Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2017, Vol. 11 Issue (6) : 4    https://doi.org/10.1007/s11783-017-0945-3
RESEARCH ARTICLE
Performance evaluation of circulating fluidized bed incineration of municipal solid waste by multivariate outlier detection in China
Hua Tao1,2, Pinjing He3, Yi Zhang4, Wenjie Sun1()
1. Department of Civil and Environmental Engineering, Southern Methodist University, PO Box 750340, Dallas, TX 75205, USA
2. China Association of Urban Environmental Sanitation, Beijing 100044, China
3. College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
4. Shanghai Institute for Design & Research on Environmental Engineering, Shanghai 200232, China
 Download: PDF(564 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Reducing load change frequency is more important than magnitude for performance.

Overloading is more often than underloading. The frequent overloading is 0% to 30%.

Heterogeneous property of MSW can be magnified by the frequent load changes.

Appropriate MSW storage capacity may buffer and reduce the frequency of load change.

This first nationwide survey was conducted to evaluate the overall performance of the circulating fluidized bed (CFB) incineration of municipal solid waste (MSW) in 2014-2015 in China. Total 23 CFB incineration power plants were evaluated. The data for monthly average flue gas emission of particles, CO, NOx, SO2 and HCl were collected over 12 consecutive months. The data were analyzed to assess the overall performance of CFB incineration by applying the Mahalanobis distance as a multivariate outlier detection method. Although the flue gas emission parameters had met the Chinese national emission standards, there were 11 total outliers (abnormal behavior) detected in 6 out of 23 CFB incineration power plants from the perspective of the MSW incineration performance. The results demonstrate that it is more important for a better performance of CFBs to reduce the frequencies of the MSW load changes, rather than the magnitudes of the MSW load changes, particularly reducing the frequencies in the range of 10% and more of the load changes, under the same and stable conditions. Furthermore, the overloading occurs more often than the underloading during the operation of the CFB incineration power plants in China. The frequent overloading is 0% to 30% of the designed capacity. To achieve the stable performance of CFBs in practice, an appropriately designed MSW storage capacity is suggested to build in a plant to buffer and reduce the frequency of the load changes.

Keywords Municipal solid waste      Incineration      Circulating fluidized bed      Load change      Multivariate outlier detection     
Corresponding Author(s): Wenjie Sun   
Issue Date: 11 May 2017
 Cite this article:   
Hua Tao,Pinjing He,Yi Zhang, et al. Performance evaluation of circulating fluidized bed incineration of municipal solid waste by multivariate outlier detection in China[J]. Front. Environ. Sci. Eng., 2017, 11(6): 4.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-017-0945-3
https://academic.hep.com.cn/fese/EN/Y2017/V11/I6/4
Fig.1  Relationship between the number of detected outliers and the quantity of combusted MSW
Fig.2  (a) The detected outlier distribution based on the MSW load changes, (b) Histogram for the load changes of MSW combusted by 6 plants with detected outlier, (c) Histogram for the load changes of MSW combusted by the 23 plants after removing detected outliers
materialsminimummaximummean±SDa
CaO/Ca(OH)21.2230.627.68±7.35
activated carbon0.210.790.42±0.15
#0 diesel00.320.12±0.09
Tab.1  Material consumption (kg/ton MSW)
1 Ministry of Housing and Urban-rural Development of China. China Urban Construction Statistical Yearbook 2014.Beijing: China Statistics Press, 2015
2 Rink K K, Kozinski J A, Lighty J S, Lu Q. Design and construction of a circulating fluidized bed combustion facility for use in studying the thermal remediation of wastes. Review of Scientific Instruments, 1994, 65(8): 2704–2713
https://doi.org/10.1063/1.1144673
3 Van Caneghem J, Brems A, Lievens P, Block C, Billen P, Vermeulen I, Dewil R, Baeyens J, Vandecasteele C. Fluidized bed waste incinerators: Design, operational and environmental issues. Progress in Energy and Combustion Science, 2012, 38(4): 551–582
https://doi.org/10.1016/j.pecs.2012.03.001
4 Wen W, Wei D S, Zhuang Y M. Investigation on gasificiation of municipal waste garbage. Gas & Heating, 1992, 12(4): 4–10 (in Chinese)
5 Wang B Y, Sheng H Z, Qi L Q, Tian W D. Rotating fluidized bed combustor for municipal solid waste and numerical analysis on cold flow field. Mechanics and Practice, 1994, 16(4): 40–43 (in Chinese)
6 Cen K F, Li X D, Li Y X, Yan J H, Shen Y L, Liang S R, Ni M J. Experimental study of a finned tubes impact gas-solid separator for CFB boilers. Chemical Engineering Journal, 1997, 66(3): 159– 169
https://doi.org/10.1016/S1385-8947(96)03179-8
7 National People’s Congress of China (NPC). NPC Standing Committee Inspecting Enforcement Report on the Law of Environmental Pollution Prevention Caused by Solid Waste. 2003. Available online at  ( accessed May 4, 2016)
8 Lang G, Xu Y. Anti-incinerator campaigns and the evolution of protest politics in China. Environmental Politics, 2013, 22(5): 832–848
https://doi.org/10.1080/09644016.2013.765684
9 Johnson T.The health factor in anti-waste incinerator campaigns in Beijing and Guangzhou.  The China Quarterly, 2013, 214: 356–375
10 Sun Y. Facilitating generation of local knowledge using a collaborative initiator: a NIMBY case in Guangzhou, China. Habitat International, 2015, 46: 130–137
https://doi.org/10.1016/j.habitatint.2014.11.005
11 Tian W D, Wei X L, Li J, Sheng H Z. Internal circulating fluidized bed incineration system and design algorithm. Journal of Environmental Sciences, 2001, 13(2): 185–188
pmid: 11590739
12 Dong C Q, Jin B S, Zhong Z P, Lan J X. Tests on co-firing of municipal solid waste and coal in a circulating fluidized bed. Energy Conversion and Management, 2002, 43(16): 2189–2199
https://doi.org/10.1016/S0196-8904(01)00157-1
13 Jones F, Niklasson F, Lindberg D, Hupa M. Effects of reduced bed temperature in laboratory- and full-scale fluidized-bed foilers: particle, deposit, and ash chemistry. Energy & Fuels, 2013, 27(8): 4999–5007
https://doi.org/10.1021/ef400836e
14 Lu L, Ismail T M, Jin Y Q, Abd El-Salam M, Yoshikawa K. Numerical and experimental investigation on co-combustion characteristics of hydrothermally treated municipal solid waste with coal in a fluidized bed. Fuel Processing Technology, 2016, 154: 52–65
https://doi.org/10.1016/j.fuproc.2016.08.007
15 Deng W, Yan J, Li X, Wang F, Chi Y, Lu S. Emission characteristics of dioxins, furans and polycyclic aromatic hydrocarbons during fluidized-bed combustion of sewage sludge. Journal of Environmental Sciences, 2009, 21(12): 1747–1752
https://doi.org/10.1016/S1001-0742(08)62483-3 pmid: 20131608
16 Zhang Y G, Li Q H, Meng A H, Chen C H. Carbon monoxide formation and emissions during waste incineration in a grate-circulating fluidized bed incinerator. Waste Management & Research, 2011, 29(3): 294–308
https://doi.org/10.1177/0734242X10368581 pmid: 20421246
17 Zhang L, Su X W, Zhang Z X, Liu S M, Xiao Y X, Sun M M, Su J X. Characterization of fly ash from a circulating fluidized bed incinerator of municipal solid waste. Environmental Science and Pollution Research International, 2014, 21(22): 12767–12779
https://doi.org/10.1007/s11356-014-3241-9 pmid: 24969433
18 Soria J, Gauthier D, Flamant G, Rodriguez R, Mazza G. Coupling scales for modelling heavy metal vaporization from municipal solid waste incineration in a fluid bed by CFD. Waste Management, 2015, 43: 176–187
https://doi.org/10.1016/j.wasman.2015.05.021 pmid: 26050934
19 Li Y J, Wang H H, Jiang L, Zhang W, Li R D, Chi Y. HCl and PCDD/Fs emission characteristics from incineration of source-classified combustible solid waste in fluidized bed. RSC Advances, 2015, 5(83): 67866–67873
https://doi.org/10.1039/C5RA08722H
20 Su X W, Zhang L, Xiao Y X, Sun M M, Gao X, Su J X. Evaluation of a flue gas cleaning system of a circulating fluidized bed incineration power plant by the analysis of pollutant emissions. Powder Technology, 2015, 286: 9–15
https://doi.org/10.1016/j.powtec.2015.07.038
21 Qiu Q L, Jiang X G, Lv G J, Lu S Y, Ni M J. Stabilization of heavy metals in municipal solid waste incineration fly ash in circulating fluidized bed by microwave-assisted hydrothermal treatment with additives. Energy & Fuels, 2016, 3(9): 7588–7595
https://doi.org/10.1021/acs.energyfuels.6b01431
22 Shao Y, Hou H B, Wang G X, Wan S, Zhou M. Characteristics of the stabilized/solidified municipal solid wastes incineration fly ash and the leaching behavior of Cr and Pb. Frontiers of Environmental Science & Engineering, 2016, 10(1): 192–200
https://doi.org/10.1007/s11783-014-0719-0
23 Phoungthong K, Xia Y, Zhang H, Shao L M, He P J. Leaching toxicity characteristics of municipal solid waste incineration bottom ash. Frontiers of Environmental Science & Engineering, 2016, 10(2): 399–411
https://doi.org/10.1007/s11783-015-0819-5
24 Wu B R, Wang D Y, Chai X L, Takahashi F, Shimaoka T. Characterization of chlorine and heavy metals for the potential recycling of bottom ash from municipal solid waste incinerators as cement additives. Frontiers of Environmental Science & Engineering, 2016, 10(4): 8
https://doi.org/10.1007/s11783-016-0847-9
25 Han Y, Xie H T, Liu W B, Li H F, Wang M J, Chen X B, Liao X, Yan N. Assessment of pollution of potentially harmful elements in soils surrounding a municipal solid waste incinerator, China. Frontiers of Environmental Science & Engineering, 2016, 10(6): 7
https://doi.org/10.1007/s11783-016-0873-7
26 Nixon J D, Dey P K, Ghosh S K, Davies P A. Evaluation of options for energy recovery from municipal solid waste in India using the hierarchical analytical network process. Energy, 2013, 59: 215–223
https://doi.org/10.1016/j.energy.2013.06.052
27 Zhang L X, Li P W, Mao J, Ma F, Ding X X, Zhang Q. An enhanced Monte Carlo outlier detection method. Journal of Computational Chemistry, 2015, 36(25): 1902–1906
https://doi.org/10.1002/jcc.24026 pmid: 26226927
28 Ngan H Y T, Yung N H C, Yeh A G O. Outlier detection in traffic data based on the Dirichlet process mixture model. IET Intelligent Transport Systems, 2015, 9(7): 773–781
https://doi.org/10.1049/iet-its.2014.0063
29 Ben-Gal I. Outlier detection. In: Maimon O, Rockach L, eds. Data mining and knowledge discovery handbook: a complete guide for practitioners and researchers. Kluwer Academic Publishers, 2005, 1–16
30 Torres J M, Garcia Nieto P J, Alejano L, Reyes A N. Detection of outliers in gas emissions from urban areas using functional data analysis. Journal of Hazardous Materials, 2011, 186(1): 144–149
https://doi.org/10.1016/j.jhazmat.2010.10.091 pmid: 21112150
31 Martínez J, Saavedra A, Garcia-Nieto P J, Pineiro J I, Iglesias C, Taboada J, Sancho J, Pastor J. Air quality parameters outliers detection using functional data analysis in the Langreo urban area (Northern Spain). Applied Mathematics and Computation, 2014, 241: 1–10
https://doi.org/10.1016/j.amc.2014.05.004
32 Lehmann R. A new approach for assessing the state of environment using isometric log-ratio transformation and outlier detection for computation of mean PCDD/F patterns in biota. Environmental Monitoring and Assessment, 2015, 187(1): 4149
https://doi.org/10.1007/s10661-014-4149-z pmid: 25427827
33 R Core Team. R: A language and environment for statistical computing R-3.2.4. 2016. Available online at  ( accessed April 2, 2016)
34 Desroches-Ducarne E, Marty E, Martin G, Delfosse L. Co-combustion of coal and municipal solid waste in a circulating fluidized bed. Fuel, 1998, 77(12): 1311–1315
https://doi.org/10.1016/S0016-2361(98)00049-0
[1] Yangyang Liang, Qingbin Song, Naiqi Wu, Jinhui Li, Yuan Zhong, Wenlei Zeng. Repercussions of COVID-19 pandemic on solid waste generation and management strategies[J]. Front. Environ. Sci. Eng., 2021, 15(6): 115-.
[2] Jianguo Liu, Shuyao Yu, Yixuan Shang. Toward separation at source: Evolution of Municipal Solid Waste management in China[J]. Front. Environ. Sci. Eng., 2020, 14(2): 36-.
[3] Munawar Ali, Junli Zhang, Roberto Raga, Maria Cristina Lavagnolo, Alberto Pivato, Xu Wang, Yuanyuan Zhang, Raffaello Cossu, Dongbei Yue. Effectiveness of aerobic pretreatment of municipal solid waste for accelerating biogas generation during simulated landfilling[J]. Front. Environ. Sci. Eng., 2018, 12(3): 5-.
[4] Hua ZHANG, Zongguo WEN, Yixi CHEN. Environment and economic feasibility of municipal solid waste central sorting strategy: a case study in Beijing[J]. Front. Environ. Sci. Eng., 2016, 10(4): 10-.
[5] Khamphe PHOUNGTHONG,Yi XIA,Hua ZHANG,Liming SHAO,Pinjing HE. Leaching toxicity characteristics of municipal solid waste incineration bottom ash[J]. Front. Environ. Sci. Eng., 2016, 10(2): 399-411.
[6] Hui ZHANG,Le XU,Yifei ZHANG,Mengchan JIANG. The transformation of PAHs in the sewage sludge incineration treatment[J]. Front. Environ. Sci. Eng., 2016, 10(2): 336-340.
[7] Yan SHAO,Haobo HOU,Guangxing WANG,Sha WAN,Min ZHOU. Characteristics of the stabilized/solidified municipal solid wastes incineration fly ash and the leaching behavior of Cr and Pb[J]. Front. Environ. Sci. Eng., 2016, 10(1): 192-200.
[8] Rasool Bux MAHAR,Abdul Razaque SAHITO,Dongbei YUE,Kamranullah KHAN. Modeling and simulation of landfill gas production from pretreated MSW landfill simulator[J]. Front. Environ. Sci. Eng., 2016, 10(1): 159-167.
[9] Yi ZHAO,Tianxiang GUO,Zili ZANG. Activity and characteristics of “Oxygen-enriched” highly reactive absorbent for simultaneous flue gas desulfurization and denitrification[J]. Front. Environ. Sci. Eng., 2015, 9(2): 222-229.
[10] Jingde LUAN,Rundong LI,Zhihui ZHANG,Yanlong LI,Yun ZHAO. Speciation evolutions of target metals (Cd, Pb) influenced by chlorine and sulfur during sewage sludge incineration[J]. Front. Environ. Sci. Eng., 2014, 8(6): 871-876.
[11] WU Yuehui,WANG Guoliang,WANG Zhen,LIU Yi,GU Ping,SUN Dezhi. Comparative study on the efficiency and environmental impact of two methods of utilizing polyvinyl chloride waste based on life cycle assessments[J]. Front.Environ.Sci.Eng., 2014, 8(3): 451-462.
[12] Xinbei WANG, Yong GENG. Municipal solid waste management in Dalian: practices and challenges[J]. Front Envir Sci Eng, 2012, 6(4): 540-548.
[13] Gang XIAO, Baosheng JIN, Mingjiang NI, Kefa CEN, Yong CHI, Zhongxin TAN. A steam dried municipal solid waste gasification and melting process[J]. Front Envir Sci Eng Chin, 2011, 5(2): 193-204.
[14] Dezhen CHEN, Zhenzhen GUAN, Guangyu LIU, Tong ZHU, Gongming ZHOU, . Recycling combustibles from aged municipal solid wastes (MSW) to improve fresh MSW incineration in Shanghai: Investigation of necessity and feasibility[J]. Front.Environ.Sci.Eng., 2010, 4(2): 235-243.
[15] Jinlong XIE, Yuyan HU, Dezhen CHEN, Bin ZHOU, . Hydrothermal treatment of MSWI fly ash for simultaneous dioxins decomposition and heavy metal stabilization[J]. Front.Environ.Sci.Eng., 2010, 4(1): 108-115.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed