Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2017, Vol. 11 Issue (4) : 6    https://doi.org/10.1007/s11783-017-0932-8
RESEARCH ARTICLE
A full-scale integrated-bioreactor with two zones treating odours from sludge thickening tank and dewatering house: performance and microbial characteristics
Jianwei Liu1,2, Kaixiong Yang2,3, Lin Li2,3(), Jingying Zhang2,3
1. Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Ministry of Education, Beijing 100044, China
2. State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
3. University of Chinese Academy of Sciences, Beijing 100049, China
 Download: PDF(541 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The integrated-bioreactor consists of a suspended zone and an immobilized zone.

H2S and NH3 from WWTP were effectively eliminated by the integrated-bioreactor.

Different microbial populations dominated in the individual zones.

Most of the H2S was bio-oxidized into elemental sulfur and sulfate in IZ.

Large amount of NH3 was converted into nitrate and nitrite in SZ.

A full-scale integrated-bioreactor consisting of a suspended zone and an immobilized zone was employed to treat the ordours emitted from a wastewater treatment plant. The inlet concentrations of H2S and NH3 were 1.6–38.6 mg·m3 and 0.1–6.7 mg·m3, respectively, while the steady-state outlet concentrations were reduced to 0–2.8 mg·m3 for H2S and 0–0.5 mg·m3 for NH3. Both H2S and NH3 were eliminated effectively by the integrated-bioreactor. The removal efficiencies of H2S and NH3 differed between the two zones. Four species of microorganisms related to the degradation of H2S and NH3 were isolated. The characteristics and distributions of the microbes in the bioreactor depended on the inlet concentration of substrates and the micro-environmental conditions in the individual zones. Product analysis indicated that most of the H2S was oxidized into sulfate in the immobilized zone but was dissolved into the liquid phase in the suspended zone. A large amount of NH3 was converted into nitrate and nitrite by nitration in the suspended zone, whereas only a small amount of NH3 was transferred to the aqueous phase mainly by absorption or chemical neutralization in the immobilized zone. Different microbial populations dominated the individual zones, and the major biodegradation products varied accordingly.

Keywords Biological deodorization      Microbial characteristics      Ammonia      Hydrogen sulfide      Wastewater treatment plant     
Corresponding Author(s): Lin Li   
Issue Date: 26 April 2017
 Cite this article:   
Jianwei Liu,Kaixiong Yang,Lin Li, et al. A full-scale integrated-bioreactor with two zones treating odours from sludge thickening tank and dewatering house: performance and microbial characteristics[J]. Front. Environ. Sci. Eng., 2017, 11(4): 6.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-017-0932-8
https://academic.hep.com.cn/fese/EN/Y2017/V11/I4/6
Fig.1  (a) Schematic diagram of the treatment process: (1) the suspended zone, (2) the immobilized zone, (3) air pump, (4) flowmeter, (5) sampling port 1, (6) monitor instrument 1, (7) monitor instrument 2, (8) sampling port 2, (9) sampling port 3, (10) sampling port 4, (11) meter pump, (12) the nutrient solution tank; (b) the integrated-bioreactor for odour control
compoundsmolecularOTCs a)
/ppm
Hib) /(25℃)concentrations /(mg·m3)
ST c)SD d)
hydrogen sulfideH2S0.180.920.1–7.81.5–38.8
ammoniaNH30.900.0050.1–3.21.0–6.5
methyl mercaptanCH4S0.10 × 103IS f)0–0.0010–0.001
methyl sulfideC2H6SU e)ISND g)0–0.001
styreneC8H80.15–25IS0.01–0.050.01–0.10
Tab.1   Main composition of odors
Fig.2  Inlet and outlet concentration and removal efficiency for H2S. Cin: inlet concentration; Cout: outlet concentration; Re: removal efficiency
Fig.3  Inlet and outlet concentration and removal efficiency for NH3. Cin: inlet concentration; Cout: outlet concentration; Re: removal efficiency
speciesthe suspended zonethe immobilized zone
acidophilic Thiobacilli9.50±1.01 × 105 CFU a)·mL11.32±0.32 × 107 CFU·g1
non-acidophilic Thiobacilli9.85±0.99 × 106 CFU·mL12.13±0.37 × 106 CFU·g1
ammonia oxidizing bacteria1.70±0.26 × 104 MPN b)·mL16.97±0.95 × 102 MPN·g1
nitrite oxidizing bacteria5.60±0.87 × 104 MPN·mL14.59±0.44 × 103 MPN·g1
Tab.2  Microorganisms in the integrated-bioreactor at steady-state
Fig.4  Changes of pH in the suspended zone and the immobilized zone
time /dnon-acidophilic Thiobacilli
/(CFU a)·mL1)
acidophilic Thiobacilli /(CFU·mL1)SO42
/(mg·L1)
S2
/(mg·L1)
suspended zone
101.9±0.39 × 1049.5±1.85 × 1030.15±0.024.46±0.11
351.5±0.36 × 1045.44±0.69 × 1040.61±0.135.01±0.13
105not detectednot detected0.82±0.034.96±0.20
1559.85±0.99 × 1069.5±1.01 × 1051.00±0.184.15±0.13
immobilized zone
104.57±0.61 × 1051.32±0.14 × 1040.18±0.013.06±0.12
358.6±0.82 × 1054.17±0.35 × 1061.54±0.101.23±0.19
105not detectednot detected3.71±0.080.24±0.05
1552.13±0.37 × 1061.32±0.32 × 1072.55±0.070.28±0.03
Tab.3  Changes of Thiobacilli and products in H2S removal
Fig.5  Percentage of various nitrogen containing compounds in individual zone
1 Omri I, Bouallagui H, Aouidi F, Godon J J, Hamdi M. H2S gas biological removal efficiency and bacterial community diversity in biofilter treating wastewater odor. Bioresource Technology, 2011, 102(22): 10202–10209
https://doi.org/10.1016/j.biortech.2011.05.094 pmid: 21945209
2 Xi J, Kang I, Hu H, Zhang X. A biofilter model for simultaneous simulation of toluene removal and bed pressure drop under varied inlet loadings. Frontiers of Environmental Science & Engineering, 2015, 9(3): 554–562
https://doi.org/10.1007/s11783-014-0671-z
3 Baspi A BTurkeṙ MHocalar A, Ozturk I. Biogas desulphurization at technical scale by lithotrophic denitrification: integration of sulphide and nitrogen removal. Process Biochemistry, 2011, 46(4): 916–922
https://doi.org/10.1016/j.procbio.2011.01.001
4 Chen Y, Fan Z, Ma L, Yin J, Luo M, Cai W. Performance of three pilot-scale immobilized-cell biotrickling filters for removal of hydrogen sulfide from a contaminated air steam. Saudi Journal of Biological Sciences, 2014, 21(5): 450–456
https://doi.org/10.1016/j.sjbs.2014.05.008 pmid: 25313280
5 Burgess J E, Parsons S A, Stuetz R M. Developments in odour control and waste gas treatment biotechnology: a review. Biotechnology Advances, 2001, 19(1): 35–63
https://doi.org/10.1016/S0734-9750(00)00058-6 pmid: 14538091
6 Ralebitso-Senior T K, Senior E, Di Felice R, Jarvis K. Waste gas biofiltration: advances and limitations of current approaches in microbiology. Environmental Science & Technology, 2012, 46(16): 8542–8573
https://doi.org/10.1021/es203906c pmid: 22746978
7 Chitwood D E, Devinny J S, Reynolds F E. Evaluation of a two-stage biofilter for treatment of POTW waste air. Environmental Progress & Sustainable Energy, 1999, 18(3): 212–221 
https://doi.org/10.1002/ep.670180318
8 vanLith C, Leson G, Michelsen R. Evaluating design options for biofilters. Journal of the Air & Waste Management Association, 1997, 47(1): 37–48
https://doi.org/10.1080/10473289.1997.10464410
9 Zhang L, Ma J, Jin Y, Zhang H, Liu Y, Cai L. Abatement of sulfide generation in sewage by glutaraldehyde supplementation and the impact on the activated sludge accordingly. Frontiers of Environmental Science & Engineering, 2015, 9(2): 365–370
https://doi.org/10.1007/s11783-014-0645-1
10 Li Y, Shi L, Qian Y, Tang J. Diffusion of municipal wastewater treatment technologies in China: a collaboration network perspective. Frontiers of Environmental Science & Engineering, 2017, 11(1): 11
https://doi.org/10.1007/s11783-017-0903-0
11 Li F, Lei T, Zhang Y, Wei J, Yang Y. Preparation, characterization of sludge adsorbent and investigations on its removal of hydrogen sulfide under room temperature. Frontiers of Environmental Science & Engineering, 2015, 9(2): 190–196
https://doi.org/10.1007/s11783-014-0628-2
12 Liang Y, Quan X, Chen J, Chung J S, Sung J Y, Chen S, Xue D, Zhao Y. Long-term results of ammonia removal and transformation by biofiltration. Journal of Hazardous Materials, 2000, 80(1–3): 259–269
https://doi.org/10.1016/S0304-3894(00)00314-9 pmid: 11080582
13 Rabbani K A, Charles W, Kayaalp A, Cord-Ruwisch R, Ho G. Pilot-scale biofilter for the simultaneous removal of hydrogen sulphide and ammonia at a wastewater treatment plant. Biochemical Engineering Journal, 2015, 107: 1–10
https://doi.org/10.1016/j.bej.2015.11.018
14 Mannucci A, Munz G, Mori G, Lubello C. Biomass accumulation modelling in a highly loaded biotrickling filter for hydrogen sulphide removal. Chemosphere, 2012, 88(6): 712–717
https://doi.org/10.1016/j.chemosphere.2012.04.026 pmid: 22591847
15 Both G J, Gerards S, Laanbroek H J. Most probable numbers of chemolitho-autotrophic nitrite-oxidizing bacteria in well drained grassland soils: stimulation by high nitrite concentrations. FEMS Microbiology Ecology, 1990, 74(4): 287–293
https://doi.org/10.1111/j.1574-6968.1990.tb04075.x
16 Cho K S, Zhang L, Hirai M, Shoda M. Removal characteristics of hydrogen sulphide and methanethiol by Thiobacillus sp. isolated from peat in biological deodorization. Journal of Fermentation and Bioengineering, 1991, 71(1): 44–49
https://doi.org/10.1016/0922-338X(91)90302-W
17 Moriarty D J, Nicholas D J. Products of sulphide oxidation in extracts of Thiobacillus concretivorus. Biochimica et Biophysica Acta, 1970, 197(2): 143–151
https://doi.org/10.1016/0005-2728(70)90025-3 pmid: 5416105
18 Chung Y C, Huang C, Tseng C P. Operation optimization of Thiobacillus thioparus CH11 biofilter for hydrogen sulfide removal. Journal of Biotechnology, 1996, 52(1): 31–38
https://doi.org/10.1016/S0168-1656(96)01622-7
19 Li L, Zhang J, Lin J, Liu J. Biological technologies for the removal of sulfur containing compounds from waste streams: bioreactors and microbial characteristics. World Journal of Microbiology & Biotechnology, 2015, 31(10): 1501–1515
https://doi.org/10.1007/s11274-015-1915-1 pmid: 26250546
20 Wang L, Wei B, Chen Z, Deng L, Song L, Wang S, Zheng D, Liu Y, Pu X, Zhang Y. Effect of inoculum and sulfide type on simultaneous hydrogen sulfide removal from biogas and nitrogen removal from swine slurry and microbial mechanism. Applied Microbiology and Biotechnology, 2015, 99(24): 10793–10803
https://doi.org/10.1007/s00253-015-6916-3 pmid: 26286512
21 Devinny J S, Deshusses M A, Webster T S. Biofiltration for Air Pollution Control.New York: Crc Pr Inc, 1999
22 Mudliar S, Giri B, Padoley K, Satpute D, Dixit R, Bhatt P, Pandey R, Juwarkar A, Vaidya A. Bioreactors for treatment of VOCs and odours—A review. Journal of Environmental Management, 2010, 91(5): 1039–1054
https://doi.org/10.1016/j.jenvman.2010.01.006 pmid: 20181422
23 Liu D, Hansen M J, Guldberg L B, Feilberg A. Kinetic evaluation of removal of odorous contaminants in a three-stage biological air filter. Environmental Science & Technology, 2012, 46(15): 8261–8269
https://doi.org/10.1021/es301295m pmid: 22775059
24 Esposito R. Genium’s Handbook of Safety, Health, and Environmental Data (for Common Hazardous Substances). New York, NY: McGraw-Hill, Genium Publishing Corporation, 1999
25 Liu J W, Zhao Y Z, Ma W L. Removal of ammonia from waste gases by a biotrickling filter. Advanced Materials Research, 2011, 233–235: 759–764
https://doi.org/10.4028/www.scientific.net/AMR.233-235.759
26 Ministry of Environmental Protection of China.Standard Methods for the Examination of Water and Wastewater. 4th  ed. Beijing, China: Chinese Environmental Science Publishers, 2002
27 Lin L, Liu J X, Wang J L, Pan X L. Identification and characteristic analysis of microorganisms in an integrated bioreactor for odours treatment. International Journal of Environment and Pollution, 2009, 37(1): 216–234
28 Kanagawa T, Mikami E. Removal of methanethiol, dimethyl sulfide, dimethyl disulfide, and hydrogen sulfide from contaminated air by Thiobacillus thioparus TK-m. Applied and Environmental Microbiology, 1989, 55(3): 555–558 PMID:2930168
29 Cho K S, Ryu H W, Lee N Y. Biological deodorization of hydrogen sulfide using porous lava as a carrier of Thiobacillus thiooxidans. Journal of Bioscience and Bioengineering, 2000, 90(1): 25–31
https://doi.org/10.1016/S1389-1723(00)80029-8 pmid: 16232813
30 Shinabe K, Oketani S, Ochi T, Matsumura M. Characteristics of hydrogen sulfide removal by Thiobacillus thiooxidans KS1 isolated from a carrier-packed biological deodorization system. Journal of Fermentation and Bioengineering, 1995, 80(6): 592–598
https://doi.org/10.1016/0922-338X(96)87737-3
31 Veir J K, Schroeder E D, Chang D P Y, Scow K M. Interaction between toluene and dichloromethane degrading populations in a compost biofilter. In: Proceedings of the 89th Annual Meeting and Exhibition of the Air and Waste Management Association, Nashville. Pittsburgh: USA Air & Waste Management Association, 1996, 89
32 Chung Y C, Huang C, Tseng C P. Biological elimination of H2S and NH3 from wastegases by biofilter packed with immobilized heterotrophic bacteria. Chemosphere, 2001, 43(8): 1043–1050 
https://doi.org/10.1016/S0045-6535(00)00211-3 pmid: 11368219 
33 Elias A, Barona A, Arreguy A, Rios J, Aranguiz I, Penas J. Evaluation of a packing material for the biodegradation of H2S and product analysis. Process Biochemistry, 2002, 37(8): 813–820
https://doi.org/10.1016/S0032-9592(01)00287-4
34 Easter C, Quigley C, Burrowes P, Witherspoon J, Apgar D. Odor and air emissions control using biotechnology for both collection and wastewater treatment systems. Chemical Engineering Journal, 2005, 113(2–3): 93–104
https://doi.org/10.1016/j.cej.2005.04.007
35 YangY, AllenE R. Biofiltration control of hydrogen sulfide 1. Design and operational parameters.Air & Waste, 1994, 44(7): 863–868
https://doi.org/10.1080/1073161X.1994.10467287
[1] FSE-17026-OF-LJW_suppl_1 Download
[1] Zeshen Tian, Bo Wang, Yuyang Li, Bo Shen, Fengjuan Li, Xianghua Wen. Enhancement on the ammonia oxidation capacity of ammonia-oxidizing archaeon originated from wastewater: Utilizing low-density static magnetic field[J]. Front. Environ. Sci. Eng., 2021, 15(5): 81-.
[2] Yunping Han, Lin Li, Ying Wang, Jiawei Ma, Pengyu Li, Chao Han, Junxin Liu. Composition, dispersion, and health risks of bioaerosols in wastewater treatment plants: A review[J]. Front. Environ. Sci. Eng., 2021, 15(3): 38-.
[3] Kuo Fang, Fei Peng, Hui Gong, Huanzhen Zhang, Kaijun Wang. Ammonia removal from low-strength municipal wastewater by powdered resin combined with simultaneous recovery as struvite[J]. Front. Environ. Sci. Eng., 2021, 15(1): 8-.
[4] Madhavaraj Lavanya, Ho-Dong Lim, Kong-Min Kim, Dae-Hyuk Kim, Balasubramani Ravindran, Gui Hwan Han. A novel strategy for gas mitigation during swine manure odour treatment using seaweed and a microbial consortium[J]. Front. Environ. Sci. Eng., 2020, 14(3): 53-.
[5] Alisa Salimova, Jian’e Zuo, Fenglin Liu, Yajiao Wang, Sike Wang, Konstantin Verichev. Ammonia and phosphorus removal from agricultural runoff using cash crop waste-derived biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 48-.
[6] Luxi Zou, Huaibo Li, Shuo Wang, Kaikai Zheng, Yan Wang, Guocheng Du, Ji Li. Characteristic and correlation analysis of influent and energy consumption of wastewater treatment plants in Taihu Basin[J]. Front. Environ. Sci. Eng., 2019, 13(6): 83-.
[7] Jiuhui Qu, Hongchen Wang, Kaijun Wang, Gang Yu, Bing Ke, Han-Qing Yu, Hongqiang Ren, Xingcan Zheng, Ji Li, Wen-Wei Li, Song Gao, Hui Gong. Municipal wastewater treatment in China: Development history and future perspectives[J]. Front. Environ. Sci. Eng., 2019, 13(6): 88-.
[8] Yuhan Zheng, Zhiguo Su, Tianjiao Dai, Feifei Li, Bei Huang, Qinglin Mu, Chuanping Feng, Donghui Wen. Identifying human-induced influence on microbial community: A comparative study in the effluent-receiving areas in Hangzhou Bay[J]. Front. Environ. Sci. Eng., 2019, 13(6): 90-.
[9] Shihao Sun, Tipei Jia, Kaiqi Chen, Yongzhen Peng, Liang Zhang. Simultaneous removal of hydrogen sulfide and volatile organic sulfur compounds in off-gas mixture from a wastewater treatment plant using a two-stage bio-trickling filter system[J]. Front. Environ. Sci. Eng., 2019, 13(4): 60-.
[10] Chunhong Chen, Hong Liang, Dawen Gao. Community diversity and distribution of ammonia-oxidizing archaea in marsh wetlands in the black soil zone in North-east China[J]. Front. Environ. Sci. Eng., 2019, 13(4): 58-.
[11] Lian Yang, Qinxue Wen, Zhiqiang Chen, Ran Duan, Pan Yang. Impacts of advanced treatment processes on elimination of antibiotic resistance genes in a municipal wastewater treatment plant[J]. Front. Environ. Sci. Eng., 2019, 13(3): 32-.
[12] Yao Zhang, Yayi Wang, Yuan Yan, Haicheng Han, Min Wu. Characterization of CANON reactor performance and microbial community shifts with elevated COD/N ratios under a continuous aeration mode[J]. Front. Environ. Sci. Eng., 2019, 13(1): 7-.
[13] Mengqian Lu, Bin-Le Lin, Kazuya Inoue, Zhongfang Lei, Zhenya Zhang, Kiyotaka Tsunemi. PM2.5-related health impacts of utilizing ammonia-hydrogen energy in Kanto Region, Japan[J]. Front. Environ. Sci. Eng., 2018, 12(2): 13-.
[14] Chen Qian, Wei Chen, Wei-Hua Li, Han-Qing Yu. A chemometric analysis on the fluorescent dissolved organic matter in a full-scale sequencing batch reactor for municipal wastewater treatment[J]. Front. Environ. Sci. Eng., 2017, 11(4): 12-.
[15] Xiao Zhang, Biwu Chu, Junhua Li, Chaozhi Zhang. Effects of seed particles Al2O3, Al2(SO4)3 and H2SO4 on secondary organic aerosol[J]. Front. Environ. Sci. Eng., 2017, 11(4): 5-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed