Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2017, Vol. 11 Issue (3) : 3    https://doi.org/10.1007/s11783-017-0931-9
RESEARCH ARTICLE
Is sodium percarbonate a good choice in situ remediation of deltamethrin pollution?
Xu Zhang1,2, Baigang Ren1, Shangge Li1, Xiaodi Qu1, Huanhuan Yang3, Shiguo Xu1, Zongming Ren1(), Qiang Kong1(), Cheng Wang4
1. Institute of Environment and Ecology, Shandong Normal University, Jinan 250014, China
2. School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
3. School of Life Science, Shandong University, Jinan 250100, China
4. Management College, Ocean University of China, Qingdao 266100, China
 Download: PDF(350 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Danio rerio behavior responses could reflect environmental stress of DM pollution.

Sodium percarbonate is a good choice in situ remediation of the DM pollution.

In situ remediation of DM based on online mixing and monitoring system is effective.

In this research, the toxic effects of deltamethrin (DM) on the behavior responses of Zebra fish (Danio rerio) in the characteristic of behavior strength were investigated followed by an assessment of an in situ remediation of the DM pollution using sodium percarbonate. Behavior strength ofDanio rerio was approximately 0.83 in the control group and was slightly higher than 0.83 in the sublethal treatment (0.1 TU (toxic unit)), which suggested that sublethal DM exposure could induce a stimulation effect in 48 h of exposure. In lower DM concentration treatments (0.5 and 1.0 TU), behavior strength could be inhibited significantly. Behavior responses ofDanio rerio showed a gradually increased tendency when they were exposed to higher concentration of DM, and the declining amplitudes of behavior strength changed with the increase of DM concentrations. These results suggested that DM had evident acute toxicity effects on the behavior responses ofDanio rerio with a good dose-effect relationship. The in situ remediation of the DM pollution using sodium percarbonate showed that the toxic effect of DM on behavior responses ofDanio rerio could be eliminated even in the highest concentration of DM (5.0 TU). Meanwhile, the behavior response of Danio rerio in the treatment of sodium percarbonate was the same as in the control, which indicated that sodium percarbonate had no evident toxic effects on the behavior ofDanio rerio in the current concentration. This study suggested that adding sodium percarbonate in situ might be a good way to eliminate the DM toxic effects.

Keywords Behavior strength      Sublethal treatment      Detoxification      Accidental pollution     
Corresponding Author(s): Zongming Ren,Qiang Kong   
Issue Date: 19 April 2017
 Cite this article:   
Xu Zhang,Baigang Ren,Shangge Li, et al. Is sodium percarbonate a good choice in situ remediation of deltamethrin pollution?[J]. Front. Environ. Sci. Eng., 2017, 11(3): 3.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-017-0931-9
https://academic.hep.com.cn/fese/EN/Y2017/V11/I3/3
Fig.1  Structure of both online mixing system and online monitoring system
Fig.2  Behavior responses of Danio rerio in the characteristics of behavior strength in different DM treatments with control
Fig.3  Behavior responses of exposedDanio rerio in different treatments after sodium percarbonate was added: (a) 1 TU DM concentration and the water bodies treated with sodium percarbonate according to 1:1, 1:2 and 1:5 molar ratio; (b) 2 TU DM concentration and the water bodies treated with sodium percarbonate according to 1:1, 1:2 and 1:5 molar ratio; (c) 5 TU DM concentration and the water bodies treated with sodium percarbonate according to 1:1, 1:2 and 1:5 molar ratio
Tab.1  Average behavior strength values of Danio rerio in different treatments
1 Huang S, Zhao  X, Sun Y ,  Ma J, Gao  X, Xie T ,  Xu D, Yu  Y, Zhao Y . Pollution of hazardous substances in industrial construction and demolition wastes and their multi-path risk within an abandoned pesticide manufacturing plant.  Frontiers of Environmental Science & Engineering, 2017, 11(1): 12
2 Wiles J A, Jepson  P C. Substrate-mediated toxicity of deltamethrin residues to aphid predators: estimation of toxicity factors to aid risk assessment. Archives of Environmental Contamination and Toxicology, 1994, 27(3): 384–391
https://doi.org/10.1007/BF00213175
3 Liu P, Liu  Y, Liu Q ,  Liu J. Photodegradation mechanism of deltamethrin and fenvalerate. Journal of Environmental Sciences-China, 2010, 22(7): 1123–1128
4 Al-Makkawy H K ,  Madbouly M D . Persistence and accumulation of some organic insecticides in Nile water and fish. Resources, Conservation and Recycling, 1999, 27(1–2): 105–115
https://doi.org/10.1016/S0921-3449(98)00090-1
5 Cui J T, Zhang  W, Yang X T . Isolating and degrading features of deltamethrin-degrading bacteria. Journal of Safety & Environment, 2009, 9(6): 59–62 (in Chinese)
6 Gómez M V ,  Caballero R ,  Vázquez E ,  Moreno A ,  de la Hoz A ,  Díaz-Ortiz Á Green and chemoselective oxidation of sulfides with sodium perborate and sodium percarbonate: nucleophilic and electrophilic character of the oxidation system. Green Chemistry, 2007, 9(4): 331–336
https://doi.org/10.1039/B614847F
7 Chantarasuwan C, Benjakul  S, Visessanguan W . Effects of sodium carbonate and sodium bicarbonate on yield and characteristics of Pacific white shrimp (Litopenaeus vannamei). Food Science & Technology International, 2011, 17(4): 403–414
https://doi.org/10.1177/1082013211398802
8 Bjørsvik H R ,  Merinero J A V ,  Liguori L. Nitroarene catalyzed oxidation with sodium percarbonate or sodium perborate as the terminal oxidant. Tetrahedron Letters, 2004, 45(47): 8615–8620
https://doi.org/10.1016/j.tetlet.2004.09.156
9 Zhang Y H, Xue  C M, Guo  C H.Application sodium percarbonate to oxidative degradation trichloroethylene contamination in groundwater. Procedia Environmental Sciences, 2011, 10(2): 1668–1673
https://doi.org/10.1016/j.proenv.2011.09.262
10 Wang L, Qian  H, Zhang M . Study on the degradation of pyrethroids pesticides by sodium percarbonate. Chemical Industry Times, 2009, 23(2): 10–13 (in Chinese)
11 Zhang G, Chen  L, Chen J ,  Ren Z, Wang  Z, Chon T S . Evidence for the stepwise behavioral response model (SBRM): the effects of carbamate pesticides on Medaka (Oryzias latipes) in an online monitoring system. Chemosphere, 2012, 87(7): 734–741
https://doi.org/10.1016/j.chemosphere.2011.12.068
12 Ren Z, Zhang  X, Wang X ,  Qi P, Zhang  B, Zeng Y ,  Fu R, Miao  M. AChE inhibition: one dominant factor for swimming behavior changes of Daphnia magna under DDVP exposure. Chemosphere, 2015, 120(1): 252–257
https://doi.org/10.1016/j.chemosphere.2014.06.081
13 Zhang L, An  J, Zhou Q . Single and joint effects of HHCB and cadmium on zebrafish (Danio rerio) in feculent water containing bedloads. Frontiers of Environmental Science & Engineering, 2012, 6(3): 360–372
https://doi.org/10.1007/s11783-011-0353-z
14 Schulte C, Nagel  R. Testing acute toxicity in the embryo of zebrafish, Brachydanio rerio, as an alternative to the acute fish test: preliminary results. Alternatives to Laboratory Animals, 1994, 22(1): 12–19
15 Huang Y, Zhang  J, Han X ,  Huang T . The use of zebrafish (Danio rerio) behavioral responses in identifying sublethal exposures to deltamethrin. International Journal of Environmental Research and Public Health, 2014, 11(4): 3650–3660
https://doi.org/10.3390/ijerph110403650
16 Ren Z, Wang  Z. The differences in the behavior characteristics between Daphnia magna and Japanese madaka in an on-line biomonitoring system. Journal of Environmental Sciences-China, 2010, 22(5): 703–708
https://doi.org/10.1016/S1001-0742(09)60166-2
17 Kozińska A. Dominant pathogenic species of mesophilic aeromonads isolated from diseased and healthy fish cultured in poland. Journal of Fish Diseases, 2007, 30(5): 293–301 
https://doi.org/10.1111/j.1365-2761.2007.00813.x
18 Sandbacka M, Christianson  I, Isomaa B . The acute toxicity of surfactants on fish cells, Daphnia magna, and fish—A comparative study. Toxicology In Vitro, 2000, 14(1): 61–68
https://doi.org/10.1016/S0887-2333(99)00083-1
19 Villegas-Navarro A ,  Romero G M C ,  Rosas L E ,  Dominguez A R ,  Sachetin M W . Evaluation of Daphnia magna as an indicator of toxicity and treatment efficy of textile wastewaters. Environment International, 1999, 25(5): 619–624
https://doi.org/10.1016/S0160-4120(99)00034-3
20 El-Sayed Y S, Saad  T T, El-Bahr  S M. Acute intoxication of deltamethrin in monosex Nile tilapia, Oreochromis niloticus with special reference to the clinical, biochemical and haematological effects. Environmental Toxicology and Pharmacology, 2007, 24(3): 212–217 
https://doi.org/10.1016/j.etap.2007.05.006
21 Viran R, Ünlü Erkoç  F, Polat H ,  Koçak O. Investigation of acute toxicity of deltamethrin on guppies (Poecilia reticulata). Ecotoxicology and Environmental Safety, 2003, 55(1): 82–85
https://doi.org/10.1016/S0147-6513(02)00096-9
22 The Environmental Protection Administration of China. GB3838–2002 of China Environmental Quality Standard for Surface Water. Beijing: Environmental Science Press, 2002 (in Chinese)
23 Marigoudar S R ,  Nazeer Ahmed R ,  David M . Ultrastructural responses and oxidative stress induced by cypermethrin in the liver of Labeo rohita. Chemistry & Ecology, 2013, 29(4): 296–308
24 Stebbing A R. Hormesis–the stimulation of growth by low levels of inhibitors. Science of the Total Environment, 1982, 22(3): 213–234
https://doi.org/10.1016/0048-9697(82)90066-3
25 Yin L, Yang  H, Si G ,  Ren Q, Fu  R, Zhang B ,  Zhang X ,  Wang X, Qi  P, Xia C ,  Ren Z, Chon  T S, Kim  H. Persistence parameter: a reliable measurement for behavioral responses of medaka (Oryzias latipes) to environmental stress. Environmental Modeling and Assessment, 2016, 21(1): 159–167
https://doi.org/10.1007/s10666-015-9458-2
26 Ren Z, Li  Z, Ma M ,  Wang Z, Fu  R. Behavioral responses of Daphnia magna to stresses of chemicals with different toxic characteristics. Bulletin of Environmental Contamination and Toxicology, 2009, 82(3): 310–316
https://doi.org/10.1007/s00128-008-9588-1
27 Ansari B A, Sharma  D K. Toxic effect of synthetic pyrethroid deltamethrin and neem based formulation Achook on zebrafish, Danio rerio. Trends in Biosciences, 2009,  2(2): 18–20
28 Kabalka G W, Deshpande  S M, Wadgaonkar  P P, Chatla  N. The transformation of nitriles into amides using sodium percarbonate. Synthetic Communications, 1990, 20(10): 1445–1451
https://doi.org/10.1080/00397919008052860
29 Bonon A J, Mandelli  D, Kholdeeva O A ,  Barmatova M V ,  Kozlov Y N ,  Shul’Pin G B . Oxidation of alkanes and olefins with hydrogen peroxide in acetonitrile solution catalyzed by a mesoporous titanium-silicate Ti-MMM-2. Applied Catalysis A, General, 2009, 365(1): 96–104
https://doi.org/10.1016/j.apcata.2009.05.060
30 Hirahara Y, Nakamuro  K, Sayato Y . Studies on behaviors of decomposition of pesticides. Electrochemical and Solid-State Letters, 2009, 12(1): E1–E4
[1] Yong Xiao, Changye Xiao, Feng Zhao. Long-term adaptive evolution of Shewanella oneidensis MR-1 for establishment of high concentration Cr(VI) tolerance[J]. Front. Environ. Sci. Eng., 2020, 14(1): 3-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed