation of aerobic granules. Biochemical Engineering Journal, 2004, 17(1): 41–48
https://doi.org/10.1016/S1369-703X(03)00122-0
19 Jia S, Han H, Zhuang H, Hou B, Li K. Impact of high external circulation ratio on the performance of anaerobic reactor treating coal gasification wastewater under thermophilic condition. Bioresource Technology, 2015, 192: 507–513
https://doi.org/10.1016/j.biortech.2015.05.106
20 Yang S, Yang F, Fu Z, Wang T, Lei R. Simultaneous nitrogen and phosphorus removal by a novel sequencing batch moving bed membrane bioreactor for wastewater treatment. Journal of Hazardous Materials, 2010, 175(1–3): 551–557
https://doi.org/10.1016/j.jhazmat.2009.10.040
21 Peng Y, Zhu G. Biological nitrogen removal with nitrification and denitrification via nitrite pathway. Applied Microbiology and Biotechnology, 2006, 73(1): 15–26
https://doi.org/10.1007/s00253-006-0534-z
22 Yi J, Dong B, Jin J, Dai X. Effect of increasing total solids contents on anaerobic digestion of food waste under mesophilic conditions: performance and microbial characteristics analysis. PLoS One, 2014, 9(7): e102548
https://doi.org/10.1371/journal.pone.0102548
23 Spring S, Jackel U, Wagner M, Kampfer P. Ottowia thiooxydans gen. nov., sp. nov., a novel facultatively anaerobic, N2O–producing bacterium isolated from activated sludge, and transfer of Aquaspirillum gracile to Hylemonella gracilis gen. nov., comb. nov. International Journal of Systematic and Evolutionary Microbiology, 2004, 54(Pt 1): 99–106
https://doi.org/10.1099/ijs.0.02727-0
24 Yang Q, Xiong P, Ding P, Chu L, Wang J. Treatment of petrochemical wastewater by microaerobic hydrolysis and anoxic/oxic processes and analysis of bacterial diversity. Bioresource Technology, 2015, 196: 169–175
https://doi.org/10.1016/j.biortech.2015.07.087
25 Anders H J, Kaetzke A, Kampfer P, Ludwig W, Fuchs G. Taxonomic position of aromatic–degrading denitrifying pseudomonad Strains K 172 and KB 740 and their description as new members of the genera Thauera, as Thauera aromatica sp. nov., and Azoarcus, as Azoarcus evansii sp. nov., respectively, members of the beta subclass of the Proteobacteria. International Journal of Systematic and Evolutionary Microbiology, 1995, 45(2): 327–333
26 Mechichi T, Patel B K C, Sayadi S. Anaerobic degradation of methoxylated aromatic compounds by Clostridium methoxybenzovorans and a nitrate–reducing bacterium Thauera sp. strain Cin3,4. International Biodeterioration & Biodegradation, 2005, 56(4): 224–230
https://doi.org/10.1016/j.ibiod.2005.09.001
27 Dubbels B L, Sayavedra–Soto L A, Bottomley P J, Arp D J. Thauera butanivorans sp. nov., a C2–C9 alkane–oxidizing bacterium previously referred to as ‘Pseudomonas butanovora’. International Journal of Systematic and Evolutionary Microbiology, 2009, 59(Pt 7): 1576–1578
https://doi.org/10.1099/ijs.0.000638-0
28 Mao Y, Xia Y, Zhang T. Characterization of Thauera–dominated hydrogen–oxidizing autotrophic denitrifying microbial communities by using high–throughput sequencing. Bioresource Technology, 2013, 128: 703–710
https://doi.org/10.1016/j.biortech.2012.10.106
29 Song B, Palleroni N J, Kerkhof L J, Haggblom M M. Characterization of halobenzoate–degrading, denitrifying Azoarcus and Thauera isolates and description of Thauera chlorobenzoica sp. nov. International Journal of Systematic and Evolutionary Microbiology, 2001, 51(Pt 2): 589–602
https://doi.org/10.1099/00207713-51-2-589
30 Huang Z, Gedalanga P B, Asvapathanagul P, Olson B H. Influence of physicochemical and operational parameters on Nitrobacter and Nitrospira communities in an aerobic activated sludge bioreactor. Water Research, 2010, 44(15): 4351–4358
https://doi.org/10.1016/j.watres.2010.05.037
31 Kim K H, Im W T, Lee S T. Hymenobacter soli sp. nov., isolated from grass soil. International Journal of Systematic and Evolutionary Microbiology, 2008, 58(Pt 4): 941–945
https://doi.org/10.1099/ijs.0.64447-0
32 Liu Z P, Wang B J, Liu Y H, Liu S J. Novosphingobium taihuense sp. nov., a novel aromatic–compound–degrading bacterium isolated from Taihu Lake, China. International Journal of Systematic and Evolutionary Microbiology, 2005, 55(Pt 3): 1229–1232
https://doi.org/10.1099/ijs.0.63468-0
33 Liu Y, Balkwill D L, Aldrich H C R, Drake G, Boone D R. Characterization of the anaerobic propionate–degrading syntrophs Smithella propionica gen. nov., sp. nov. and Syntrophobacter wolinii. International Journal of Systematic and Evolutionary Microbiology, 1999, 49(2): 545–556
34 Zeilstraryalls J J, Kaplan S. Aerobic and anaerobic regulation in Rhodobacter sphaeroides 2.4. 1: the role of the fnrL gene. Journal of Bacteriology, 1995, 177(22): 6422–6431
https://doi.org/10.1128/jb.177.22.6422-6431.1995
35 Foesel B U, Drake H L, Schramm A. Defluviimonas denitrificans gen. nov., sp. nov., and Pararhodobacter aggregans gen. nov., sp. nov., non–phototrophic Rhodobacteraceae from the biofilter of a marine aquaculture. Systematic and Applied Microbiology, 2011, 34(7): 498–502
https://doi.org/10.1016/j.syapm.2011.08.006
[1] Qinxue Wen, Shuo Yang, Zhiqiang Chen. Mesophilic and thermophilic anaerobic digestion of swine manure with sulfamethoxazole and norfloxacin: Dynamics of microbial communities and evolution of resistance genes[J]. Front. Environ. Sci. Eng., 2021, 15(5): 94-.
[2] Ruijie Li, Mengmeng Zhou, Shilong He, Tingting Pan, Jing Liu, Jiabao Zhu. Deciphering the effect of sodium dodecylbenzene sulfonate on up-flow anaerobic sludge blanket treatment of synthetic sulfate-containing wastewater[J]. Front. Environ. Sci. Eng., 2021, 15(5): 91-.
[3] Weichuan Qiao, Rong Li, Tianhao Tang, Achuo Anitta Zuh. Removal, distribution and plant uptake of perfluorooctane sulfonate (PFOS) in a simulated constructed wetland system[J]. Front. Environ. Sci. Eng., 2021, 15(2): 20-.
[4] Yanqing Duan, Aijuan Zhou, Xiuping Yue, Zhichun Zhang, Yanjuan Gao, Yanhong Luo, Xiao Zhang. Acceleration of the particulate organic matter hydrolysis by start-up stage recovery and its original microbial mechanism[J]. Front. Environ. Sci. Eng., 2021, 15(1): 12-.
[5] Yuhan Zheng, Zhiguo Su, Tianjiao Dai, Feifei Li, Bei Huang, Qinglin Mu, Chuanping Feng, Donghui Wen. Identifying human-induced influence on microbial community: A comparative study in the effluent-receiving areas in Hangzhou Bay[J]. Front. Environ. Sci. Eng., 2019, 13(6): 90-.
[6] Aoshuang Jing, Tao Liu, Xie Quan, Shuo Chen, Yaobin Zhang. Enhanced nitrification in integrated floating fixed-film activated sludge (IFFAS) system using novel clinoptilolite composite carrier[J]. Front. Environ. Sci. Eng., 2019, 13(5): 69-.
[7] Qinqin Liu, Miao Li, Rui Liu, Quan Zhang, Di Wu, Danni Zhu, Xuhui Shen, Chuanping Feng, Fawang Zhang, Xiang Liu. Removal of trimethoprim and sulfamethoxazole in artificial composite soil treatment systems and diversity of microbial communities[J]. Front. Environ. Sci. Eng., 2019, 13(2): 28-.
[8] Xiaohui Wang, Shuai Du, Tao Ya, Zhiqiang Shen, Jing Dong, Xiaobiao Zhu. Removal of tetrachlorobisphenol A and the effects on bacterial communities in a hybrid sequencing biofilm batch reactor-constructed wetland system[J]. Front. Environ. Sci. Eng., 2019, 13(1): 14-.
[9] Guangqing Song, Hongbo Xi, Xiumei Sun, Yudong Song, Yuexi Zhou. Effect of 2-butenal manufacture wastewater to methanogenic activity and microbial community[J]. Front. Environ. Sci. Eng., 2018, 12(5): 10-.
[10] Yonglei Wang, Baozhen Liu, Kefeng Zhang, Yongjian Liu, Xuexin Xu, Junqi Jia. Investigate of in situ sludge reduction in sequencing batch biofilm reactor: Performances, mechanisms and comparison of different carriers[J]. Front. Environ. Sci. Eng., 2018, 12(5): 5-.
[11] Zechong Guo, Lei Gao, Ling Wang, Wenzong Liu, Aijie Wang. Enhanced methane recovery and exoelectrogen-methanogen evolution from low-strength wastewater in an up-flow biofilm reactor with conductive granular graphite fillers[J]. Front. Environ. Sci. Eng., 2018, 12(4): 13-.
[12] Liguo Zhang, Qiaoying Ban, Jianzheng Li. Microbial community dynamics at high organic loading rates revealed by pyrosequencing during sugar refinery wastewater treatment in a UASB reactor[J]. Front. Environ. Sci. Eng., 2018, 12(4): 4-.
[13] Munawar Ali, Junli Zhang, Roberto Raga, Maria Cristina Lavagnolo, Alberto Pivato, Xu Wang, Yuanyuan Zhang, Raffaello Cossu, Dongbei Yue. Effectiveness of aerobic pretreatment of municipal solid waste for accelerating biogas generation during simulated landfilling[J]. Front. Environ. Sci. Eng., 2018, 12(3): 5-.
[14] Ming Zeng, Ping Li, Nan Wu, Xiaofang Li, Chang Wang. Preparation and characterization of a novel microorganism embedding material for simultaneous nitrification and denitrification[J]. Front. Environ. Sci. Eng., 2017, 11(6): 15-.
[15] Xiaoyan Song, Rui Liu, Lujun Chen, Baogang Dong, Tomoki Kawagishi. Advantages of intermittently aerated SBR over conventional SBR on nitrogen removal for the treatment of digested piggery wastewater[J]. Front. Environ. Sci. Eng., 2017, 11(3): 13-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed