Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2017, Vol. 11 Issue (3) : 11    https://doi.org/10.1007/s11783-017-0942-6
REVIEW ARTICLE
Greenhouse gas emissions from different pig manure management techniques: a critical analysis
Conor Dennehy1, Peadar G. Lawlor2, Yan Jiang1, Gillian E. Gardiner3, Sihuang Xie4, Long D Nghiem4, Xinmin Zhan1()
1. Civil Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland
2. Teagasc Pig Development Department, Animal and Grassland Research and Innovation Centre, Fermoy, Ireland
3. Department of Science, Waterford Institute of Technology, Waterford, Ireland
4. Strategic Water Infrastructure Laboratory, University of Wollongong, Wollongong, NSW 2522, Australia
 Download: PDF(305 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Emissions from manure management are the primary source of GHGs in pig farming.

The effect of pig manure management practises on GHG emissions was assessed.

Recommendations made to standardise units and account for indirect N2O emissions.

AD and compositing should be employed to mitigate GHG emissions in PGM management.

Manure management is the primary source of greenhouse gas (GHG) emissions from pig farming, which in turn accounts for 18% of the total global GHG emissions from the livestock industry. In this review, GHG emissions (N2O and CH4 emissions in particular) from individual pig manure (PGM) management practices (European practises in particular) are systematically analyzed and discussed. These manure management practices include manure storage, land application, solid/liquid separation, anaerobic digestion, composting and aerobic wastewater treatment. The potential reduction in net GHG emissions by changing and optimising these techniques is assessed. This review also identifies key research gaps in the literature including the effect of straw covering of liquid PGM storages, the effect of solid/liquid separation, and the effect of dry anaerobic digestion on net GHG emissions from PGM management. In addition to identifying these research gaps, several recommendations including the need to standardize units used to report GHG emissions, to account for indirect N2O emissions, and to include a broader research scope by conducting detailed life cycle assessment are also discussed. Overall, anaerobic digestion and compositing to liquid and solid fractions are best PGM management practices with respect to their high GHG mitigation potential.

Keywords CH4      N2O      Storage      Anaerobic digestion      Composting      Separation     
Corresponding Author(s): Xinmin Zhan   
Issue Date: 12 May 2017
 Cite this article:   
Conor Dennehy,Peadar G. Lawlor,Yan Jiang, et al. Greenhouse gas emissions from different pig manure management techniques: a critical analysis[J]. Front. Environ. Sci. Eng., 2017, 11(3): 11.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-017-0942-6
https://academic.hep.com.cn/fese/EN/Y2017/V11/I3/11
parametersrange
total solids (TS) /(% fresh weight)0.78–9.95
total volatile solids (VS) /(% fresh weight)0.30–8.16
total Kjeldahl nitrogen (TKN) /(mg·L1)1217–6698
ammonium nitrogen (NH4+-N) /(mg·L1)540–3875
chemical oxygen demand (COD) /(mg·L1)7138–174300
soluble COD /(mg·L1)1112–74700
5-day biochemical oxygen demand (BOD5) /(mg·L1)702–23600
total phosphorus (P) /(mg·L1)352–2720
total potassium (K) /(mg·L1)790–3530
pH7.01–7.91
Tab.1  Range of physical-chemical characteristics of liquid PGM reported by a range of studies and summarized by Xie [8]
Fig.1  Illustration of collection and management options for piggery wastes
CH4N2Ounitsremarkslocationdurationreference
573.3kg CO2 eq·head1·a1solid PGMDenmark1 yearHusted [24]
186.9kg CO2 eq·head1·a1liquid PGMDenmark1 yearHusted [24]
0.6–9.3g CO2 eq·d1·kg animal·mass1liquid PGM stored in uncovered concrete tanksCanada3 years, spring to fall onlyLaguee et al. [25]
140.71.1kg CO2 eq·head1·a1liquid PGM stored in cold climateCanada2 yearsPark et al. [26]
49.8–56.9g [C]·m3·d1liquid PGMFrance2 yearsLoyon et al. [27]
53.4–50.4g [N]·m3·d1separated solid fraction of liquid PGMFrance2 yearsLoyon et al. [27]
6.3–13.4<LODg CO2 eq·m3·d1liquid PGM during winter storageDenmark58 daysPetersen et al. [28]
1084–12690.53g CO2 eq·m3·d1liquid PGM during summer storageDenmark45 daysPetersen et al. [28]
Tab.2  Review of farm-based studies on CH4 and N2O emissions from PGM during storage
Fig.2  Daily GHG emissions measured from PGM storage vs daily maximum temperature (Xie [8], Petersen et al. [28], Sommer et al. [29])
straw typeCH4N2ONH3net effect on GHG emissionslocationreference
wheat9%–29% reduction0–99% increase50%–88% reductionincrease in summer onlyDenmarkPetersen et al. [28]
barley80% reductionn.s.reduction observedCanadaLaguee et al. [25]
not specifiedn.s.increase in warm periodsDenmarkRodhe et al. [34]
Tab.3  Effect of covering liquid PGM with straw on CH4, N2O and NH3 emissions found in farm-based studies
N2O emission factor /(% of N applied)indirect N2O emission factor /(% of N applied)countrysoil typeapplication methodduration studied /dreference
4.8Italyclay soilincorporated58Bertora et al. [55]
0.12–0.44UKsandy loamsurface applied22Chadwick et al. [56]
1.300.02a)Netherlandsclay sandinjectionn.s.De Vries et al. [57]
2b)0.0175c) /(% of N lost)n.a.n.a.n.a.n.a.Intergovernmental Panel on Climate Change [19]
0.35–0.370.06–0.11a)Irelandclay loamband spreading28Meade et al. [58]
1.35
0.46
Swedensilt clay loamband spread
band spreading and harrowing
15Rodhe et al. [34]
2.100.225a)New Zealandsilt loambroadcast90Sherlock et al. [47]
1.45–3.65silt loamsurface applied158Sistani et al. [59]
2.30–3.45USAinjection
0.06–1.50Denmarkloamy sandtrailing hose and broadcasting30Thomsen et al. [60]
1.60Spainloamy sandsurface applied199Vallejo et al. [61]
2.95injected
3.6
0.9

Netherlandssandy soilinjected
surface applied
1035Velthof and Mosquera [62]
7.30


Netherlandssandy soilincorporated93Velthof et al. [63]
4.90surface applied
6.90placed at 5cm depth
3.40placed at 10cm depth
0.270.06–0.01Swedensandy loamtrenching44Weslien et al. [64]
0.380.01–0.002shallow injection
0.31–0.450.19–0.04band spreading
0.20Chinaincorporated68Zhong et al. [48]
3–4.5Denmarkclay loamincorporated99Zhu et al. [65]
Tab.4  Experimentally derived N2O emission factors (EF) for liquid PGM land application (amended, expanded and updated from Chadwick et al. [21])
change relative to non-separated manureCH4 emissionsN2O emissionsnet GHG emissions
solid fraction storagedecrease [15,72] a)increase [15,72] a)increase [15,72] a)
liquid fraction storagedecrease [15,72]decrease [15,72] a)decrease [15,72] a)
solid fraction land applicationslight decrease [55] a) [60] b)[72, 73] a) [73] b)
liquid fraction land applicationno difference found in laboratory study [55] b)
net effect of solid/liquid separationdecrease [74] b)decrease [74] b)decrease [74] b)
Tab.5  Summary of the effects of solid/liquid separation on GHG emissions compared with untreated manure
total kg CO2 eq·t1 PGM mitigated% GHG mitigated via biogas utilization (heat and electricity)% GHG mitigated via reduced chemical fertilizer use% GHG mitigated via lower emissions in storage and land applicationlocationreference
87.7–125.640–6028–3312–27FinlandKaparaju and Rintala [78]
20100Desk-BasedPrapaspongsa et al. [79]
45.334.665.4IrelandXie [8]
68.311 (electricity only)14–2060–85AustraliaMaraseni and Maroulis [80]
16†Desk-BasedDe Vries et al. [81]
Tab.6  GHG mitigation potential of anaerobic digestion of liquid PGM via continuously stirred tank reactor (CSTR) biogas plants
CH4 emissionsN2O emissionscompost systemunitsbulking agentsdurationscalelocationauthor
0.002–0.0450.044–0.063forced aerationkg·m2·a1wheat straw21–24 daysfarm scaleThompson et al. [88]
0.023–0.0330.346–0.65passiveCanada
0.107–0.1640.05–0.098forced aerationkg·m2·a1saw dustPark et al. [89]
0.2360.249turn over85 daysfarm scaleKorea
1.090.359passive
0.6–3851.9–71.9forced aerationa)g·m340 dayslaboratory scaleJapanOsada et al. [90]
0.771.39passiveg·pig1·d1saw dustn.s.farm scaleNicks et al. [91]
1.580.36g·pig1·d1wheat strawBelgium
Tab.7  CH4 and N2O emissions from selected PGM composting studies
1 Philippe F X, Nicks B. Review on greenhouse gas emissions from pig houses: production of carbon dioxide, methane and nitrous oxide by animals and manure. Agriculture, Ecosystems & Environment, 2015, 199(0): 10–25
https://doi.org/10.1016/j.agee.2014.08.015
2 World Livestock F A O. 2011– Livestock in Food Security. Rome 2011. Available online at  ( accessed January 18, 2017)
3 Pigs F A O. Available online at  ( accessed March 11, 2016)
4 FAO. FAOSTAT 2013. Available online at ( accessed September 7, 2016)
5 European Commission. EU Climate Action: Key targets for 2030. Available online at  ( accessed January 18, 2017)
6 Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes B, Sirotenko O, Howden M, McAllister T, Pan G, Romanenkov V, Schneider U, Towprayoon S, Wattenbach M, Smith J. Greenhouse gas mitigation in agriculture. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 2008, 363(1492): 789–813
https://doi.org/10.1098/rstb.2007.2184 pmid: 17827109
7 Monteny G J, Bannink A, Chadwick D. Greenhouse gas abatement strategies for animal husbandry. Agriculture, Ecosystems & Environment, 2006, 112(2–3): 163–170
https://doi.org/10.1016/j.agee.2005.08.015
8 Xie S. Evaluation of Biogas Production from Anaerobic Digestion of Pig Manure and Grass Silage. Dissertation for Doctoral Degree.Galway: National University of Ireland, 2011
9 Amon T, Amon B, Kryvoruchko V, Zollitsch W, Mayer K, Gruber L. Biogas production from maize and dairy cattle manure—influence of biomass composition on the methane yield. Agriculture, Ecosystems & Environment, 2007, 118(1–4): 173–182
https://doi.org/10.1016/j.agee.2006.05.007
10 Burton C H. The potential contribution of separation technologies to the management of livestock manure. Livestock Science, 2007, 112(3): 208–216
https://doi.org/10.1016/j.livsci.2007.09.004
11 Burton C H, Turner C. Manure Management: Treatment Strategies for Sustainable Agriculture. Bedford, UK: Silsoe Institute Silsoe, 2003
12 McKenna G, Hyde T, Gibson M. Cross Compliance Workbook. Teagasc, Ireland: Teagasc 2013
13 Deng L, Li Y, Chen Z, Liu G, Yang H. Separation of swine slurry into different concentration fractions and its influence on biogas fermentation. Applied Energy, 2014, 114(0): 504–511
https://doi.org/10.1016/j.apenergy.2013.10.018
14 Wnetrzak R, Kwapinski W, Peters K, Sommer S G, Jensen L S, Leahy J J. The influence of the pig manure separation system on the energy production potentials. Bioresource Technology, 2013, 136: 502–508
https://doi.org/10.1016/j.biortech.2013.03.001 pmid: 23567723
15 Dinuccio E, Berg W, Balsari P. Gaseous emissions from the storage of untreated slurries and the fractions obtained after mechanical separation. Atmospheric Environment, 2008, 42(10): 2448–2459
https://doi.org/10.1016/j.atmosenv.2007.12.022
16 Tait S, Tamis J, Edgerton B, Batstone D J. Anaerobic digestion of spent bedding from deep litter piggery housing. Bioresource Technology, 2009, 100(7): 2210–2218
https://doi.org/10.1016/j.biortech.2008.10.032 pmid: 19097776
17 Chynoweth D, Wilkie A, Owens J. Anaerobic processing of piggery wastes: a review. In: ASAE Annual International Meeting, Orlando, Florida, USA, 12–16 July, 1998. Florida: American Society of Agricultural Engineers (ASAE), 1998
18 Myhre G, Shindell D, Bréon F, Collins W, Fuglestvedt J, Huang J, Koch D, Lamarque J, Lee D, Mendoza B. Anthropogenic and Natural Radiative Forcing. In: Stocker T F, Qin D, Plattner G K, Tignor M, Allen S K, Boschung J, Nauels A, Xia Y, Bex V, Midgley P M, eds. Climate Change 2013: The Physical Science Basis. Contribution of Working Group 1 to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom & New York, NY, USA: Cambridge University Press, 2013, 714
19 Intergovernmental Panel on Climate Change. 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme. Kangawa, Japan: IGES, 2006
20 Metcalf L, Eddy H P, Tchobanoglous G. Wastewater Engineering: Treatment, Disposal, and Reuse. NewYork: McGraw-Hill, 1972
21 Chadwick D, Sommer S, Thorman R, Fangueiro D, Cardenas L, Amon B, Misselbrook T. Manure management: Implications for greenhouse gas emissions. Animal Feed Science and Technology, 2011, 166–167: 514–531
https://doi.org/10.1016/j.anifeedsci.2011.04.036
22 Montes F, Meinen R, Dell C, Rotz A, Hristov A N, Oh J, Waghorn G, Gerber P J, Henderson B, Makkar H P, Dijkstra J. Special topics—Mitigation of methane and nitrous oxide emissions from animal operations: II. A review of manure management mitigation options. Journal of Animal Science, 2013, 91(11): 5070–5094
https://doi.org/10.2527/jas.2013-6584 pmid: 24045493
23 Maag M, Vinther F P. Nitrous oxide emission by nitrification and denitrification in different soil types and at different soil moisture contents and temperatures. Applied Soil Ecology, 1996, 4(1): 5–14
https://doi.org/10.1016/0929-1393(96)00106-0
24 Husted S. Seasonal variation in methane emission from stored slurry and solid manures. Journal of Environmental Quality, 1994, 23(3): 585–592
https://doi.org/10.2134/jeq1994.00472425002300030026x
25 Laguee C, Gaudet E, Agnew J, Fonstad T. Greenhouse gas emissions from liquid swine manure storage facilities in Saskatchewan. Transactions of the ASAE. American Society of Agricultural Engineers, 2005, 48(6): 2289–2296
https://doi.org/10.13031/2013.20092
26 Park K H, Thompson A G, Marinier M, Clark K, Wagner-Riddle C. Greenhouse gas emissions from stored liquid swine manure in a cold climate. Atmospheric Environment, 2006, 40(4): 618–627
https://doi.org/10.1016/j.atmosenv.2005.09.075
27 Loyon L, Guiziou F, Beline F, Peu P. Gaseous emissions (NH3, N2O, CH4 and CO2) from the aerobic treatment of piggery slurry—Comparison with a conventional storage system. Biosystems Engineering, 2007, 97(4): 472–480
https://doi.org/10.1016/j.biosystemseng.2007.03.030
28 Petersen S O, Dorno N, Lindholst S, Feilberg A, Eriksen J. Emissions of CH4, N2O, NH3 and odorants from pig slurry during winter and summer storage. Nutrient Cycling in Agroecosystems, 2013, 95(1): 103–113
https://doi.org/10.1007/s10705-013-9551-3
29 Sommer S G, Petersen S O, Sørensen P, Poulsen H D, Møller H B. Methane and carbon dioxide emissions and nitrogen turnover during liquid manure storage. Nutrient Cycling in Agroecosystems, 2007, 78(1): 27–36
https://doi.org/10.1007/s10705-006-9072-4
30 Elsgaard L, Olsen A B, Petersen S O. Temperature response of methane production in liquid manures and co-digestates. Science of the Total Environment, 2016, 539: 78–84
https://doi.org/10.1016/j.scitotenv.2015.07.145 pmid: 26356180
31 Sommer S G, Petersen S O, Møller H B. Algorithms for calculating methane and nitrous oxide emissions from manure management. Nutrient Cycling in Agroecosystems, 2004, 69(2): 143–154
https://doi.org/10.1023/B:FRES.0000029678.25083.fa
32 Hansen M N, Henriksen K, Sommer S G. Observations of production and emission of greenhouse gases and ammonia during storage of solids separated from pig slurry: effects of covering. Atmospheric Environment, 2006, 40(22): 4172–4181
https://doi.org/10.1016/j.atmosenv.2006.02.013
33 Bobbink R, Hornung M, Roelofs J G M. The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. Journal of Ecology, 1998, 86(5): 717–738
https://doi.org/10.1046/j.1365-2745.1998.8650717.x
34 Rodhe L K K, Abubaker J, Ascue J, Pell M, Nordberg Å. Greenhouse gas emissions from pig slurry during storage and after field application in northern European conditions. Biosystems Engineering, 2012, 113(4): 379–394
https://doi.org/10.1016/j.biosystemseng.2012.09.010
35 VanderZaag A, Gordon R, Jamieson R, Burton D, Stratton G, Gas emissions from straw covered liquid dairy manure during summer storage and autumn agitation. Transactions of the ASABE, 2009, 52(2): 599–608
https://doi.org/10.13031/2013.26832
36 Petersen S O, Amon B, Gattinger A. Methane oxidation in slurry storage surface crusts. Journal of Environmental Quality, 2005, 34(2): 455–461
pmid: 15758097
37 McCrory D F, Hobbs P J. Additives to reduce ammonia and odor emissions from livestock wastes: a review. Journal of Environmental Quality, 2001, 30(2): 345–355
https://doi.org/10.2134/jeq2001.302345x pmid: 11285894
38 Cocolo G, Hjorth M, Zarebska A, Provolo G. Effect of acidification on solid–liquid separation of pig slurry. Biosystems Engineering, 2016, 143: 20–27
https://doi.org/10.1016/j.biosystemseng.2015.11.004
39 Stevens R J, Laughlin R J, Frost J P. Effect of acidification with sulphuric acid on the volatilization of ammonia from cow and pig slurries. Journal of Agricultural Science, 1989, 113(03): 389–395
https://doi.org/10.1017/S0021859600070106
40 Berg W, Brunsch R, Pazsiczki I. Greenhouse gas emissions from covered slurry compared with uncovered during storage. Agriculture, Ecosystems & Environment, 2006, 112(2–3): 129–134
https://doi.org/10.1016/j.agee.2005.08.031
41 Fangueiro D, Hjorth M, Gioelli F. Acidification of animal slurry—A review. Journal of Environmental Management, 2015, 149: 46–56
https://doi.org/10.1016/j.jenvman.2014.10.001 pmid: 25463570
42 Gómez-Muñoz B, Case S D C, Jensen L S. Pig slurry acidification and separation techniques affect soil N and C turnover and N2O emissions from solid, liquid and biochar fractions. Journal of Environmental Management, 2016, 168: 236–244
https://doi.org/10.1016/j.jenvman.2015.12.018 pmid: 26716355
43 Brink C, Kroeze C, Klimont Z. Ammonia abatement and its impact on emissions of nitrous oxide and methane—Part 2: Application for Europe. Atmospheric Environment, 2001, 35(36): 6313–6325
https://doi.org/10.1016/S1352-2310(01)00433-2
44 VanderZaag A, Gordon R, Jamieson R, Burton D, Stratton G. Effects of winter storage conditions and subsequent agitation on gaseous emissions from liquid dairy manure. Canadian Journal of Soil Science, 2010, 90(1): 229–239
https://doi.org/10.4141/CJSS09040
45 Chadwick D R, Pain B F. Methane fluxes following slurry applications to grassland soils: laboratory experiments. Agriculture, Ecosystems & Environment, 1997, 63(1): 51–60
https://doi.org/10.1016/S0167-8809(96)01119-X
46 Van Groenigen J, Kasper G, Velthof G, van den Pol-van Dasselaar A, Kuikman P J. Nitrous oxide emissions from silage maize fields under different mineral nitrogen fertilizer and slurry applications. Plant and Soil, 2004, 263(1): 101–111
https://doi.org/10.1023/B:PLSO.0000047729.43185.46
47 Sherlock R R, Sommer S G, Khan R Z, Wood C W, Guertal E A, Freney J R, Dawson C O, Cameron K C. Ammonia, methane, and nitrous oxide emission from pig slurry applied to a pasture in New Zealand. Journal of Environmental Quality, 2002, 31(5): 1491–1501
https://doi.org/10.2134/jeq2002.1491 pmid: 12371166
48 Zhong J, Wei Y, Wan H, Wu Y, Zheng J, Han S, Zheng B. Greenhouse gas emission from the total process of swine manure composting and land application of compost. Atmospheric Environment, 2013, 81: 348–355
https://doi.org/10.1016/j.atmosenv.2013.08.048
49 Amon B, Kryvoruchko V, Amon T, Zechmeister-Boltenstern S. Methane, nitrous oxide and ammonia emissions during storage and after application of dairy cattle slurry and influence of slurry treatment. Agriculture, Ecosystems & Environment, 2006, 112(2–3): 153–162
https://doi.org/10.1016/j.agee.2005.08.030
50 Pelster D E, Chantigny M H, Rochette P, Angers D A, Rieux C, Vanasse A. Nitrous oxide emissions respond differently to mineral and organic nitrogen sources in contrasting soil types. Journal of Environmental Quality, 2012, 41(2): 427–435
https://doi.org/10.2134/jeq2011.0261 pmid: 22370405
51 VanderZaag A C, Jayasundara S, Wagner-Riddle C. Strategies to mitigate nitrous oxide emissions from land applied manure. Animal Feed Science and Technology, 2011, 166–167: 464–479
https://doi.org/10.1016/j.anifeedsci.2011.04.034
52 Minet E P, Jahangir M M R, Krol D J, Rochford N, Fenton O, Rooney D, Lanigan G, Forrestal P J, Breslin C, Richards K G. Amendment of cattle slurry with the nitrification inhibitor dicyandiamide during storage: A new effective and practical N2O mitigation measure for landspreading. Agriculture, Ecosystems & Environment, 2016, 215: 68–75
https://doi.org/10.1016/j.agee.2015.09.014
53 McGeough K L, Watson C J, Müller C, Laughlin R J, Chadwick D R. Evidence that the efficacy of the nitrification inhibitor dicyandiamide (DCD) is affected by soil properties in UK soils. Soil Biology & Biochemistry, 2016, 94: 222–232
https://doi.org/10.1016/j.soilbio.2015.11.017
54 Gilsanz C, Báez D, Misselbrook T H, Dhanoa M S, Cárdenas L M. Development of emission factors and efficiency of two nitrification inhibitors, DCD and DMPP. Agriculture, Ecosystems & Environment, 2016, 216: 1–8
https://doi.org/10.1016/j.agee.2015.09.030
55 Bertora C, Alluvione F, Zavattaro L, van Groenigen J W, Velthof G, Grignani C. Pig slurry treatment modifies slurry composition, N2O, and CO2 emissions after soil incorporation. Soil Biology & Biochemistry, 2008, 40(8): 1999–2006
https://doi.org/10.1016/j.soilbio.2008.03.021
56 Chadwick D R, Pain B F, Brookman S K E. Nitrous oxide and methane emissions following application of animal manures to grassland. Journal of Environmental Quality, 2000, 29(1): 277–287
https://doi.org/10.2134/jeq2000.00472425002900010035x
57 De Vries J W, Aarnink A J, Groot Koerkamp P W, De Boer I J. Life cycle assessment of segregating fattening pig urine and feces compared to conventional liquid manure management. Environmental Science & Technology, 2013, 47(3): 1589–1597
pmid: 23268735
58 Meade G, Pierce K, O’Doherty J V, Mueller C, Lanigan G, Mc Cabe T. Ammonia and nitrous oxide emissions following land application of high and low nitrogen pig manures to winter wheat at three growth stages. Agriculture, Ecosystems & Environment, 2011, 140(1–2): 208–217
https://doi.org/10.1016/j.agee.2010.12.007
59 Sistani K, Warren J, Lovanh N, Higgins S, Shearer S. Greenhouse gas emissions from swine effluent applied to soil by different methods. Soil Science Society of America Journal, 2010, 74(2): 429–435
https://doi.org/10.2136/sssaj2009.0076
60 Thomsen I K, Pedersen A R, Nyord T, Petersen S O. Effects of slurry pre-treatment and application technique on short-term N2O emissions as determined by a new non-linear approach. Agriculture, Ecosystems & Environment, 2010, 136(3–4): 227–235
https://doi.org/10.1016/j.agee.2009.12.001
61 Vallejo A, García-Torres L, Díez J, Arce A, López-Fernández S. Comparison of N losses (NO3−, N2O2, NO) from surface applied, injected or amended (DCD) pig slurry of an irrigated soil in a Mediterranean climate. Plant and Soil, 2005, 272(1–2): 313–325
https://doi.org/10.1007/s11104-004-5754-3
62 Velthof G L, Mosquera J. The impact of slurry application technique on nitrous oxide emission from agricultural soils. Agriculture, Ecosystems & Environment, 2011, 140(1–2): 298–308
https://doi.org/10.1016/j.agee.2010.12.017
63 Velthof G, Kuikman P, Oenema O. Nitrous oxide emission from animal manures applied to soil under controlled conditions. Biology and Fertility of Soils, 2003, 37(4): 221–230
64 Weslien P, Klemedtsson L, Svensson L, Galle B, Kasimir-Klemedtsson Å, Gustafsson A. Nitrogen losses following application of pig slurry to arable land. Soil Use and Management, 1998, 14(4): 200–208
https://doi.org/10.1111/j.1475-2743.1998.tb00150.x
65 Zhu K, Christel W, Bruun S, Jensen L S. The different effects of applying fresh, composted or charred manure on soil N2O emissions. Soil Biology & Biochemistry, 2014, 74(0): 61–69
https://doi.org/10.1016/j.soilbio.2014.02.020
66 Lovanh N, Warren J, Sistani K. Determination of ammonia and greenhouse gas emissions from land application of swine slurry: a comparison of three application methods. Bioresource Technology, 2010, 101(6): 1662–1667
https://doi.org/10.1016/j.biortech.2009.09.078 pmid: 19854045
67 Sommer S G, Sherlock R R, Khan R Z. Nitrous oxide and methane emissions from pig slurry amended soils. Soil Biology & Biochemistry, 1996, 28(10–11): 1541–1544
https://doi.org/10.1016/S0038-0717(96)00146-0
68 Webb J, Pain B, Bittman S, Morgan J. The impacts of manure application methods on emissions of ammonia, nitrous oxide and on crop response—A review. Agriculture, Ecosystems & Environment, 2010, 137(1–2): 39–46
https://doi.org/10.1016/j.agee.2010.01.001
69 Bortone G. Integrated anaerobic/aerobic biological treatment for intensive swine production. Bioresource Technology, 2009, 100(22): 5424–5430
https://doi.org/10.1016/j.biortech.2008.12.005 pmid: 19135363
70 Møller H B, Lund S G, Sommer. Solid-liquid separation of livestock slurry: efficiency and cost. Bioresource Technology, 2000, 74(3): 223–229
https://doi.org/10.1016/S0960-8524(00)00016-X
71 Nolan T, Troy S M, Gilkinson S, Frost P, Xie S, Zhan X, Harrington C, Healy M G, Lawlor P G. Economic analyses of pig manure treatment options in Ireland. Bioresource Technology, 2012, 105: 15–23
https://doi.org/10.1016/j.biortech.2011.11.043 pmid: 22178488
72 Fangueiro D, Coutinho J, Chadwick D, Moreira N, Trindade H. Effect of cattle slurry separation on greenhouse gas and ammonia emissions during storage. Journal of Environmental Quality, 2008, 37(6): 2322–2331
https://doi.org/10.2134/jeq2007.0330 pmid: 18948486
73 Bhandral R, Bittman S, Kowalenko G, Buckley K, Chantigny M H, Hunt D E, Bounaix F, Friesen A. Enhancing soil infiltration reduces gaseous emissions and improves N uptake from applied dairy slurry. Journal of Environmental Quality, 2009, 38(4): 1372–1382
https://doi.org/10.2134/jeq2008.0287 pmid: 19465712
74 Amon B, Kryvoruchko V, Moitzi G, Amon T. Greenhouse gas and ammonia emission abatement by slurry treatment. In: International Congress Series: Greenhouse Gases and Animal Agriculture: An Update. Proceedings of the 2nd International Conference on Greenhouse Gases and Animal Agriculture, held in Zurich, Switzerland between 20 and 24 September 2005. Zurich, Switzerland: Elsevier, 2006, 1293: 295–298
75 Pereira J, Fangueiro D, Chadwick D R, Misselbrook T H, Coutinho J, Trindade H. Effect of cattle slurry pre-treatment by separation and addition of nitrification inhibitors on gaseous emissions and N dynamics: a laboratory study. Chemosphere, 2010, 79(6): 620–627
https://doi.org/10.1016/j.chemosphere.2010.02.029 pmid: 20202667
76 Fangueiro D, Senbayran M, Trindade H, Chadwick D. Cattle slurry treatment by screw press separation and chemically enhanced settling: effect on greenhouse gas emissions after land spreading and grass yield. Bioresource Technology, 2008, 99(15): 7132–7142
https://doi.org/10.1016/j.biortech.2007.12.069 pmid: 18304807
77 Cantrell K B, Ducey T, Ro K S, Hunt P G. Livestock waste-to-bioenergy generation opportunities. Bioresource Technology, 2008, 99(17): 7941–7953
https://doi.org/10.1016/j.biortech.2008.02.061 pmid: 18485701
78 Kaparaju P, Rintala J. Mitigation of greenhouse gas emissions by adopting anaerobic digestion technology on dairy, sow and pig farms in Finland. Renewable Energy, 2011, 36(1): 31–41
https://doi.org/10.1016/j.renene.2010.05.016
79 Prapaspongsa T, Poulsen T G, Hansen J A, Christensen P. Energy production, nutrient recovery and greenhouse gas emission potentials from integrated pig manure management systems. Waste Management & Research, 2010, 28(5): 411–422
https://doi.org/10.1177/0734242X09338728 pmid: 19723830
80 Maraseni T N, Maroulis J. Piggery: from environmental pollution to a climate change solution. Journal of Environmental Science and Health. Part. B, Pesticides, Food Contaminants, and Agricultural Wastes, 2008, 43(4): 358–363
https://doi.org/10.1080/03601230801941717 pmid: 18437624
81 De Vries J W, Vinken T M, Hamelin L, De Boer I J. Comparing environmental consequences of anaerobic mono- and co-digestion of pig manure to produce bio-energy—A life cycle perspective. Bioresource Technology, 2012, 125: 239–248
https://doi.org/10.1016/j.biortech.2012.08.124 pmid: 23026340
82 Hansen K H, Angelidaki I, Ahring B K. Anaerobic digestion of swine manure: inhibition by ammonia. Water Research, 1998, 32(1): 5–12
https://doi.org/10.1016/S0043-1354(97)00201-7
83 Wang Y, Dong H, Zhu Z, Li L, Zhou T, Jiang B, Xin H. CH4, NH3, N2O and NO emissions from stored biogas digester effluent of pig manure at different temperatures. Agriculture, Ecosystems & Environment, 2016, 217: 1–12
https://doi.org/10.1016/j.agee.2015.10.020
84 Möller K, Müller T. Effects of anaerobic digestion on digestate nutrient availability and crop growth: A review. Engineering in Life Sciences, 2012, 12(3): 242–257
https://doi.org/10.1002/elsc.201100085
85 Flesch T K, Desjardins R L, Worth D. Fugitive methane emissions from an agricultural biodigester. Biomass and Bioenergy, 2011, 35(9): 3927–3935
https://doi.org/10.1016/j.biombioe.2011.06.009
86 Liebetrau J, Clemens J, Cuhls C, Hafermann C, Friehe J, Weiland P, Daniel-Gromke J. Methane emissions from biogas-producing facilities within the agricultural sector. Engineering in Life Sciences, 2010, 10(6): 595–599
https://doi.org/10.1002/elsc.201000070
87 Jiang T, Frank S, Li G. Effect of turning and covering on greenhouse gas and ammonia emissions during the winter composting. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(10): 212–217
88 Thompson A G, Wagner-Riddle C, Fleming R. Emissions of N2O and CH4 during the composting of liquid swine manure. Environmental Monitoring and Assessment, 2004, 91(1–3): 87–104
https://doi.org/10.1023/B:EMAS.0000009231.04123.2d pmid: 14969439
89 Park K H, Jeon J H, Jeon K H, Kwag J H, Choi D Y. Low greenhouse gas emissions during composting of solid swine manure. Animal Feed Science and Technology, 2011, 166–167(0): 550–556
https://doi.org/10.1016/j.anifeedsci.2011.04.078
90 Osada T, Kuroda K, Yonaga M. Determination of nitrous oxide, methane, and ammonia emissions from a swine waste composting process. Journal of Material Cycles and Waste Management, 2000, 2(1): 51–56
91 Nicks B, Laitat M, Vandenheede M, Désiron A, Verhaeghe C, Canart B. Emissions of ammonia, nitrous oxide, methane, carbon dioxide and water vapor in the raising of weaned pigs on straw-based and sawdust-based deep litters. Animal Research, 2003, 52(3): 299–308
https://doi.org/10.1051/animres:2003017
92 Szanto G L, Hamelers H V, Rulkens W H, Veeken A H. NH3, N2O and CH4 emissions during passively aerated composting of straw-rich pig manure. Bioresource Technology, 2007, 98(14): 2659–2670
https://doi.org/10.1016/j.biortech.2006.09.021 pmid: 17092707
93 Sommer S G, Møller H B. Emission of greenhouse gases during composting of deep litter from pig production–effect of straw content. Journal of Agricultural Science, 2000, 134(3): 327–335
https://doi.org/10.1017/S0021859699007625
94 Cabaraux J F, Philippe F X, Laitat M, Canart B, Vandenheede M, Nicks B. Gaseous emissions from weaned pigs raised on different floor systems. Agriculture, Ecosystems & Environment, 2009, 130(3–4): 86–92
https://doi.org/10.1016/j.agee.2008.11.016
95 Jiang T, Schuchardt F, Li G, Guo R, Zhao Y. Effect of C/N ratio, aeration rate and moisture content on ammonia and greenhouse gas emission during the composting. Journal of Environmental Sciences-China, 2011, 23(10): 1754–1760
https://doi.org/10.1016/S1001-0742(10)60591-8 pmid: 22432273
96 Béline F, Daumer M L, Loyon L, Pourcher A M, Dabert P, Guiziou F, Peu P. The efficiency of biological aerobic treatment of piggery wastewater to control nitrogen, phosphorus, pathogen and gas emissions. Water Science and Technology, 2008, 57(12): 1909–1914
https://doi.org/10.2166/wst.2008.316 pmid: 18587177
97 Vanotti M B, Szogi A A, Vives C A. Greenhouse gas emission reduction and environmental quality improvement from implementation of aerobic waste treatment systems in swine farms. Waste Management (New York, N.Y.), 2008, 28(4): 759–766
https://doi.org/10.1016/j.wasman.2007.09.034 pmid: 18060761
98 Huang W, Zhao Z, Yuan T, Lei Z, Cai W, Li H, Zhang Z. Effective ammonia recovery from swine excreta through dry anaerobic digestion followed by ammonia stripping at high total solids content. Biomass and Bioenergy, 2016, 90: 139–147
https://doi.org/10.1016/j.biombioe.2016.04.003
99 McAuliffe G A, Chapman D V, Sage C L. A thematic review of life cycle assessment (LCA) applied to pig production. Environmental Impact Assessment Review, 2016, 56: 12–22
https://doi.org/10.1016/j.eiar.2015.08.008
[1] Qinxue Wen, Shuo Yang, Zhiqiang Chen. Mesophilic and thermophilic anaerobic digestion of swine manure with sulfamethoxazole and norfloxacin: Dynamics of microbial communities and evolution of resistance genes[J]. Front. Environ. Sci. Eng., 2021, 15(5): 94-.
[2] Junlian Qiao, Yang Liu, Hongyi Yang, Xiaohong Guan, Yuankui Sun. Remediation of arsenic contaminated soil by sulfidated zero-valent iron[J]. Front. Environ. Sci. Eng., 2021, 15(5): 83-.
[3] Boyi Cheng, Yi Wang, Yumei Hua, Kate V. Heal. The performance of nitrate-reducing Fe(II) oxidation processes under variable initial Fe/N ratios: The fate of nitrogen and iron species[J]. Front. Environ. Sci. Eng., 2021, 15(4): 73-.
[4] Shanshan Zhao, Zhu Tao, Liwei Chen, Muqiao Han, Bin Zhao, Xuelin Tian, Liang Wang, Fangang Meng. An antifouling catechol/chitosan-modified polyvinylidene fluoride membrane for sustainable oil-in-water emulsions separation[J]. Front. Environ. Sci. Eng., 2021, 15(4): 63-.
[5] Fan Lu, Tianyu Hu, Shunyan Wei, Liming Shao, Pinjing He. Bioaerosolization behavior along sewage sludge biostabilization[J]. Front. Environ. Sci. Eng., 2021, 15(3): 45-.
[6] Philippa Douglas, Daniela Fecht, Deborah Jarvis. Characterising populations living close to intensive farming and composting facilities in England[J]. Front. Environ. Sci. Eng., 2021, 15(3): 40-.
[7] Min Gao, Ziye Yang, Yajie Guo, Mo Chen, Tianlei Qiu, Xingbin Sun, Xuming Wang. The size distribution of airborne bacteria and human pathogenic bacteria in a commercial composting plant[J]. Front. Environ. Sci. Eng., 2021, 15(3): 39-.
[8] Miao Li, Jian Li, Yuchen Lu, Cenyang Han, Xiaoxuan Wei, Guangcai Ma, Haiying Yu. Developing the QSPR model for predicting the storage lipid/water distribution coefficient of organic compounds[J]. Front. Environ. Sci. Eng., 2021, 15(2): 24-.
[9] Yingdan Zhang, Na Liu, Wei Wang, Jianteng Sun, Lizhong Zhu. Photosynthesis and related metabolic mechanism of promoted rice (Oryza sativa L.) growth by TiO2 nanoparticles[J]. Front. Environ. Sci. Eng., 2020, 14(6): 103-.
[10] Mona Akbar, Muhammad Farooq Saleem Khan, Ling Qian, Hui Wang. Degradation of polyacrylamide (PAM) and methane production by mesophilic and thermophilic anaerobic digestion: Effect of temperature and concentration[J]. Front. Environ. Sci. Eng., 2020, 14(6): 98-.
[11] Linlin Cai, Xiangyang Sun, Dan Hao, Suyan Li, Xiaoqiang Gong, Hao Ding, Kefei Yu. Sugarcane bagasse amendment improves the quality of green waste vermicompost and the growth of Eisenia fetida[J]. Front. Environ. Sci. Eng., 2020, 14(4): 61-.
[12] Jianguo Liu, Shuyao Yu, Yixuan Shang. Toward separation at source: Evolution of Municipal Solid Waste management in China[J]. Front. Environ. Sci. Eng., 2020, 14(2): 36-.
[13] Jing Peng, Ke Wang, Xiangbo Yin, Xiaoqing Yin, Mengfei Du, Yingzhi Gao, Philip Antwi, Nanqi Ren, Aijie Wang. Trophic mode and organics metabolic characteristic of fungal community in swine manure composting[J]. Front. Environ. Sci. Eng., 2019, 13(6): 93-.
[14] Sijia Ai, Hongyu Liu, Mengjie Wu, Guangming Zeng, Chunping Yang. Roles of acid-producing bacteria in anaerobic digestion of waste activated sludge[J]. Front. Environ. Sci. Eng., 2018, 12(6): 3-.
[15] Zhichao Wu, Chang Zhang, Kaiming Peng, Qiaoying Wang, Zhiwei Wang. Hydrophilic/underwater superoleophobic graphene oxide membrane intercalated by TiO2 nanotubes for oil/water separation[J]. Front. Environ. Sci. Eng., 2018, 12(3): 15-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed