Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2017, Vol. 11 Issue (3) : 9    https://doi.org/10.1007/s11783-017-0930-x
RESEARCH ARTICLE
Hydrothermal carbonization of livestock mortality for the reduction of pathogens and microbially-derived DNA
Thomas F. Ducey1(), Jessica C. Collins2, Kyoung S. Ro1, Bryan L. Woodbury3, D. Dee Griffin4
1. Coastal Plains Soil, Water, and Plant Research Center, Agricultural Research Service, United States Department of Agriculture, Florence, SC?29501, USA
2. South Carolina Governor’s School for Science and Mathematics, Hartsville, SC 29550, USA
3. U.S. Meat Animal Research Center, Agricultural Research Service, United States Department of Agriculture, Clay Center, NE 68933, USA
4. University of Nebraska-Lincoln, Great Plains Veterinary Education Center, Lincoln, NE 68588, USA
 Download: PDF(1037 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Hydrothermal carbonization treatment eliminates pathogens and microbial DNA.

Hydrothermal carbonization treatment worked at both 150°C and 200°C.

Hydrothermal carbonization treatment worked in both bovine bone and tissue.

30 minute treatment was sufficient for pathogen kill and complete DNA degradation.

Hydrothermal carbonization (HTC), utilizing high temperature and pressure, has the potential to treat agricultural waste via inactivating pathogens, antibiotic resistance genes (ARG), and contaminants of emerging concern (CEC) in a environmental and economical manner. Livestock mortality is one facet of agricultural waste that can pose a threat to the surrounding environment. While several methods are utilized to treat livestock mortality, there remains a paucity of data on the elimination of microbially-derived DNA in these treatment practices. This DNA, most notably ARGs, if it survives treatment can be reintroduced in agricultural environments where it could potentially be passed to pathogens, posing a risk to animal and human populations. HTC treatments have been successfully utilized for the treatment of CECs, however very little is understood on how ARGs survive HTC treatment. This study aims to fill this knowledge gap by examining the survivability of microbially-derived DNA in the HTC treatment of livestock mortality. We examined three treatment temperatures (100°C, 150°C, and 200°C) at autogenic pressures at three treatment times (30, 60, and 240 min). We examined the amplification of a plasmid-borne reporter gene carried byEscherichia coli DH10B introduced to both beef bone and tissue. Results indicate that while all three temperatures, at all treatment times, were suitable for complete pathogen kill, only temperatures of 150°C and 200°C were sufficient for eliminating microbial DNA. These results serve as the basis for future potential HTC treatment recommendations for livestock mortality when considering the elimination of pathogens and ARGs.

Keywords High-temperature carbonization      Microbial DNA      Livestock mortality     
Corresponding Author(s): Thomas F. Ducey   
Issue Date: 13 April 2017
 Cite this article:   
Thomas F. Ducey,Jessica C. Collins,Kyoung S. Ro, et al. Hydrothermal carbonization of livestock mortality for the reduction of pathogens and microbially-derived DNA[J]. Front. Environ. Sci. Eng., 2017, 11(3): 9.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-017-0930-x
https://academic.hep.com.cn/fese/EN/Y2017/V11/I3/9
Fig.1  Example of bone sample for testing pathogen and microbially-derived DNA reduction. Panel A represents pre-treatment, Panel B represents post-treatment.
Fig.2  Representative temperature and pressure profiles from Parr reactor for 150℃ (Panel A) and 200℃ (Panel B) with four hour treatment times.
Fig.3  Escherichia coli DH10B CFU after HTC treatment. Inoculant and control samples were grown at 37℃.
Fig.4  Amplification results from DNA extractions after HTC treatment of bovine bone samples at 150℃ (Panel A) and 200℃ (Panel B). Lanes are as follows: 1) inoculant; 2) negative control; 3) 30 min; 4) 60 min; 5) 240 min; 6) New England Biolabs 2-log DNA ladder; 7) positive control.
Fig.5  Amplification results from DNA extractions after HTC treatment of bovine tissue samples at 150℃ (Panel A) and 200℃ (Panel B). Lanes are as follows: 1) inoculant; 2) negative control; 3) 30 min; 4) 60 min; 5) 240 min; 6) New England Biolabs 2-log DNA ladder; 7) positive control.
Fig.6  Representative Bioanalyzer results from DNA extractions after HTC treatment for 30 min at 150℃ and 200℃, along with untreated plasmid. The lower marker is 35 bp while the upper marker is 10,380 bp in length. Ladder lengths (in base pairs) are on left hand side.
Tab.1  Conditions (sample temperatures, reactor pressures, and treatment times) during HTC treatment of livestock mortality bone and tissue samples
Fig.7  Amplification results from DNA extractions after treatment of bovine bone (Panel A) and tissue (Panel B) samples at 100℃. Lanes are as follows: 1) inoculant; 2) negative control; 3) 30 min; 4) 60 min; 5) 240 min; 6) New England Biolabs 2-log DNA ladder; 7) positive control.
1 Sander J E, Warbington  M C, Myers  L M. Selected methods of animal carcass disposal. Journal of the American Veterinary Medical Association, 2002, 220(7): 1003–1005
https://doi.org/10.2460/javma.2002.220.1003
2 Kim H S, Kim  K. Microbial and chemical contamination of groundwater around livestock mortality burial sites in Korea: A review. Geosciences Journal, 2012, 16(4): 479–489
https://doi.org/10.1007/s12303-012-0036-1
3 McLaughlin M R ,  Brooks J P ,  Adeli A ,  Miles D M . Using broiler litter and swine manure lagoon effluent in sawdust-based swine mortality composts: Effects on nutrients, bacteria, and gaseous emissions. Science of the Total Environment, 2015, 532: 265–280
https://doi.org/10.1016/j.scitotenv.2015.05.119
4 Libra J A, Ro  K S, Kammann  C, Funke A ,  Berge N D ,  Neubauer Y ,  Titirici M M ,  Fühner C ,  Bens O, Kern  J, Emmerich K H . Hydrothermal carbonization of biomass residuals: A comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels, 2011, 2(1): 71–106
https://doi.org/10.4155/bfs.10.81
5 Rizzo L, Manaia  C, Merlin C ,  Schwartz T ,  Dagot C ,  Ploy M C ,  Michael I ,  Fatta-Kassinos D . Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: A review. Science of the Total Environment, 2013, 447: 345–360
https://doi.org/10.1016/j.scitotenv.2013.01.032
6 Nielsen K M, Johnsen  P J, Bensasson  D, Daffonchio D . Release and persistence of extracellular DNA in the environment. Environmental Biosafety Research, 2007, 6(1–2): 37–53
https://doi.org/10.1051/ebr:2007031
7 Singer R S, Williams-Nguyen  J. Human health impacts of antibiotic use in agriculture: A push for improved causal inference. Current Opinion in Microbiology, 2014, 19: 1–8
https://doi.org/10.1016/j.mib.2014.05.014
8 Berge N D, Ro  K S, Mao  J, Flora J R ,  Chappell M A ,  Bae S. Hydrothermal carbonization of municipal waste streams. Environmental Science & Technology, 2011, 45(13): 5696–5703
https://doi.org/10.1021/es2004528
9 Oliveira I, Blohse  D, Ramke H G . Hydrothermal carbonization of agricultural residues. Bioresource Technology, 2013, 142: 138–146
https://doi.org/10.1016/j.biortech.2013.04.125
10 Ro K S, Novak  J M, Johnson  M G, Szogi  A A, Libra  J A, Spokas  K A, Bae  S. Leachate water quality of soils amended with different swine manure-based amendments. Chemosphere, 2016, 142: 92–99
https://doi.org/10.1016/j.chemosphere.2015.05.023
11 Sun K, Kang  M J, Ro  K S, Libra  J A, Zhao  Y, Xing B S . Variation in sorption of propiconazole with biochars: The effect of temperature, mineral, molecular structure, and nano-porosity. Chemosphere, 2016, 142: 56–63
https://doi.org/10.1016/j.chemosphere.2015.07.018
12 Sun K, Ro  K, Guo M X ,  Novak J ,  Mashayekhi H ,  Xing B S . Sorption of bisphenol a, 17 alpha-ethinyl estradiol and phenanthrene on thermally and hydrothermally produced biochars. Bioresource Technology, 2011, 102(10): 5757–5763
https://doi.org/10.1016/j.biortech.2011.03.038
13 Changi S M, Faeth  J L, Mo  N, Savage P E . Hydrothermal reactions of biomolecules relevant for microalgae liquefaction. Industrial & Engineering Chemistry Research, 2015, 54(47): 11733–11758
https://doi.org/10.1021/acs.iecr.5b02771
14 Suyama T, Kawaharasaki  M. Decomposition of waste DNA with extended autoclaving under unsaturated steam. BioTechniques, 2013, 55(6): 296–299
https://doi.org/10.2144/000114113
15 Ducey T F, Shriner  A D, Hunt  P G. Nitrification and denitrification gene abundances in swine wastewater anaerobic lagoons. Journal of Environmental Quality, 2011, 40(2): 610–619
https://doi.org/10.2134/jeq2010.0387
16 Lee C L, Ow  D S, Oh  S K. Quantitative real-time polymerase chain reaction for determination of plasmid copy number in bacteria. Journal of Microbiological Methods, 2006, 65(2): 258–267
https://doi.org/10.1016/j.mimet.2005.07.019
17 Woody J M, Walsh  R A, Doores  S, Henning W R ,  Wilson R A ,  Knabel S J . Role of bacterial association and penetration on destruction of Escherichia coli O157:H7 in beef tissue by high pH. Journal of Food Protection, 2000, 63(1): 3–11
https://doi.org/10.4315/0362-028X-63.1.3
18 Rahn O. Physical methods of sterilization of microorganisms. Bacteriological Reviews, 1945, 9(1): 1–47
19 Liao C H, Shollenberger  L M. Survivability and long-term preservation of bacteria in water and in phosphate-buffered saline. Letters in Applied Microbiology, 2003, 37(1): 45–50
https://doi.org/10.1046/j.1472-765X.2003.01345.x
20 Greer S, Zamenhof  S. Studies on depurination of DNA by heat. Journal of Molecular Biology, 1962, 4(3): 123–141
https://doi.org/10.1016/S0022-2836(62)80046-1
21 Nicholson W L ,  Munakata N ,  Horneck G ,  Melosh H J ,  Setlow P . Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiology and Molecular Biology Reviews, 2000, 64(3): 548–572
https://doi.org/10.1128/MMBR.64.3.548-572.2000
22 Leclercq S O, Wang  C, Sui Z ,  Wu H, Zhu  B, Deng Y ,  Feng J. A multi-player game: Species of Clostridium, Acinetobacter, and Pseudomonas are responsible for the persistence of antibiotic resistance genes in manure-treated soils. Environmental Microbiology, 2016, 18(10): 3494–3508
https://doi.org/10.1111/1462-2920.13337
23 Liu Y Y, Wang  Y, Walsh T R ,  Yi L X ,  Zhang R ,  Spencer J ,  Doi Y, Tian  G B, Dong  B L, Huang  X H, Yu  L F, Gu  D X, Ren  H W, Chen  X J, Lv  L C, He  D D, Zhou  H W, Liang  Z S, Liu  J H, Shen  J Z. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infectious Diseases, 2016, 16(2): 161–168
https://doi.org/10.1016/S1473-3099(15)00424-7
24 Perreten V, Strauss  C, Collaud A ,  Gerber D . Colistin resistance gene MCR-1 in avian pathogenic Escherichia coli in South Africa. Antimicrobial Agents and Chemotherapy, 2016, 60(7): 4414–4415
https://doi.org/10.1128/AAC.00548-16
25 Considine K M ,  Kelly A L ,  Fitzgerald G F ,  Hill C, Sleator  R D. High-pressure processing- Effects on microbial food safety and food quality. FEMS Microbiology Letters, 2008, 281(1): 1–9
https://doi.org/10.1111/j.1574-6968.2008.01084.x
26 Taylor D M. Inactivation of prions by physical and chemical means. Journal of Hospital Infection, 1999, 43(Suppl): S69–S76
https://doi.org/10.1016/S0195-6701(99)90067-1
27 Brown P, Cardone  F, Meyer R ,  Pocchiari M . High-pressure inactivation of transmissible spongiform encephalopathy agents (prions) in processed meats: Principles, technology, and applications. In: Balasubramaniam V M, Barbosa-Canovas G V, Lelieveld H L M, eds. High pressure processing of food. New York, N.Y.: Springer, 2016, 317–330
28 Taylor D. Inactivation of the BSE agent. Comptes Rendus Biologies, 2002, 325(1): 75–76
https://doi.org/10.1016/S1631-0691(02)01386-0
29 Verbyla M E, Mihelcic  J R. A review of virus removal in wastewater treatment pond systems. Water Research, 2015, 71: 107–124
https://doi.org/10.1016/j.watres.2014.12.031
30 Wilkinson K G . The biosecurity of on-farm mortality composting. Journal of Applied Microbiology, 2007, 102(3): 609–618
https://doi.org/10.1111/j.1365-2672.2006.03274.x
31 Glanville T D ,  Ahn H, Akdeniz  N, Crawford B P ,  Koziel J A . Performance of a plastic-wrapped composting system for biosecure emergency disposal of disease-related swine mortalities. Waste Management (New York, N.Y.), 2016, 48: 483–491
https://doi.org/10.1016/j.wasman.2015.11.006
32 Bagge E, Sahlstrom  L, Albihn A . The effect of hygienic treatment on the microbial flora of biowaste at biogas plants. Water Research, 2005, 39(20): 4879–4886
https://doi.org/10.1016/j.watres.2005.03.016
33 Guardabassi L, Dalsgaard  A, Sobsey M . Occurrence and survival of viruses in composted human faeces. Danish Environmental Protection Agency, Sustainable Urban Renewal and Wastewater Treatment, Report No. 32, 2003, 1–58
34 Laxminarayan R, Van Boeckel  T, Teillant A . The economic costs of withdrawing antimicrobial growth promoters from the livestock sector. OECD Food, Agriculture, and Fisheries Papers No. 78. Paris, France: OECD Publishing, 2015, 1–41 doi:10.1787/5js64kst5wvl-en
35 Durso L M, Cook  K L. Impacts of antibiotic use in agriculture: What are the benefits and risks? Current Opinion in Microbiology, 2014, 19: 37–44
https://doi.org/10.1016/j.mib.2014.05.019
36 You Y, Silbergeld  E K. Learning from agriculture: Understanding low-dose antimicrobials as drivers of resistome expansion. Frontiers in Microbiology, 2014, 5(284): 1–10 
https://doi.org/10.3389/fmicb.2014.00284
37 Sharma V K, Johnson  N, Cizmas L ,  McDonald T J ,  Kim H. A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes. Chemosphere, 2016, 150: 702–714
https://doi.org/10.1016/j.chemosphere.2015.12.084
38 Prasse C, Stalter  D, Schulte-Oehlmann U ,  Oehlmann J ,  Ternes T A . Spoilt for choice: A critical review on the chemical and biological assessment of current wastewater treatment technologies. Water Research, 2015, 87: 237–270
https://doi.org/10.1016/j.watres.2015.09.023
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed