Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2017, Vol. 11 Issue (3) : 13    https://doi.org/10.1007/s11783-017-0941-7
RESEARCH ARTICLE
Advantages of intermittently aerated SBR over conventional SBR on nitrogen removal for the treatment of digested piggery wastewater
Xiaoyan Song1, Rui Liu1(), Lujun Chen1,2(), Baogang Dong1, Tomoki Kawagishi3
1. Zhejiang Provincial Key Laboratory of Water Science and Technology, Department of Environment in Yangtze Delta Region Institute of Tsinghua University-Zhejiang, Jiaxing 314006, China
2. School of Environment, Tsinghua University, Beijing 100084, China
3. Aqua Development Center, Mitsubishi Rayon Co. Ltd., Toyohashi 4408601, Japan
 Download: PDF(499 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The mass balance analysis of organic carbon were applied.

The IASBR displays higher ratios of denitrificated organic carbon.

The effects of anoxic stress duration on nitrification activity were evaluated.

The anoxia time of 40–80 min achieves more stable nitritation.

The intermittent aeration strategy improved the removal of fluorescent substance.

An intermittently aerated sequencing batch reactor (IASBR) and a traditional sequencing batch reactor (SBR) were parallelly constructed to treat digested piggery wastewater, which was in high NH4+-N concentration but in a low COD/TN ratio. Their pollutant removal performance was compared under COD/TN ratios of 1.6–3.4 d and hydraulic retention times of 5–3 d. The results showed that the IASBR removed TN, NH4+-N and TOC more efficiently than the SBR. The average removal rates of TN, NH4+-N and TOC were 83.1%, 96.5%, and 89.0%, respectively, in the IASBR, significantly higher than the corresponding values of 74.8%, 82.0%, and 86.2% in the SBR. Mass balance of organic carbon revealed that the higher TN removal in the IASBR might be attributed to its efficient utilization of the organic carbon for denitrification, since that 48.7%–52.2% of COD was used for denitrification in the IASBR, higher than the corresponding proportion of 43.1%–47.4% in the SBR. A pre-anoxic process in the IASBR would enhance the ammonium oxidation while restrict the nitrite oxidation. Anoxic duration of 40–80 min should be beneficial for achieving stable nitritation.

Keywords Anoxic stress      Carbon source      Digested piggery wastewater      Intermittently aerated SBR (IASBR)      Total nitrogen     
Corresponding Author(s): Rui Liu,Lujun Chen   
Issue Date: 11 May 2017
 Cite this article:   
Xiaoyan Song,Rui Liu,Lujun Chen, et al. Advantages of intermittently aerated SBR over conventional SBR on nitrogen removal for the treatment of digested piggery wastewater[J]. Front. Environ. Sci. Eng., 2017, 11(3): 13.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-017-0941-7
https://academic.hep.com.cn/fese/EN/Y2017/V11/I3/13
Fig.1  Schematic diagram of the experimental equipment and operation mode
rundaysHRT
(d)
COD/
TN
NLRa)/
(kg NH4+-N·m3·d1)
NLR/
(kg TN·m3·d1)
OLRb)/
(kg COD·m3·d1)
113–6152.3±0.50.10±0.040.23±0.040.57±0.13
262–10732.2±0.30.18±0.020.41±0.050.83±0.07
3108–14533.1±0.20.21±0.030.43±0.041.16±0.08
Tab.1  Running conditions and operating parameters
Fig.2  Removals of TN, ammonium nitrogen, TON and TOC
Fig.3  Comparison of nitrite accumulation between IASBR and SBR
Fig.4  Effects of FA concentration on nitrite accumulation in a cycle
Fig.5  Organic carbon source distribution
Fig.6  Effects of anoxic stress on nitrification efficiency ((a) NO2-N; (b) NO3-N)
Fig.7  Comparison of fluorescent substances ((a) is for relative content, (b) is for absolute content) for IASBR and SBR
1 Zhao B, Li J, Leu S Y. An innovative wood-chip-framework soil infiltrator for treating anaerobic digested swine wastewater and analysis of the microbial community. Bioresource Technology, 2014, 173: 384–391
https://doi.org/10.1016/j.biortech.2014.09.135 pmid: 25444881
2 Liu R, Chen L J, Wang G R, Ye Z X. On the pollution with antibiotics, heavy metal and conventional indicators in digested wastewater from large-scale pig farms in Jiaxing City, China. Environmental Engineering and Management Journal, 2016, 15(10): 2253–2260
3 Deng L, Zheng P, Chen Z, Mahmood Q. Improvement in post-treatment of digested swine wastewater. Bioresource Technology, 2008, 99(8): 3136–3145
https://doi.org/10.1016/j.biortech.2007.05.061 pmid: 17669649
4 Yamamoto T, Takaki K, Koyama T, Furukawa K. Long-term stability of partial nitritation of swine wastewater digester liquor and its subsequent treatment by Anammox. Bioresource Technology, 2008, 99(14): 6419–6425
https://doi.org/10.1016/j.biortech.2007.11.052 pmid: 18166452
5 MEPPRC (Ministry Environmental Protection of People’s Republic of China). Discharge Standard of Pollutants for Livestock and Poultry Breeding (draft), 2014. Available online at 
6 Vázquez-Padín J R, Fernández I, Morales N, Campos J L, Mosquera-Corral A, Méndez R. Autotrophic nitrogen removal at low temperature. Water Science and Technology, 2011, 63(6): 1282–1288
https://doi.org/10.2166/wst.2011.370 pmid: 21436568
7 Yao H, Liu H, He Y M, Zhang S J, Sun P Z, Huang C H. Performance of an ANAMMOX reactor treating wastewater generated by antibiotic and starch production processes. Frontiers of Environmental Science & Engineering, 2012, 6(6): 875–883
https://doi.org/10.1007/s11783-012-0459-y
8 Kartal B, Kuenen J G, van Loosdrecht M C. Sewage treatment with anammox. Science, 2010, 328(5979): 702–703
https://doi.org/10.1126/science.1185941 pmid: 20448175
9 Molinuevo B, García M C, Karakashev D, Angelidaki I. Anammox for ammonia removal from pig manure effluents: effect of organic matter content on process performance. Bioresource Technology, 2009, 100(7): 2171–2175
https://doi.org/10.1016/j.biortech.2008.10.038 pmid: 19097886
10 Obaja D, Macé S, Costa J, Sans C, Mata-Alvarez J. Nitrification, denitrification and biological phosphorus removal in piggery wastewater using a sequencing batch reactor. Bioresource Technology, 2003, 87(1): 103–111
https://doi.org/10.1016/S0960-8524(02)00229-8 pmid: 12733583
11 Rajagopal R, Rousseau P, Bernet N, Béline F. Combined anaerobic and activated sludge anoxic/oxic treatment for piggery wastewater. Bioresource Technology, 2011, 102(3): 2185–2192
https://doi.org/10.1016/j.biortech.2010.09.112 pmid: 21050751
12 Yang D, Deng L, Zheng D, Wang L, Liu Y. Separation of swine wastewater into different concentration fractions and its contribution to combined anaerobic-aerobic process. Journal of Environmental Management, 2016, 168: 87–93
https://doi.org/10.1016/j.jenvman.2015.11.049 pmid: 26696609
13 Yang Y D, Zhang L, Shao H D, Zhang S J, Gu P C, Peng Y Z. Enhanced nutrients removal from municipal wastewater through biological phosphorus removal followed by partial nitritation/anammox. Frontiers of Environmental Science & Engineering, 2017, 11(2): 8
https://doi.org/10.1007/s11783-017-0911-0
14 Yang J, Trela J, Zubrowska-Sudol M, Plaza E. Intermittent aeration in one-stage partial nitritation/anammox process. Ecological Engineering, 2015, 75: 413–420
https://doi.org/10.1016/j.ecoleng.2014.11.016
15 Bortone G, Libelli S M. Anoxic phosphate uptake in the dephanox process. Water Science and Technology, 1999, 40(4–5): 177–185
https://doi.org/10.1016/S0273-1223(99)00500-4
16 Zhang M, Lawlor P G, Wu G, Lynch B, Zhan X. Partial nitrification and nutrient removal in intermittently aerated sequencing batch reactors treating separated digestate liquid after anaerobic digestion of pig manure. Bioprocess and Biosystems Engineering, 2011, 34(9): 1049–1056
https://doi.org/10.1007/s00449-011-0556-5 pmid: 21643975
17 Pan M, Henry L G, Liu R, Huang X, Zhan X M. Nitrogen removal from slaughterhouse wastewater through partial nitrification followed by denitrification in intermittently aerated sequencing batch reactors at 11 degreeC. Environmental Technology, 2014, 35(1-4): 470–477
https://doi.org/10.1080/09593330.2013.832336 pmid: 24600887
18 Song X Y, Liu R, Shui Y, Kawagishi T, Zhan X M, Chen L J. Stability of Short-cut Nitrification Nitrogen Removal in Digested Piggery Wastewater with an Intermittently Aerated Sequencing Batch Reactor. Environmental Sciences, 2016, 37(5): 1873–1879 (in Chinese)
pmid: 27506043
19 MEPPRC (Ministry Environmental Protection of People’s Republic of China). Standard Methods for Water and Wastewater Monitoring and Analysis, 4th ed. Beijing: China Environmental Science Press, 2002, 238–239; 252–256; 260–263; 266–269; 345–356 (in Chinese)
20 Yu L F, Wang S W, Guo T C, Peng D C. Nitrifiers accumulation with reject water and bio-augmentation for nitrification of sewage at short SRT. Environmental Sciences, 2008, 29(2): 332–337 (in Chinese)
pmid: 18613501
21 Rotthauwe J H, Witzel K P, Liesack W. The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Applied and Environmental Microbiology, 1997, 63(12): 4704–4712 
pmid: 9406389
22 Huang Z, Gedalanga P B, Asvapathanagul P, Olson B H. Influence of physicochemical and operational parameters on Nitrobacter and Nitrospira communities in an aerobic activated sludge bioreactor. Water Research, 2010, 44(15): 4351–4358
https://doi.org/10.1016/j.watres.2010.05.037 pmid: 20591463
23 Ovreås L, Forney L, Daae F L, Torsvik V. Distribution of bacterioplankton in meromictic Lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Applied and Environmental Microbiology, 1997, 63(9): 3367–3373 
pmid: 9292986
24 Baek K, Park C, Oh H M, Yoon B D, Kim H S. Diversity and abundance of ammonia-oxidizing bacteria in activated sludge treating different types of wastewater. Journal of Microbiology and Biotechnology, 2010, 20(7): 1128–1133
https://doi.org/10.4014/jmb.0907.07021 pmid: 20668407
25 Li J, Meng J, Zhao B W, Ai B L. Main influence factors for shortcut nitrification in a SBR treating anaerobic digested piggery wastewater. Journal of Harbin Institute of Technology, 2014, 46(8): 27–33 (in Chinese)
26 Anthonisen A C, Loehr R C, Prakasam T B S, Srinath E G. Inhibition of nitrification by ammonia and nitrous acid. Journal- Water Pollution Control Federation, 1976, 48(5): 835–852
pmid: 948105
27 Grady C P L, Daigger J G T, Lim H C. Biological Wastewater Treatment. 2nd ed. American: Marcel Dekker Inc., 1999, 397–400
28 Wentzel M C, Loewenthal R E, Ekama G A, Marais G R. Enhanced polyphosphate organism cultures in activated sludge systems—Part I: Enhanced culture development. Water S.A., 1988, 14(2): 81–92
29 Wentzel M C, Ekama G A, Loewenthal R E, Dold P L. Enhanced polyphosphate organism cultures in activated sludge systems—Part II: Experimental behaviour. Water S.A., 1989, 15(2): 71–88
30 Wentzel M C, Dold P L, Ekama G A, Marais G R. Enhanced polyphosphate organism cultures in activated sludge systems- Part III: Kinetic model. Water S.A., 1989, 15(2): 89–102
31 Fu G K, Zhang C L, Yu X Q, Zhang Z, Zhou Q. Research on the optimum operation strategy for deficient carbon source urban sewage treatment plants. Journal of Hunan Univerisity, 2012, 39(8): 61–66 (Natural Sciences)
32 Daverey A, Hung N T, Dutta K, Lin J G. Ambient temperature SNAD process treating anaerobic digester liquor of swine wastewater. Bioresource Technology, 2013, 141: 191–198
https://doi.org/10.1016/j.biortech.2013.02.045 pmid: 23561955
33 Nowak O, Svardal K, Schweighofer P. The dynamic behaviour of nitrifying activated sludge systems influenced by inhibiting wastewater compounds. Water Science and Technology, 1995, 31(2): 115–124
https://doi.org/10.1016/0273-1223(95)00185-P
34 Tappe W, Laverman A, Bohland M, Braster M, Rittershaus S, Groeneweg J, van Verseveld H W. Maintenance energy demand and starvation recovery dynamics of Nitrosomonas europaea and Nitrobacter winogradskyi cultivated in a retentostat with complete biomass retention. Applied and Environmental Microbiology, 1999, 65(6): 2471–2477 
pmid: 10347029
35 Chen W, Westerhoff P, Leenheer J A, Booksh K. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter. Environmental Science & Technology, 2003, 37(24): 5701–5710
https://doi.org/10.1021/es034354c pmid: 14717183
[1] Xiao Quan, Kai Huang, Mei Li, Meichao Lan, Baoan Li. Nitrogen removal performance of municipal reverse osmosis concentrate with low C/N ratio by membrane-aerated biofilm reactor[J]. Front. Environ. Sci. Eng., 2018, 12(6): 5-.
[2] Weihua Zhao, Meixiang Wang, Jianwei Li, Yu Huang, Baikun Li, Cong Pan, Xiyao Li, Yongzhen Peng. Optimization of denitrifying phosphorus removal in a pre-denitrification anaerobic/anoxic/post-aeration+ nitrification sequence batch reactor (pre-A2NSBR) system: Nitrate recycling, carbon/nitrogen ratio and carbon source type[J]. Front. Environ. Sci. Eng., 2018, 12(5): 8-.
[3] Dongliang Du, Chuanyi Zhang, Kuixia Zhao, Guangrong Sun, Siqi Zou, Limei Yuan, Shilong He. Effect of different carbon sources on performance of an A2N-MBR process and its microbial community structure[J]. Front. Environ. Sci. Eng., 2018, 12(2): 4-.
[4] Xiaolin Sheng, Rui Liu, Xiaoyan Song, Lujun Chen, Kawagishi Tomoki. Comparative study on microbial community in intermittently aerated sequencing batch reactors (SBR) and a traditional SBR treating digested piggery wastewater[J]. Front. Environ. Sci. Eng., 2017, 11(3): 8-.
[5] Xiaoyan Song, Rui Liu, Lujun Chen, Tomoki Kawagishi. Comparative experiment on treating digested piggery wastewater with a biofilm MBR and conventional MBR: simultaneous removal of nitrogen and antibiotics[J]. Front. Environ. Sci. Eng., 2017, 11(2): 11-.
[6] Yan GUO, Chuanfu WU, Qunhui WANG, Min YANG, Qiqi HUANG, Markus MAGEP, Tianlong ZHENG. Wastewater-nitrogen removal using polylactic acid/starch as carbon source: Optimization of operating parameters using response surface methodology[J]. Front. Environ. Sci. Eng., 2016, 10(4): 6-.
[7] Hong YAO, Hao LIU, Yongmiao HE, Shujun ZHANG, Peizhe SUN, Chinghua HUANG. Performance of an ANAMMOX reactor treating wastewater generated by antibiotic and starch production processes[J]. Front Envir Sci Eng, 2012, 6(6): 875-883.
[8] Shanna QI, Meiting JU, Meng DUAN, Wei XING. Research on low carbon management using a scientific classification method[J]. Front Envir Sci Eng, 2012, 6(4): 524-530.
[9] WANG Yayi, WANG Shuying, PENG Yongzhen, Zhu Guibing, LING Yunfang. Influence of carbon source and temperature on the denitrifying phosphorus removal process[J]. Front.Environ.Sci.Eng., 2007, 1(2): 226-232.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed