Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2017, Vol. 11 Issue (3) : 10    https://doi.org/10.1007/s11783-017-0933-7
RESEARCH ARTICLE
Methane, Nitrous Oxide and Ammonia generation in full-scale swine wastewater purification facilities
Takashi Osada1(), Makoto Shiraishi2, Teruaki Hasegawa3, Hirofumi Kawahara4
1. National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-0005, Japan
2. Okayama Prefectural Center for Animal Husbandry Research, Misaki, Okayama, 709-3401, Japan
3. Chiba Prefectural Livestock Research Center, Yachimata, Chiba, 289-1113, Japan
4. Saga Prefectural Higashimastuura Agricultural Development and Extension Center, Karatsu, Saga, 847-0861, Japan
 Download: PDF(218 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

CH4 and N2O emissions from pig wastewater treatment facilities were measured.

N2O emission rate was affected by environmental conditions, location, management.

Emission factors: CH4,0.91% (kgCH4·kgVS−1) and N2O, 2.87% (kgN2O-N·kgN−1).

The activated sludge process to remove nitrogen and biochemical oxygen demand (BOD) is reportedly cost-effective for swine wastewater treatment, and it use has thus increased in pig farming. Nitrous oxide (N2O) is generated on farms as an intermediate product in nitrification and denitrification, and methane (CH4) is also generated from organic degradation under anaerobic conditions by microorganisms in manure or wastewater. This study was carried out at five activated sludge treatment facilities across Japan between August 2014 and January 2015. Measurements were conducted over several weeks at wastewater purification facilities for swine farms: two in Chiba prefecture (East Japan), two in Okayama prefecture (West Japan), and one in Saga (Southern Japan). Taking several environmental fluctuations into account, we collected measurement data continuously day and night, during both high-temperature and low-temperature periods. The results indicated that CH4 and N2O emission factors were 0.91% (kgCH4· kg volatile solids−1) and 2.87% (g N2O-N· kg total N−1), respectively. Ammonia emissions were negligible in all of the measurements from the wastewater facilities. The N2O emission factor calculated under this experiment was low compared to our previous finding (5.0%; g N2O-N· kg N−1) in a laboratory experiment. In contrast, the CH4 emission factor calculated herein was rather high compared to the laboratory measurements. There was great variation in daily GHG emission factors measured in the actual wastewater treatment facilities. In particular, the N2O emission rate was affected by several environmental conditions at each facility location, as well as by the management of the wastewater treatment.

Keywords Manure      Greenhouse gas      Denitrification      BOD/N      Nitrous oxide      Methane     
Corresponding Author(s): Takashi Osada   
Issue Date: 11 May 2017
 Cite this article:   
Takashi Osada,Makoto Shiraishi,Teruaki Hasegawa, et al. Methane, Nitrous Oxide and Ammonia generation in full-scale swine wastewater purification facilities[J]. Front. Environ. Sci. Eng., 2017, 11(3): 10.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-017-0933-7
https://academic.hep.com.cn/fese/EN/Y2017/V11/I3/10
name of facilityOkayama 1Okayama 2SagaChiba 1Chiba 2
4 Oct.– 24 Oct.24 Jan.– 13 Feb.21 Sep.– 23 Oct.3 Dec.
– 17 Dec.
21 Aug– 3 Oct.11 Dec.– 1 Jan.26 Sep– 13 Oct.4 Dec.
– 25 Dec.
30 Oct.
– 19 Nov.
treated heads of swine
(fattening pig, average)
60004000100020001000
reactor capacity (m3)740270491220624
Operating conditions(mean(S.D.))
hydraulic retention time (HRT, d)17.916.815.617.64.46.233.033.012.6
influent
wastewater
(m3·d1)
41.4
(9.0)
44.0
(3.9)
17.0
(9.4)
15.3
(5.4)
11.1
(2.7)
7.8
(1.0)
37.0
(-)
37.0
(-)
16.5
(-)
biological
oxigen
demand(BOD)
(kg· m3·d1)
0.49
(0.2)
0.36
(0.2)
0.29
(0.1)
0.20
(0.1)
0.16
(0.1)
0.19
(0.1)
0.02
(0.01)
0.10
(0.04)
0.21
(-)
loading rate of organic matter
(kg·VS· m3·d1)
459
(325)
449
(225)
96.4
(49.7)
61.6
(38.0)
18.5
(-)
20.7
(-)
158.6
(51.8)
321.4
(125.5)
698.6
(-)
loading rate of nitrogen
(kg·N·m3·d1)
72.7
(22.5)
74.8
(20.1)
29.5
(7.5)
23.7
(17.0)
14.3
(4.2)
18.0
(4.4)
45.5
(4.5)
71.6
(13.3)
28.5
(-)
BOD/N4.9
(1.2)
4.1
(0.9)
2.8
(1.0)
2.1
(0.4)
0.5
(0.2)
0.6
(0.2)
0.7
(0.2)
2.0
(0.8)
2.0
(-)
Tab.1  The wastewater purification facilities for swine waste surveyed in this study
Fig.1  Gas measurement device and schematic
name of facilityOkayama 1Okayama 2SagaChiba 1Chiba 2
4 Oct.– 24 Oct.24 Jan.– 13 Feb.21 Sep– 23 Oct.3 Dec.
–17 Dec.
21 Aug– 3 Oct.11 Dec.– 1 Jan.26 Sep– 13 Oct.4 Dec.
– 25 Dec.
30 Oct
– 19 Nov.
ambient
temperature/°C
18.7
(11.4)
2.8
(5.6)
18.8
(4.2)
3.5
(3.9)
24.7
(3.8)
3.7
(2.1)
21.7
(2.7)
7.1
(4.6)
12.0
(2.2)
reactor liquid
temperature/°C
28.7
(0.4)
18.8
(1.2)
26.8
(1.7)
14.3
(1.0)
31.1
(2.4)
16.7
(0.5)
24.8
(0.2)
19.9
(0.4)
25.6
(1.9)
GHG emission factor (mean(S.D.))
CH4 EF
/(%:
kgCH4·kgVS1)
0.30
(0.06)
0.13
(0.05)
0.14
(0.08)
0.60
(0.27)
2.1
(4.7)
0.44
(0.80)
3.0
(2.7)
1.5
(0.12)
0.23
(0.01)
N2O EF
/(%:
kgN2O·kgN1)
2.9
(2.4)
3.1
(2.2)
2.1
(3.4)
9.5
(3.4)
4.9
(6.5)
3.8
(3.1)
0.29
(0.35)
1.4
(0.85)
1.3
(0.8)
Effluent characteristics (mean(S.D.))
pH5.9
(1.2)
5.8
(1.1)
6.8
(0.5)
5.9
(0.35)
4.8
(0.6)
5.9
(0.5)
6.7
(0.5)
7.2
(0.5)
7.2
(-)
BOD
/(mgO2 L1)
1.6
(0.67)
1.1
(0.41)
1.3
(0.7)
2.6
(2.0)
3.6
(6.5)
17.9
(12.9)
1.0
(1.2)
2.6
(2.3)
2.6
(-)
TN
/(mgN ·L1)
242
(83)
229
(36)
108
(110)
379
(61)
476
(-)
583
(77)
263
(21)
255
(23)
285
(-)
NO2+3-N
/(mgN ·L1)
36.0
(-)
66.3
(-)
12.5
(-)
60.6
(-)
307
(-)
380
(-)
261
(22)
253
(24)
206
(-)
Tab.2  Environmental condition, GHG emission and the characteristics of the effluent of each measurement period
Fig.2  Histogram of the daily CH4 emission factor (%) in this investigation
Fig.3  Histogram of the daily N2O emission factor (%) in this investigation
sourced.fsum (Sq)mean (Sq)F
facility (F)4123.09 (30.7728)10.9201 (6.11E-08)***
season (S)119.51 (19.5115)6.9239 (0.009252)**
(F)×(S)318.89 (6.5928)2.2341 (0.085887)
residuals178501.6 (2.818 )
Tab.3  ANOVA results for the mean CH4 EF (kgCH4·kgVS−1)
sourced.fsum (Sq)mean (Sq)F
facility (F)4372.76 (93.191)9.5731 (4.93E-07)***
season (S)149.8 (49.797)5.1154 (0.02492)*
(F)×(S)3288.34 (96.115)9.8734 (4.68E-06)***
residuals1781732.77 ( 9.735)
Tab.4  ANOVA results for the mean N2O EF (kgN2O-N·kgN−1)
N2O EFCH4 EF
Temp. (ambient)–0.3370.462
Temp. (reactor)–0.4940.333
VS road (kg·d1 : mean)–0.474–0.395
N road (kg·d1 : mean)–0.426–0.091
BOD/N–0.067–0.663
HRT (d)–0.4460.444
pH (reactor)–0.666–0.052
NO2+3(reactor)0.1440.105
Tab.5  Pearson's correlation coefficient (r) between the N2O and CH4 emission rates and the plant performance of the wastewater treatment facilities
1 Tsuiki M. and Harada Y. A computer program for estimating the amount of livestock wastes. The Journal of the Japanese Agricultural Systems Society, 1997, 13(1): 17–23
2 Haga K. Animal waste problems and their solution from the technological point of view in Japan. Jpn Agric Res Q, 1998, 32(3): 203–210
3 Tilman D, Cassman K G, Matson P A, Naylor R, Polasky S. Agricultural sustainability and intensive production practices. Nature, 2002, 418(6898): 671–677
https://doi.org/10.1038/nature01014
4 Kampschreur M J, Temmink H, Kleerebezem R, Jetten M S M, van Loosdrecht M C M. Nitrous oxide emission during wastewater treatment. Water Research, 2009, 43(17): 4093–4103
https://doi.org/10.1016/j.watres.2009.03.001
5 Greenhouse Gas Inventory Office of Japan, National Greenhouse Gas Inventory Report of Japan. Ministry of the Environment, Japan, 2015.
6 Intergovernmental Panel on Climate Change. Climate Change 2007: The Physical Science Basis. 2007 (Intergovernmental Panel on Climate Change: Stockholm). . (Accessed  March 7, 2017)
7 Crutzen P J. Atmospheric chemical processes of the oxides of nitrogen, including nitrous oxide. In: Delwiche C C, ed. Denitrification, Nitrification and Atmospheric Nitrous Oxide. New York: John Wiley and Sons, 1981, 17–44
8 Osada T, Kuroda K, Yonaga M. Reducing nitrous oxide gas emissions from fill-and-draw type activated sludge process. Water Research, 1995, 29(6): 1607–1608
https://doi.org/10.1016/0043-1354(94)00246-4
9 Kampschreura M J, Temmink H, Kleerebezema R, Jettena M S M, van Loosdrecht M C M. Nitrous oxide emission during wastewater treatment. Water Research, 2009, 43(17): 4093–4103 
https://doi.org/10.1016/j.watres.2009.03.001
10 Osada T. Nitrous oxide emission from purification of liquid portion of swine wastewater. In: Greenhouse Gas Control Technologies, Sixth International Conference. Gale J, Kaya Y, eds. Oxford, 2003, 1299–1304
11 Sherman M H. Tracer-gas techniques for measuring ventilation in a single zone. Building and Environment, 1990, 25(4): 365–374
https://doi.org/10.1016/0360-1323(90)90010-O
12 American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF). Standard Methods for the Examination of Water and Wastewater, 22nd edition. Rice E W, Baird R B, Eaton A D, Clesceri L S, eds. Washington D C: American Public Health Association, 2012
13 Minato K, Kouda Y, Yamakawa M, Hara S, Tamura T, Osada T. Determination of GHG and ammonia emissions from stored dairy cattle slurry by using a floating dynamic chamber. Animal Science Journal, 2013, 84(2): 165–177
https://doi.org/10.1111/j.1740-0929.2012.01053.x
14 Vanderzaag A C, Flesch T K, Desjardins R L, Balde H, Wright T. Measuring methane emissions from two dairy farms: seasonal and manure-management effects. Agricultural Meteorology, 2014, 194: 259–267
https://doi.org/10.1016/j.agrformet.2014.02.003
15 Intergovernmental Panel on Climate Change (IPCC). The Revised Guidelines for National Greenhouse Gas Inventories. Reference manual, Vol. III. United Nations, New York, 1996, . (Accessed  March 6, 2017)
16 IPCC (Intergovernmental Panel on Climate Change). 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme. Eggleston H S, Buendia L, Miwa K, Ngara T, Tanabe K, eds. Published: IGES, Japan. Chapter 10: Emissions from Livestock and Manure Management. In: Volume 4 Agriculture, Forestry and Other Land Use, 2006, . (Accessed  March 6, 2017)
17 Osada T, Kuroda K, Yonaga M. Reducing nitrous oxide gas emissions from fill-and-draw type activated sludge process. Water Research, 1995, 29(6): 1607–1608
https://doi.org/10.1016/0043-1354(94)00246-4
18 Yamashita T, Shiraishi M, Yamamoto-Ikemoto R, Yokoyama H, Ogino A, Osada T. Swine wastewater treatment technology to reduce nitrous oxide emission by using an aerobic bioreactor packed with carbon fibres. Animal Production Science, 2016, 56(3): 330–336
https://doi.org/10.1071/AN15476
19 Guisasola A, de Haas D, Keller J, Yuan Z. Methane formation in sewer systems. Water Research, 2008, 42(6-7): 1421–1430
https://doi.org/10.1016/j.watres.2007.10.014
20 Hwang K L, Bang C H, Zoh K D. Characteristics of methane and nitrous oxide emissions from the wastewater treatment plant. Bioresource Technology, 2016, 214: 881–884
https://doi.org/10.1016/j.biortech.2016.05.047
21 Vanderzaag A C, Gordon R J, Burton D L, Jamieson R C, Stratton G W. Greenhouse gas emissions from surface flow and subsurface flow constructed wetlands treating dairy wastewater. Journal of Environmental Quality, 2010, 39(2): 460–471
https://doi.org/10.2134/jeq2009.0166
22 Wang J, Zhang J, Xie H, Qi P, Ren Y, Hu Z. Methane emissions from a full-scale A/A/O wastewater treatment plant. Bioresource Technology, 2011, 102(9): 5479–5485
https://doi.org/10.1016/j.biortech.2010.10.090
23 Ogink N W M, Mosquera J, Calvet S, Zhang G. Methods for measuring gas emissions from naturally ventilated livestock buildings: developments over the last decade and perspectives for improvement. Biosystems Engineering, 2013, 116(3): 297–308 
https://doi.org/10.1016/j.biosystemseng.2012.10.005
24 Hu Z, Zhang J, Xie H, Li S, Wang J, Zhang T. Effect of anoxic/aerobic phase fraction on N2O emission in a sequencing batch reactor under low temperature. Bioresource Technology, 2011, 102(9): 5486–5491
https://doi.org/10.1016/j.biortech.2010.10.037
25 Paudel S R, Choi O, Khanal S K, Chandran K, Kim S, Lee J W. Effects of temperature on nitrous oxide (N2O) emission from intensive aquaculture system. Science of the Total Environment, 2015, 518: 16–23 
https://doi.org/10.1016/j.scitotenv.2015.02.076
26 Holtan-Hartwig L, Dösch P, Bakken L R. Low temperature control of soil denitrifying communities: kinetics of N2O production and reduction. Soil Biology and Biochemistry, 2002, 34(11): 1797–1806
https://doi.org/10.1016/S0038-0717(02)00169-4
27 Hanaki K, Hong Z, Matsuo T. Production of nitrous oxide gas during denitrification of wastewater. Water Science and Technology, 1992, 26: 1027–1036
28 Daelman M R J, van Voorthuizen E M, van Dongen U G J M, Volcke E I P, van Loosdrecht M C M. Seasonal and diurnal variability of N2O emissions from a full-scale municipal wastewater treatment plant. Science of the Total Environment, 2015, 536: 1–11
https://doi.org/10.1016/j.scitotenv.2015.06.122
[1] Yi Qian, Weichuan Qiao, Yunhao Zhang. Toxic effect of sodium perfluorononyloxy-benzenesulfonate on Pseudomonas stutzeri in aerobic denitrification, cell structure and gene expression[J]. Front. Environ. Sci. Eng., 2021, 15(5): 100-.
[2] Qinxue Wen, Shuo Yang, Zhiqiang Chen. Mesophilic and thermophilic anaerobic digestion of swine manure with sulfamethoxazole and norfloxacin: Dynamics of microbial communities and evolution of resistance genes[J]. Front. Environ. Sci. Eng., 2021, 15(5): 94-.
[3] Boyi Cheng, Yi Wang, Yumei Hua, Kate V. Heal. The performance of nitrate-reducing Fe(II) oxidation processes under variable initial Fe/N ratios: The fate of nitrogen and iron species[J]. Front. Environ. Sci. Eng., 2021, 15(4): 73-.
[4] Ying Xu, Hui Gong, Xiaohu Dai. High-solid anaerobic digestion of sewage sludge: achievements and perspectives[J]. Front. Environ. Sci. Eng., 2021, 15(4): 71-.
[5] Sanjena Narayanasamydamodaran, Jian’e Zuo, Haiteng Ren, Nawnit Kumar. Scrap Iron Filings assisted nitrate and phosphate removal in low C/N waters using mixed microbial culture[J]. Front. Environ. Sci. Eng., 2021, 15(4): 66-.
[6] Yuxin Li, Jiayin Ling, Pengcheng Chen, Jinliang Chen, Ruizhi Dai, Jinsong Liao, Jiejing Yu, Yanbin Xu. Pseudomonas mendocina LYX: A novel aerobic bacterium with advantage of removing nitrate high effectively by assimilation and dissimilation simultaneously[J]. Front. Environ. Sci. Eng., 2021, 15(4): 57-.
[7] Mona Akbar, Muhammad Farooq Saleem Khan, Ling Qian, Hui Wang. Degradation of polyacrylamide (PAM) and methane production by mesophilic and thermophilic anaerobic digestion: Effect of temperature and concentration[J]. Front. Environ. Sci. Eng., 2020, 14(6): 98-.
[8] Binbin Sheng, Depeng Wang, Xianrong Liu, Guangxing Yang, Wu Zeng, Yiqing Yang, Fangang Meng. Taxonomic and functional variations in the microbial community during the upgrade process of a full-scale landfill leachate treatment plant – from conventional to partial nitrification-denitrification[J]. Front. Environ. Sci. Eng., 2020, 14(6): 93-.
[9] Wenrui Guo, Yue Wen, Yi Chen, Qi Zhou. Sulfur cycle as an electron mediator between carbon and nitrate in a constructed wetland microcosm[J]. Front. Environ. Sci. Eng., 2020, 14(4): 57-.
[10] Zhihao Si, Xinshan Song, Xin Cao, Yuhui Wang, Yifei Wang, Yufeng Zhao, Xiaoyan Ge, Awet Arefe Tesfahunegn. Nitrate removal to its fate in wetland mesocosm filled with sponge iron: Impact of influent COD/N ratio[J]. Front. Environ. Sci. Eng., 2020, 14(1): 4-.
[11] Nan Wu, Weiyu Zhang, Shiyu Xie, Ming Zeng, Haixue Liu, Jinghui Yang, Xinyuan Liu, Fan Yang. Increasing prevalence of antibiotic resistance genes in manured agricultural soils in northern China[J]. Front. Environ. Sci. Eng., 2020, 14(1): 1-.
[12] Zhenfeng Han, Ying Miao, Jing Dong, Zhiqiang Shen, Yuexi Zhou, Shan Liu, Chunping Yang. Enhanced nitrogen removal and microbial analysis in partially saturated constructed wetland for treating anaerobically digested swine wastewater[J]. Front. Environ. Sci. Eng., 2019, 13(4): 52-.
[13] Chao Pang, Chunhua He, Zhenhu Hu, Shoujun Yuan, Wei Wang. Aggravation of membrane fouling and methane leakage by a three-phase separator in an external anaerobic ceramic membrane bioreactor[J]. Front. Environ. Sci. Eng., 2019, 13(4): 50-.
[14] Yuzhou Deng, Shengpan Peng, Haidi Liu, Shuangde Li, Yunfa Chen. Mechanism of dichloromethane disproportionation over mesoporous TiO2 under low temperature[J]. Front. Environ. Sci. Eng., 2019, 13(2): 21-.
[15] Alvyn P. Berg, Ting-An Fang, Hao L. Tang. Unlocked disinfection by-product formation potential upon exposure of swimming pool water to additional stimulants[J]. Front. Environ. Sci. Eng., 2019, 13(1): 10-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed