Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2017, Vol. 11 Issue (4) : 2    https://doi.org/10.1007/s11783-017-0935-5
REVIEW ARTICLE
Zero increase in peak discharge for sustainable development
Xing Fang1,2(), Junqi Li2, Yongwei Gong2, Xiaoning Li1
1. Department of Civil Engineering, Auburn University, Auburn, AL 36849-5337, USA
2. Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
 Download: PDF(258 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Comprehensive stormwater management needs both LID and detention basins.

Zero-increase in peak discharge policy is still valid/used in developed countries.

Design rainfalls for LID are smaller than ones for detention basin.

Detention basin reduces peak discharges for several return-period rainfalls.

Financial responsibility and sustainable development demand zero-increase policy.

For urban land development, some or all natural land uses (primarily pervious) are converted into impervious areas which lead to increases of runoff volume and peak discharge. Most of the developed countries require a zero increase in peak discharge for any land development, and the policy has been implemented for several decades. The policy of zero increase in peak discharge can be considered as historical and early stage for the low impact development (LID) and sustainable development, which is to maintain natural hydrological conditions by storing a part or all of additional runoff due to the development on site. The paper will discuss the policy, the policy implementation for individual projects and their impact on regional hydrology. The design rainfalls for sizing LID facilities that are determined in 206 weather stations in USA are smaller than design rainfalls for sizing detention basins. The zero-increase policy links to financial responsibility and sustainability for construction of urban stormwater infrastructures and for reducing urban flooding. The policy was compared with current practices of urban development in China to shine the light for solving urban stormwater problems. The connections and differences among LID practices, the zero-increase policy, and the flood control infrastructure were discussed. We promote and advocate the zero-increase policy on peak discharge for comprehensive stormwater management in China in addition to LID.

Keywords Stormwater management      Detention basin      Zero increase      Peak discharge      Sustainable development      Design rainfall     
Corresponding Author(s): Xing Fang   
Issue Date: 26 April 2017
 Cite this article:   
Xing Fang,Junqi Li,Yongwei Gong, et al. Zero increase in peak discharge for sustainable development[J]. Front. Environ. Sci. Eng., 2017, 11(4): 2.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-017-0935-5
https://academic.hep.com.cn/fese/EN/Y2017/V11/I4/2
Fig.1  Stormwater wet detention pond schematic (revised from [])
Fig.2  Distributions of 85th, 90th, and 95th percentile event rainfalls and maximum daily rainfalls (Pmax) at 206 weather stations and 1-year 24-h rainfall at 178 weather stations in US
Fig.3  Distributions of 85th, 90th, and 95th percentile event rainfalls and design rainfalls (RD, mm) of 85% PVCR when 99.5% or all rainfall data were used at 206 weather stations in US
Tab.1  Statistics of design rainfalls for 70%, 75%, 80%, and 85% PVCR using 99.5% rainfall data and for 85% PVCR using all data and maximum daily rainfalls for 206 weather stations in USA
1 Viessman W, Lewis  G L. Introduction to Hydrology. 5th ed. Upper Saddle River, NJ: Pearson Education, 2003
2 McCuen R H. Downstream effects of stormwater management basins. Journal of the Hydraulics Division, 1979, 105(11): 1343–1356
3 Davis A P. Green engineering principles promote low-impact development. Environmental Science & Technology, 2005, 39(16): 338A–344A 
https://doi.org/10.1021/es053327e pmid: 16173544
4 Jia H, Yao  H, Yu S L . Advances in LID BMPs research and practice for urban runoff control in China. Frontiers of Environmental Science & Engineering, 2013, 7(5): 709–720
https://doi.org/10.1007/s11783-013-0557-5
5 Malaviya P, Singh  A. Constructed wetlands for management of urban stormwater runoff. Critical Reviews in Environmental Science and Technology, 2012, 42(20): 2153–2214 
https://doi.org/10.1080/10643389.2011.574107
6 Center for Watershed Protection. Stormwater Wet Pond and Wetland Management Guidebook. Washington DC: US Environmental Agency, 2009
7 Storey A L Jr, Talbott M D, Fitzgerald  S. Policy, Criteria, and Procedure Manual for Approval and Acceptance of Infrastructure. Houston, TX: Harris County Flood Control District, 2004
8 Li L, Li  Q, Xu Z j . Design study of detention bain in Nanchang Changbei Airport. Water & Wastewater Engineering, 2014, 40(4): 82–84 (in Chinese)
9 Cheng J, Qi  J Y, Xu  L. Inlet mode optimization of Chengdulu stormwater detention tank in Shanghai. China Water & Wastewater, 2014, 30(5): 104–109 (in Chinese)
10 Li J Q, Yu  P, Che W ,  Qiu S Q . Optimization of the scale of urban rainwater accumulation and utilization project. China Water and Wastewater, 2005, 21(3): 49–52 (in Chinese)
11 Prince George’s County. Low-Impact Development Design Strategies: an Integrated Design Approach. Prince George’s County, Maryland: Department of Environmental Resources, Programs and Planning Division, 1999
12 Guo Y. Hydrologic design of urban flood control detention ponds. Journal of Hydrologic Engineering, 2001, 6(6): 472–479 
https://doi.org/10.1061/(ASCE)1084-0699(2001)6:6(472)
13 Guo Y, Adams  B J. Analysis of detention ponds for storm water quality control. Water Resources Research, 1999, 35(8): 2447–2456
https://doi.org/10.1029/1999WR900124
14 Sharifi S, Massoudieh  A, Kayhanian M . A stochastic stormwater quality volume-sizing method with first flush emphasis. Water Environment Research, 2011, 83(11): 2025–2035
https://doi.org/10.2175/106143011X12989211 pmid: 22195425
15 Zhang K, Che  W, Zhang W ,  Zhao Y. Discussion about initial runoff and volume capture ratio of annual rainfall. Water Science and Technology, 2016, 74(8): 1764–1772 
https://doi.org/10.2166/wst.2016.307 pmid: 27789877
16 USEPA. Technical Guidance on Implementing the Stormwater Runoff Requirements for Federal Projects under Section 438 of the Energy Independence and Security Act. Washington, DC: United States Environmental Protection Agency, 2009
17 Shrestha S, Fang  X, Li J . Mapping the 95th Percentile Daily Rainfall in the Contiguous U.S. Cincinnati, Ohio: World Environmental and Water Resources Congress, 2013
18 Hershfield D M . Rainfall Frequency Atlas of the United States for Durations from 30 Minutes to 24 Hours and Return Periods from 1 to 100 Years. Washington, DC: US Weather Bureau, US Department of Commerce, 1963
19 Sushban S, Fang  X, Zech W C . What should be the 95th percentile rainfall event depths? Journal of Irrigation and Drainage Engineering, 2013, 140(1): 06013002 
https://doi.org/10.1061/(ASCE)IR.1943-4774.0000658
20 Asquith W H, Roussel  M C, Cleveland  T G, Fang  X, Thompson D B . Statistical Characteristics of Storm Interevent Time, Depth, and Duration for Eastern New Mexico, Oklahoma, and Texas. U.S. Austin, Texas: Geological Survey, Texas Water Science Center, 2006
21 Guo J C Y ,  Urbonas B . Maximized detention volume determined by runoff capture ratio. Journal of Water Resources Planning and Management, 1996, 122(1): 33–39
https://doi.org/10.1061/(ASCE)0733-9496(1996)122:1(33)
22 USEPA. Results of the Nationwide Urban Runoff Program- Executive Summary. Washington DC: Water Planning Division, United States Environmental Protection Agency (USEPA), 1983
23 USEPA. Development Document for Final Effluent Guidelines and Standards for the Construction & Development Category. Washington, DC: US Environmental Protection Agency (USEPA), Office of Water, 2009
24 Hossain M A, Alam  M, Yonge D R ,  Dutta P . Efficiency and flow regime of a highway stormwater detention pond in Washington, USA. Water, Air, and Soil Pollution, 2005, 164(1): 79–89
25 Bhardwaj A K, McLaughlin  R A. Simple polyacrylamide dosing systems for turbidity reduction in stilling basins. Transactions of the ASABE, 2008, 51(5): 1653–1662
https://doi.org/10.13031/2013.25324
26 McLaughlin R A ,  Hayes S A ,  Clinton D L ,  McCaleb M M ,  Jennings G D . Water quality improvements using modified sediment control systems on construction sites. Transactions of the ASABE. 2009, 52(6):1859–1867
27 Haan C T, Barfield  B J, Hayes  J C. Design Hydrology and Sedimentology for Small Catchments. New York: Academic Press, 1994
28 Barfield B J, Clar  M. Development of New Design Criteria for Sediment Traps and Basins. Annapolis, MD: Prepared for the Maryland Resource Administration, 1985
29 Su D, Fang  X, Fang Z . Effectiveness and downstream impacts of stormwater detention basins required for urban land development. In: 2010 World Environmental and Water Resources Congress, Providence, Rhode Island. Reston: American Society of Civil Engineers, 2010,3071–3081 
https://doi.org/10.1061/41114(371)314
30 Guo J C Y . Retrofitting detention basin with water quality control pool. Journal of Irrigation and Drainage Engineering, 2009, 135(5): 671–675
https://doi.org/10.1061/(ASCE)IR.1943-4774.0000051
31 Emerson C H, Welty  C, Traver R G . Watershed-scale evaluation of a system of storm water detention basins. Journal of Hydrologic Engineering, 2005, 10(3): 237–242 
https://doi.org/10.1061/(ASCE)1084-0699(2005)10:3(237)
32 Goff K M, Gentry  R W. The influence of watershed and development characteristics on the cumulative impacts of stormwater detention ponds. Water Resources Management, 2006, 20(6): 829–860
https://doi.org/10.1007/s11269-005-9010-2
33 Fang Z, Zimmer  A, Bedient P B ,  Robinson H ,  Christian J ,  Vieux B E . Using a distributed hydrologic model to evaluate the location of urban development and flood control storage. Journal of Water Resources Planning and Management, 2010, 136(5): 597–601 
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000066
34 Koontz T M, Thomas  C W. Measuring the performance of public-private partnerships: A systematic method for distinguishing outputs from outcomes. Public Performance & Management Review, 2012, 38(4): 717–747 
https://doi.org/10.1080/15309576.2015.1031016
[1] Te Xu, Haifeng Jia, Zheng Wang, Xuhui Mao, Changqing Xu. SWMM-based methodology for block-scale LID-BMPs planning based on site-scale multi-objective optimization: a case study in Tianjin[J]. Front. Environ. Sci. Eng., 2017, 11(4): 1-.
[2] Jinsong Tao, Zijian Li, Xinlai Peng, Gaoxiang Ying. Quantitative analysis of impact of green stormwater infrastructures on combined sewer overflow control and urban flooding control[J]. Front. Environ. Sci. Eng., 2017, 11(4): 11-.
[3] Xuesong GUO,Zehang LIU,Meixue CHEN,Junxin LIU,Min YANG. Decentralized wastewater treatment technologies and management in Chinese villages[J]. Front. Environ. Sci. Eng., 2014, 8(6): 929-936.
[4] Sai LIANG, Tianzhu ZHANG, Xiaoping JIA. Clustering economic sectors in China on a life cycle basis to achieve environmental sustainability[J]. Front Envir Sci Eng, 2013, 7(1): 97-108.
[5] Liqing LI, Baoqing SHAN, Chenqing YIN. Stormwater runoff pollution loads from an urban catchment with rainy climate in China[J]. Front Envir Sci Eng, 2012, 6(5): 672-677.
[6] Jun BI, Yongliang ZHANG, Bing ZHANG, . Public perception of environmental issues across socioeconomic characteristics: A survey study in Wujin, China[J]. Front.Environ.Sci.Eng., 2010, 4(3): 361-372.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed