Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2017, Vol. 11 Issue (4) : 7    https://doi.org/10.1007/s11783-017-0937-3
RESEARCH ARTICLE
Fifty Years of Water Sensitive Urban Design, Salisbury, South Australia
John C. Radcliffe1(), Declan Page1, Bruce Naumann2, Peter Dillon1
1. CSIRO Land and Water, Private Bag 2, Glen Osmond, South Australia 5064, Australia
2. City of Salisbury 12 James St, Salisbury, South Australia 5108, Australia
 Download: PDF(541 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Low Impact Development was able to be adopted over a 50 year period by the City of Salisbury as it expanded from 4160 to 137,000 people

The management of stormwater and groundwater was integrated through use of wetlands and managed aquifer recharge.

Federal, state and local government contributed with developers and local industry to establish the integrated system as a commercial business supplying recycled water for non-potable amenity and industrial use.

It has been shown with little additional water treatment, water originally treated through wetlands and aquifer storage could be safely withdrawn for a range of uses including as a potable water source.

Australia has developed extensive policies and guidelines for the management of its water. The City of Salisbury, located within metropolitan Adelaide, South Australia, developed rapidly through urbanisation from the 1970s. Water sensitive urban design principles were adopted to maximise the use of the increased run-off generated by urbanisation and ameliorate flood risk. Managed aquifer recharge was introduced for storing remediated low-salinity stormwater by aquifer storage and recovery (ASR) in a brackish aquifer for subsequent irrigation. This paper outlines how a municipal government has progressively adopted principles of Water Sensitive Urban Design during its development within a framework of evolving national water policies. Salisbury’s success with stormwater harvesting led to the formation of a pioneering water business that includes linking projects from nine sites to provide a non-potable supply of 5 × 106 m3·year−1. These installations hosted a number of applied research projects addressing well configuration, water quality, reliability and economics and facilitated the evaluation of its system as a potential potable water source. The evaluation showed that while untreated stormwater contained contaminants, subsurface storage and end-use controls were sufficient to make recovered water safe for public open space irrigation, and with chlorination, acceptable for third pipe supplies. Drinking water quality could be achieved by adding microfiltration, disinfection with UV and chlorination. The costs that would need to be expended to achieve drinking water safety standards were found to be considerably less than the cost of establishing dual pipe distribution systems. The full cost of supply was determined to be AUD$1.57 m−3 for non-potable water for public open space irrigation, much cheaper than mains water, AUD$3.45 m−3at that time. Producing and storing potable water was found to cost AUD$1.96 to $2.24 m−3.

Keywords Managed Aquifer Recharge (MAR)      Stormwater harvesting      Water recycling drinking water      Low impact development      Water sensitive urban design     
Corresponding Author(s): John C. Radcliffe   
Issue Date: 11 May 2017
 Cite this article:   
John C. Radcliffe,Declan Page,Bruce Naumann, et al. Fifty Years of Water Sensitive Urban Design, Salisbury, South Australia[J]. Front. Environ. Sci. Eng., 2017, 11(4): 7.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-017-0937-3
https://academic.hep.com.cn/fese/EN/Y2017/V11/I4/7
Fig.1  Layout of Parafield Airport Wetlands and MAR wells
site nameyear injection commencedcatchment area/ha% urban areaestimated annual yield /(×106 m3)
Parafield ASR20031,590731.1 a
Cobbler Ck./ Bridgestone Park20161,01738
Unity Park ASR20065,116771.3b
Paddocks ASR2000456890.1b
Greenfields ASR200811,371710.3 b
Edinburgh South ASR20124,417611.2 a
Kaurna Park ASR20055,512640.6 b
Whites Road ASR20142,628611.2 a
total32,1075.8
Tab.1  Salisbury stormwater harvesting schemes [15]
Fig.2  Salisbury stormwater harvesting catchments and MAR schemes shown in relation to Little Para Reservoir and hydrological sub-catchments Dry and Cobbler Creeks, Little Para River, Smith and Adams Creeks [16]
Fig.3  Catchment land uses related to Salisbury stormwater harvesting and reuse schemes [16]
Fig.4  Catchment land use organic chemical environmental risks [14]
33 Commonwealth of Australia Constitution Act  1900(Imp) constituting the Commonwealth of Australia.  ( accessed January 13 2017)
1 NWQMS National Water Quality Management Strategy. 2015,  ( accessed 10 February 2016)
2 NRMMC. EPHC and NHMRC. Australian Guidelines for Water Recycling, Managing Health and Environmental Risks, Volume 2C- Managed Aquifer Recharge. Natural Resource Management Ministerial Council, Environment Protection and Heritage Council National Health and Medical Research Council, 2009, 237pp.  ( accessed 24 February 2016)
3 Clar M. State of the LID/GSI Practice: Perspectives from the ASCE-EWRI-LID/GSI National Committee, LID 2016 Conference, Beijing, Paper 336
4 CoAG. Intergovernmental Agreement on the National Water Initiative, 2004 ( accessed 10 February 2016)
5 JSCWSC. Evaluating options for Water Sensitive Urban Design – a National Guide, Joint Steering Committee for Water Sensitive Cities, 2009, Department of Environment, Water, Heritage and the Arts, Canberra, Australia ( accessed 10 February 2016)
6 City of Salisbury. Our History, 2016.  ( accessed 10 February 2016)
7 Hains S. Stormwater: Towards Water Sensitive Cities, Local Government Managers Association Congress, 2009, Darwin, Australia.  ( accessed 10 February 2016)
8 Hutchings A, Garnaut C. The Private Development Company and the Building of Planned Communities in Post-war South Australia: Reid Murray Developments, Reality Development Corporation and their successors. Journal of the Historical Society of South Australia, 2012, 40: 96–116
9 City of Salisbury. Wetlands locations. 2015 ( accessed 10 February 2016)
10 Radcliffe J C. Water Recycling in Australia 2004, Australian Academy of Technological Sciences and Engineering, Melbourne
11 Dandy G, Ganji A, Kandulu J, Hatton MacDonald D, Marchi A, Maier H, Mankad A, Schmidt C E. (2014). Goyder Institute for Water Research Technical Report Series No. 14/1, Adelaide, South Australia. ISSN: 1839–2725.  ( accessed 18 Jan 2017)
12 Page D, Barry K, Pavelic P, Dillon P, Chassagne C. Preliminary quantitative risk assessment for the Salisbury stormwater ASTR project, 2008, Water for a Healthy Country National Research Flagship Report.  ( accessed 17 January 2017).
13 Page D, Miotliński K, Gonzalez D, Barry K, Dillon P, Gallen C. Environmental monitoring of selected pesticides and organic chemicals in urban stormwater recycling systems using passive sampling techniques. Journal of Contaminant Hydrology, 2014, 158: 65–77
https://doi.org/10.1016/j.jconhyd.2014.01.004 pmid: 24508567
14 Page D, Gonzalez D, Naumann B, Dillon P, Vanderzalm J, Barry K. Stormwater Managed Aquifer Recharge Risk-Based Management Plan, Parafield Stormwater Harvesting System, Stormwater supply to the Mawson Lakes Recycled Water Scheme, Industrial Uses and Public Open Space Irrigation, 2013, Goyder Institute for Water Research Technical Report 13/18, Adelaide, South Australia
15 Page D W, Vanderzalm J L, Barry K E, Torkzaban S, Gonzalez D, Dillon P J. Dillon, P J. E. coli and turbidity attenuation during urban stormwater recycling via Aquifer Storage and Recovery in a brackish limestone aquifer. Ecological Engineering, 2015, 84: 427–434
https://doi.org/10.1016/j.ecoleng.2015.09.023
16 Page D, Gonzalez D, Dillon P, Vanderzalm J, Vadakattu G, Toze S, Sidhu J, Miotlinski K, Torkzaban S, Barry K. Managed Aquifer Recharge Stormwater Use Options: Public Health and Environmental Risk Assessment Final Report, Goyder Institute for Water Research 2013, Technical Report 13/17, Adelaide, South Australia
17 DPLG. 2011, Spatial Data Download.  Department of Planning and Local Government, Adelaide, South Australia ( accessed 4 June 2011)
18 DPTI. 2016, Development Plan, Salisbury Council, Consolidated to 7 January 2016. Department of Planning Transport and Infrastructure, Adelaide, South Australia, (617pp)
19 City of Salisbury – Annual Reports.  ( accessed 19 January 2017)
20 Pitman C. Stormwater harvesting and utilisation. Water Recycling Australia, 2nd National Conference 2003, Brisbane. Australia.
21 Radcliffe J C. Water recycling in Australia – during and after the drought. Environmental Science Water Research & Technology, 2015, 1(5): 554–562
https://doi.org/10.1039/C5EW00048C
22 Page D, Gonzalez D, Sidhu J, Toze S, Torkzaban S, Dillon P. Assessment of treatment options of recycling urban stormwater recycling via aquifers to produce drinking water quality. Urban Water Journal, 2016, 13(6): 657–662
https://doi.org/10.1080/1573062X.2015.1024691
23 Dillon P. Page D, Dandy G, Leonard R, Tjandraatmadja G, Vanderzalm J, Rouse K, Barry K, Gonzalez D, Myers B. Managed Aquifer Recharge Stormwater Use Options: Summary of Research Findings, Goyder Institute for Water Research, 2014, Technical Report 14/13.  ( accessed 24 February 2016)
24 Page D W, Barry K, Gonzalez D, Keegan A, Dillon P. Reference pathogen numbers in urban stormwater for drinking water risk assessment. Journal of Water and Health, 2016, 16(1): 30–39
25 Page D, Vanderzalm J, Dillon P, Gonzalez D, Barry K. Stormwater quality review to evaluate treatment for drinking water supply via managed aquifer recharge. Water, Air, and Soil Pollution, 2016, 227(9): 1–16
https://doi.org/10.1007/s11270-016-3021-x
26 Page D, Gonzalez D, Torkzaban S, Toze S, Sidhu J, Miotliński K, Barry K, Dillon P. Microbiological risks of recycling urban stormwater via aquifers for various uses in Adelaide, Australia. Environmental Earth Sciences, 2015, 73(12): 7733–7737 
https://doi.org/10.1007/s12665-014-3466-4
27 WHO Guidelines for Drinking-Water Quality. 4th Edn. 2011, World Health Organisation, Geneva, Switzerland.  ( accessed 1 November 2016)
28 Clark R, Gonzalez D, Dillon P, Charles S, Cresswell D, Naumann B. Reliability of water supply from stormwater harvesting and managed aquifer recharge with a brackish aquifer in an urbanising catchment and changing climate. Environmental Modelling & Software, 2015, 72: 117–125
https://doi.org/10.1016/j.envsoft.2015.07.009
29 Sidhu J P S, Toze S, Hodgers L, Shackelton M, Barry K, Page D, Dillon P. Pathogen inactivation during passage of stormwater through a constructed reedbed and aquifer transfer, storage and recovery. Water Science and Technology, 2010, 62(5): 1190–1197
https://doi.org/10.2166/wst.2010.398 pmid: 20818064
30 Sidhu J P, Toze S, Hodgers L, Barry K, Page D, Li Y, Dillon P. Pathogen decay during Managed Aquifer Recharge at four different sites with different geochemical characteristics and recharge water sources.  Journal  of  Environmental  Quality, 2015, 44(5): 1402–1412
https://doi.org/10.2134/jeq2015.03.0118 pmid: 26436258
31 Stevens D. Audit of the Parafield Stormwater Harvesting and Managed Aquifer Recharge System for Non- Potable Use against the Stormwater Risk- Based Management Plan. Goyder Institute for Water Research 2014, Occasional Paper Series No. 14/1.  ( accessed 24 February 2016)
32 Water Sensitive S A.  ( accessed 18 Jan 2017)
[1] Ming Cheng, Huapeng Qin, Kangmao He, Hongliang Xu. Can floor-area-ratio incentive promote low impact development in a highly urbanized area? —A case study in Changzhou City, China[J]. Front. Environ. Sci. Eng., 2018, 12(2): 8-.
[2] Haifeng Jia, Zheng Wang, Xiaoyue Zhen, Mike Clar, Shaw L. Yu. China’s Sponge City construction: A discussion on technical approaches[J]. Front. Environ. Sci. Eng., 2017, 11(4): 18-.
[3] Hannah Kratky, Zhan Li, Yijun Chen, Chengjin Wang, Xiangfei Li, Tong Yu. A critical literature review of bioretention research for stormwater management in cold climate and future research recommendations[J]. Front. Environ. Sci. Eng., 2017, 11(4): 16-.
[4] Robert G. Traver, Ali Ebrahimian. Dynamic design of green stormwater infrastructure[J]. Front. Environ. Sci. Eng., 2017, 11(4): 15-.
[5] Jinsong Tao, Zijian Li, Xinlai Peng, Gaoxiang Ying. Quantitative analysis of impact of green stormwater infrastructures on combined sewer overflow control and urban flooding control[J]. Front. Environ. Sci. Eng., 2017, 11(4): 11-.
[6] Hyunju Jeong, Osvaldo A. Broesicke, Bob Drew, Duo Li, John C. Crittenden. Life cycle assessment of low impact development technologies combined with conventional centralized water systems for the City of Atlanta, Georgia[J]. Front. Environ. Sci. Eng., 2016, 10(6): 1-.
[7] Haifeng JIA, Hairong YAO, Shaw L. YU. Advances in LID BMPs research and practice for urban runoff control in China[J]. Front Envir Sci Eng, 2013, 7(5): 709-720.
[8] Marla C. MANIQUIZ, Lee-Hyung KIM, Soyoung LEE, Jiyeon CHOI. Flow and mass balance analysis of eco-bio infiltration system[J]. Front Envir Sci Eng, 2012, 6(5): 612-619.
[9] Mow-Soung CHENG, Jenny X. ZHEN, Leslie SHOEMAKER, . BMP decision support system for evaluating stormwater management alternatives[J]. Front.Environ.Sci.Eng., 2009, 3(4): 453-463.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed