Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2017, Vol. 11 Issue (6) : 5    https://doi.org/10.1007/s11783-017-0946-2
RESEARCH ARTICLE
Assessment of leaching behavior and human bioaccessibility of rare earth elements in typical hospital waste incineration ash in China
Chunfeng Wang1(), Guanfei Chen1, Yanchen Zhu1, Dan Yao1, Wanfeng Wang1, Lianjun Wang2()
1. Henan Key Laboratory for Environmental Pollution Control and Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, China
2. Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
 Download: PDF(817 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• Leaching behavior and human bioaccessibility of REEs in HWI ashes were assessed.

• LREE leached amounts were higher than those of HREEs via both leaching tests.

• REEs were extracted to the higher level by PBET method compared to leaching test.

• Bioaccessibility results depend commonly on pH value and chelating role.

• Synergetic effects of contaminants in HWI ashes need further investigation.

Leaching behavior and gastrointestinal bioaccessibility of rare earth elements (REEs) from hospital waste incineration (HWI) fly and bottom ash samples collected from Beijing and Nanjing Cities were assessed. In the same ash sample, the leaching concentrations of individual REEs determined by the Toxicity Characteristic Leaching Procedure (TCLP) were higher than those detected by the European standard protocol (EN-type test), thereby suggesting that the low pH value of leaching solution was an important factor influencing the leachability of REE. The REE bioaccessibility results, which were evaluated using the physiologically based extraction test (PBET), indicated that REEs were highly absorbed during gastric phase by dissolution; and subsequently precipitated and/or re-adsorbed in small intestinal phase. The relative amounts of the total REEs extracted by the TCLP method, EN-type test and PBET test were compared. In addition to the pH value of extraction solutions, the chelating role of REEs with organic ligands used in the PBET method was also an important parameter affecting REE adsorption in human body. Additionally, this study showed that REEs were extracted by these methods as concomitants of heavy metals and anions (NO3, F, SO42, and Cl) from HWI ash, which probably caused the remarkably complex toxicity on human body by the exposure pathway.

Keywords Assessment      Rare earth elements      Leaching behavior      Bioaccessibility      Hospital waste     
Corresponding Author(s): Chunfeng Wang,Lianjun Wang   
Issue Date: 11 May 2017
 Cite this article:   
Chunfeng Wang,Guanfei Chen,Yanchen Zhu, et al. Assessment of leaching behavior and human bioaccessibility of rare earth elements in typical hospital waste incineration ash in China[J]. Front. Environ. Sci. Eng., 2017, 11(6): 5.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-017-0946-2
https://academic.hep.com.cn/fese/EN/Y2017/V11/I6/5
Fig.1  XRD patters of (a) fly and (b) bottom ashes (♦ NaCl; ● CaSO4; ▿ CaCO3)
elements/%Beijing cityNanjing city
fly ashbottom ashfly ashbottom ash
SiO29.06±0.4330.94±1.2410.84±1.4124.64±2.48
CaO5.37±0.2210.63±0.9117.02±0.9025.58±3.60
Na2O22.05±1.1515.36±2.0524.13±1.5410.04±2.47
Al2O310.11±0.908.51±0.594.08±0.813.74±0.92
Fe2O31.49±0.053.59±0.301.21±0.066.19±0.40
MgO3.48±0.082.64±0.562.10±0.091.34±0.08
K2O1.64±0.061.01±0.021.19±0.020.76±0.03
SO31.03±0.030.25±0.010.43±0.060.75±0.05
Cl17.07±1.451.37±0.0412.12±1.020.49±0.02
F0.75±0.050.84±0.08ndand
organic matter b16.50±1.183.13±0.429.94±0.761.14±0.40
PH6.33±0.256.95±0.0810.12±0.3810.66±0.10
Tab.1  Major elements, amount of organic matter and pH values of HWI ashes
REEsBeijing cityNanjing city
fly ashbottom ashfly ashbottom ash
lightLa0.79±0.242.91±0.420.35±0.182.45±0.25
Ce2.96±0.9348.66±4.802.15±0.3956.39±6.40
Pr2.13±0.314.43±0.451.32±0.505.76±1.14
Nd2.12±0.539.60±0.730.98±0.143.89±0.28
Sm0.96±0.0811.61±3.700.51±0.0714.22±0.98
Eu1.86±0.2422.53±3.021.56±0.0535.85±5.60
heavyGd0.69±0.054.95±0.360.40±0.045.71±0.87
Tb0.37±0.020.78±0.150.14±0.031.07±0.08
Dy0.16±0.051.68±0.090.18±0.080.80±0.21
Ho0.21±0.070.35±0.040.14±0.050.37±0.05
Er0.35±0.130.61±0.050.29±0.070.54±0.06
Tmnda0.59±0.09nd0.43±0.13
Yb0.04±0.010.37±0.140.03±0.020.13±0.04
Lu0.21±0.061.81±0.160.14±0.052.85±0.73
Y2.39±0.857.49±0.591.49±0.617.75±0.85
Sc2.18±0.437.13±0.442.93±0.425.32±0.81
∑REEs15.82125.5012.61143.53
Tab.2  REEs concentrations in HWI ash samples (mg·kg-1)
Fig.2  Concentrations of rare earth elements (REEs) leached from ash samples through (a) toxicity characteristic leaching procedure (TCLP method) and (b) European standard protocol (EN-type) test
Fig.3  Five fractions of individual REEs (Ce, Eu, and Sm) in bottom ashes collected from (a) Beijing and (b) Nanjing Cities (F1: exchangeable fraction; F2: carbonate fraction; F3: Fe-Mn oxide fraction; F4: organic matter fraction and F5: residual fraction)
Fig.4  Total leaching amounts of light REEs and heavy REEs from ash samples by TCLP method and EN-type test respectively
Fig.5  Comparison in percentages of total REEs extracted by the EN-type test, TCLP, and PBET method relative to the total REE concentrations in HWI ash samples. Intestinal (pH 1.3) and intestinal (pH 2.5) phases expressed REE relative amounts in intestinal stage (pH 7) for 3 h after finishing the corresponding gastric step
pH= 1.3REEsBeijing city
fly ashbottom ash
gastric (1 h)intestinal (3 h)gastric (1 h)intestinal (3 h)
lightLa0.19±0.040.04±0.010.66±0.220.37±0.05
Ce0.90±0.250.21±0.073.78±0.900.98±0.30
Pr0.70±0.060.18±0.081.38±0.400.08±0.05
Nd0.53±0.030.14±0.052.09±0.700.62±0.23
Sm0.29±0.070.17±0.030.70±0.240.64±0.15
Eu0.75±0.210.50±0.232.15±0.531.82±0.80
heavyGd0.25±0.060.11±0.031.98±1.031.67±0.48
Tb0.14±0.060.09±0.060.41±0.040.39±0.05
Dy0.11±0.030.05±0.041.36±0.650.27±0.09
Ho0.16±0.080.15±0.030.26±0.090.26±0.05
Er0.30±0.190.29±0.050.23±0.030.37±0.14
Tmndandnd0.20±0.07
Yb0.02±0.020.01±0.010.03±0.010.03±0.01
Lu0.10±0.060.05±0.020.19±0.080.13±0.09
Y0.47±0.140.22±0.030.13±0.060.67±0.25
Sc1.45±0.361.06±0.404.23±0.463.92±1.10
∑REEs6.363.2719.5812.42
Tab.3  Determination of REEs bioaccessibility (gastric pH 1.3; intestinal pH 7) in Beijing ash samples (mg·kg-1)
pH= 2.5REEsBeijing city
fly ashbottom ash
gastric (1 h)intestinal (3 h)gastric (1 h)intestinal (3 h)
lightLa0.12±0.030.06±0.030.21±0.080.10±0.03
Ce0.54±0.020.28±0.151.89±0.870.78±0.09
Pr0.52±0.080.25±0.100.70±0.150.85±0.21
Nd0.42±0.010.21±0.081.60±0.610.78±0.35
Sm0.12±0.060.10±0.030.19±0.070.18±0.07
Eu0.39±0.030.16±0.081.51±0.710.71±0.24
heavyGd0.18±0.080.13±0.050.91±0.350.91±0.16
Tb0.08±0.020.06±0.030.19±0.060.10±0.04
Dy0.02±0.010.02±0.010.23±0.110.21±0.08
Ho0.06±0.040.05±0.020.08±0.020.07±0.01
Er0.07±0.05nd0.10±0.050.08±0.02
Tmndand0.03±0.020.03±0.01
Yb0.02±0.010.01±0.010.02±0.020.01±0.02
Lu0.10±0.060.05±0.030.09±0.030.05±0.02
Y0.38±0.150.27±0.080.71±0.280.70±0.16
Sc0.72±0.240.68±0.132.18±0.712.07±0.80
∑REEs3.742.3310.647.63
Tab.4  Determination of REEs bioaccessibility (gastric pH 2.5; intestinal pH 7) in Beijing ash samples (mg·kg-1)
pH= 1.3REEsNanjing city
fly ashbottom ash
gastric (1 h)intestinal (3 h)gastric (1 h)intestinal (3 h)
LightLa0.09±0.020.06±0.020.34±0.080.07±0.02
Ce0.43±0.140.32±0.052.39±0.950.28±0.05
Pr0.37±0.070.24±0.030.95±0.180.10±0.03
Nd0.33±0.050.21±0.161.43±0.840.17±0.06
Sm0.33±0.020.26±0.060.62±0.090.27±0.12
Eu1.00±0.460.77±0.282.77±0.190.58±0.11
HeavyGd0.19±0.030.13±0.091.68±0.530.15±0.08
Tb0.10±0.030.07±0.020.26±0.090.09±0.03
Dy0.10±0.010.08±0.030.56±0.150.18±0.04
Ho0.11±0.100.04±0.010.36±0.030.12±0.05
Er0.16±0.040.08±0.020.41±0.070.16±0.09
Tmndand0.16±0.030.13±0.06
Yb0.02±0.010.01±0.020.03±0.020.01±0.02
Lu0.08±0.010.05±0.040.20±0.090.04±0.01
Y0.34±0.230.31±0.101.03±0.680.25±0.06
Sc1.93±0.951.81±0.452.51±1.091.81±0.81
∑REEs5.584.4415.704.41
Tab.5  Determination of REEs bioaccessibility (gastric pH 1.3; intestinal pH 7) in Nanjing ash samples (mg·kg-1).
pH= 2.5REEsNanjing city
fly ashbottom ash
gastric (1 h)intestinal (3 h)gastric (1 h)intestinal (3 h)
lightLa0.09±0.020.02±0. 020.30±0.060.04±0. 02
Ce0.39±0.050.11±0.042.47±0.140.35±0.04
Pr0.27±0.120.13±0.060.89±0.260.18±0.09
Nd0.24±0.030.09±0.021.40±0.290.25±0.03
Sm0.15±0.070.08±0.010.53±0.030.15±0.07
Eu0.46±0.080.26±0.072.47±0.940.61±0.13
heavyGd0.10±0.030.06±0. 011.59±0.080.27±0.04
Tb0.05±0.010.04±0. 020.21±0.020.07±0. 02
Dy0.13±0.07nd0.28±0.030.09±0. 02
Ho0.03±0. 020.03±0. 010.19±0.050.09±0. 01
Er0.07±0.01nd0.20±0.080.13±0.08
Tmndand0.11±0.030.04±0. 02
Yb0.01±0. 02nd0.02±0. 020.01±0. 02
Lu0.03±0. 020.01±0. 020.23±0.040.06±0. 01
Y0.35±0.040.25±0.041.29±0.080.37±0. 14
Sc1.65±0.081.36±0.101.41±0.161.14±0.27
∑REEs4.022.4413.593.85
Tab.6  Determination of REEs bioaccessibility (gastric pH 2.5; intestinal pH 7) in Nanjing ash samples (mg·kg-1)
1 China E P A. National hazardous waste inventory. China Environmental Protection Department and China Development and Reform Commission. Beijing, 2008
2 Bakkali M E L, Bahri M, Gmouh S, Jaddi H, Bakkali M, Laglaoui A, Mzibri M E L. Characterization of bottom ash from two hospital waste incinerators in Rabat, Morocco. Waste Management & Research, 2013, 31(12): 1228–1236
https://doi.org/10.1177/0734242X13507308 pmid: 24190918
3 Tzanakos K, Mimilidou A, Anastasiadou K, Stratakis A, Gidarakos E. Solidification/stabilization of ash from medical waste incineration into geopolymers. Waste Management (New York, N.Y.), 2014, 34(10): 1823–1828 
https://doi.org/10.1016/j.wasman.2014.03.021 pmid: 24785364
4 Tan Z, Xiao G. Leaching characteristics of fly ash from Chinese medical waste incineration. Waste Management & Research, 2012, 30(3): 285–294
https://doi.org/10.1177/0734242X10375588 pmid: 20601401
5 Valavanidis A, Iliopoulos N, Fiotakis K, Gotsis G. Metal leachability, heavy metals, polycyclic aromatic hydrocarbons and polychlorinated biphenyls in fly and bottom ashes of a medical waste incineration facility. Waste Management & Research, 2008, 26(3): 247–255
https://doi.org/10.1177/0734242X07083345 pmid: 18649572
6 Xie Y J, Zhu J X. Leaching toxicity and heavy metal bioavailability of medical waste incineration fly ash. Journal of Material Cycles and Waste Management, 2013, 15(4): 440–448
https://doi.org/10.1007/s10163-013-0133-x
7 Zhao L, Zhang F S, Wang K, Zhu J. Chemical properties of heavy metals in typical hospital waste incinerator ashes in China. Waste Management (New York, N.Y.), 2009, 29(3): 1114–1121
https://doi.org/10.1016/j.wasman.2008.09.003 pmid: 18990557
8 Johansson I, van Bavel B. Levels and patterns of polycyclic aromatic hydrocarbons in incineration ashes. Science of the Total Environment, 2003, 311(1-3): 221–231
https://doi.org/10.1016/S0048-9697(03)00168-2 pmid: 12826394
9 Zhao L, Zhang F S, Hao Z, Wang H. Levels of polycyclic aromatic hydrocarbons in different types of hospital waste incinerator ashes. Science of the Total Environment, 2008, 397(1-3): 24–30
https://doi.org/10.1016/j.scitotenv.2008.02.040 pmid: 18440054
10 Chen P W, Liu Z S, Wun M J, Ran C L. Evaluating the mutagenicity of leachates obtained from the bottom ash of a municipal solid waste incinerator by using a Salmonella reverse mutation assay. Chemosphere, 2015, 124: 70–76
https://doi.org/10.1016/j.chemosphere.2014.11.013 pmid: 25434273
11 Nemathaga F, Maringa S, Chimuka L. Hospital solid waste management practices in Limpopo Province, South Africa: a case study of two hospitals. Waste Management (New York, N.Y.), 2008, 28(7): 1236–1245
https://doi.org/10.1016/j.wasman.2007.03.033 pmid: 18060760
12 Ibáñez R, Andrés A, Viguri J R, Ortiz I, Irabien J A. Characterisation and management of incinerator wastes. Journal of Hazardous Materials, 2000, 79(3): 215–227
https://doi.org/10.1016/S0304-3894(00)00268-5 pmid: 11077160
13 Gidarakos E, Petrantonaki M, Anastasiadou K, Schramm K W. Characterization and hazard evaluation of bottom ash produced from incinerated hospital waste. Journal of Hazardous Materials, 2009, 172(2-3): 935–942
https://doi.org/10.1016/j.jhazmat.2009.07.080 pmid: 19683871
14 Zhao L, Zhang F S, Chen M, Liu Z, Wu D B, Wu J Z. Typical pollutants in bottom ashes from a typical medical waste incinerator. Journal of Hazardous Materials, 2010, 173(1-3): 181–185
https://doi.org/10.1016/j.jhazmat.2009.08.066 pmid: 19748182
15 Grillo C A, Alvarez F, de Mele M A, Mele F L D. Cellular response to rare earth mixtures (La and Gd) as components of degradable Mg alloys for medical applications. Colloids and Surfaces. B, Biointerfaces, 2014, 117: 312–321
https://doi.org/10.1016/j.colsurfb.2014.02.030 pmid: 24667077
16 Zhao L, Zhang F S, Zhang J. Chemical properties of rare earth elements in typical medical waste incinerator ashes in China. Journal of Hazardous Materials, 2008, 158(2-3): 465–470
https://doi.org/10.1016/j.jhazmat.2008.01.091 pmid: 18329796
17 Tessier A, Campbell P G C, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 1979, 51(7): 844–851
https://doi.org/10.1021/ac50043a017
18 US EPA. Toxicity Characteristic Leaching Procedure. USEPA Method 1311, SW-846 Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, U.S. Environmental Protection Agency, Washington, D C, 1992
19 Jang Y C, Townsend T G. Leaching of lead from computer printed wire boards and cathode ray tubes by municipal solid waste landfill leachates. Environmental Science & Technology, 2003, 37(20): 4778–4784
https://doi.org/10.1021/es034155t pmid: 14594391
20 Denys S, Caboche J, Tack K, Rychen G, Wragg J, Cave M, Jondreville C, Feidt C. In vivo validation of the unified BARGE method to assess the bioaccessibility of arsenic, antimony, cadmium, and lead in soils. Environmental Science & Technology, 2012, 46(11): 6252–6260
https://doi.org/10.1021/es3006942 pmid: 22606949
21 Juhasz A L, Weber J, Smith E, Naidu R, Rees M, Rofe A, Kuchel T, Sansom L. Assessment of four commonly employed in vitro arsenic bioaccessibility assays for predicting in vivo relative arsenic bioavailability in contaminated soils. Environmental Science & Technology, 2009, 43(24): 9487–9494
https://doi.org/10.1021/es902427y pmid: 20000545
22 Oomen A G, Hack A, Minekus M, Zeijdner E, Cornelis C, Schoeters G, Verstraete W, Van de Wiele T, Wragg J, Rompelberg C J, Sips A J, Van Wijnen J H. Comparison of five in vitro digestion models to study the bioaccessibility of soil contaminants. Environmental Science & Technology, 2002, 36(15): 3326–3334
https://doi.org/10.1021/es010204v pmid: 12188361
23 Pelfr�ne A, Waterlot C, Mazzuca M, Nisse C, Cuny D, Richard A, Denys S, Heyman C, Roussel H, Bidar G, Douay F. Bioaccessibility of trace elements as affected by soil parameters in smelter-contaminated agricultural soils: a statistical modeling approach. Environmental Pollution, 2012, 160(1): 130–138
https://doi.org/10.1016/j.envpol.2011.09.008 pmid: 22035936
24 Ruby M V, Davis A, Schoof R, Eberle S, Sellstone C M. Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environmental Science & Technology, 1996, 30(2): 422–430
https://doi.org/10.1021/es950057z
25 China E P A. Environmental Protection Ministry of China. GB 16889–2008. Standard for Pollution Control on the Landfill Site of Municipal Solid Waste. Beijing: China Environmental Science Press, 2008
26 Liang T, Li K, Wang L. State of rare earth elements in different environmental components in mining areas of China. Environmental Monitoring and Assessment, 2014, 186(3): 1499–1513
https://doi.org/10.1007/s10661-013-3469-8 pmid: 24135922
27 Laveuf C, Cornu S, Guilherme L R G, Guerin A, Juillot F. The impact of redox conditions on the rare earth element signature of redoximorphic features in a soil sequence developed from limestone. Geoderma, 2012, 170(1): 25–38
https://doi.org/10.1016/j.geoderma.2011.10.014
28 Li X, Chen Z, Chen Z, Zhang Y. A human health risk assessment of rare earth elements in soil and vegetables from a mining area in Fujian Province, Southeast China. Chemosphere, 2013, 93(6): 1240–1246
https://doi.org/10.1016/j.chemosphere.2013.06.085 pmid: 23891580
29 Liang T, Zhang S, Wang L, Kung H T, Wang Y, Hu A, Ding S. Environmental biogeochemical behaviors of rare earth elements in soil-plant systems. Environmental Geochemistry and Health, 2005, 27(4): 301–311
https://doi.org/10.1007/s10653-004-5734-9 pmid: 16027965
30 Dołęgowska S, Migaszewski Z M. Anomalous concentrations of rare earth elements in the moss-soil system from south-central Poland. Environmental Pollution, 2013, 178(1): 33–40
https://doi.org/10.1016/j.envpol.2013.02.024 pmid: 23524178
31 Pagano G, Guida M, Tommasi F, Oral R. Health effects and toxicity mechanisms of rare earth elements-Knowledge gaps and research prospects. Ecotoxicology and Environmental Safety, 2015, 115: 40–48
https://doi.org/10.1016/j.ecoenv.2015.01.030 pmid: 25679485
32 Aquino L G, Morgana M, Carboni M A, Staiano M, Antisari M V, Re M, Lorito M, Vinale F, Abadi K M, Woo S L. Effect of some rare earth elements on the growth and lanthanide accumulation in different Trichoderma strains. Soil Biology & Biochemistry, 2009, 41(12): 2406–2413
https://doi.org/10.1016/j.soilbio.2009.08.012
33 EN 12457–2. Characterization of waste-leaching; Compliance test for leaching of granular waste materials and sludges—Part 2: One-stage batch test at a liquid to solids ratio of 10L/kg for materials with a particle size below 4 mm (with or without size reduction), European Standards, 2002
34 Wang C, Zhu N, Wang Y, Zhang F. Co-detoxification of transformer oil-contained PCBs and heavy metals in medical waste incinerator fly ash under sub- and supercritical water. Environmental Science & Technology, 2012, 46(2): 1003–1009
https://doi.org/10.1021/es202342h pmid: 22142259
35 Yu J, Sun L, Xiang J, Jin L, Hu S, Su S, Qiu J. Physical and chemical characterization of ashes from a municipal solid waste incinerator in China. Waste Management & Research, 2013, 31(7): 663–673
https://doi.org/10.1177/0734242X13485793 pmid: 23618902
[1] Yuan Meng, Weiyi Liu, Heidelore Fiedler, Jinlan Zhang, Xinrui Wei, Xiaohui Liu, Meng Peng, Tingting Zhang. Fate and risk assessment of emerging contaminants in reclaimed water production processes[J]. Front. Environ. Sci. Eng., 2021, 15(5): 104-.
[2] Yunping Han, Lin Li, Ying Wang, Jiawei Ma, Pengyu Li, Chao Han, Junxin Liu. Composition, dispersion, and health risks of bioaerosols in wastewater treatment plants: A review[J]. Front. Environ. Sci. Eng., 2021, 15(3): 38-.
[3] Weichuan Qiao, Rong Li, Tianhao Tang, Achuo Anitta Zuh. Removal, distribution and plant uptake of perfluorooctane sulfonate (PFOS) in a simulated constructed wetland system[J]. Front. Environ. Sci. Eng., 2021, 15(2): 20-.
[4] Kehui Liu, Xiaolu Liang, Chunming Li, Fangming Yu, Yi Li. Nutrient status and pollution levels in five areas around a manganese mine in southern China[J]. Front. Environ. Sci. Eng., 2020, 14(6): 100-.
[5] Lei Zheng, Xingbao Gao, Wei Wang, Zifu Li, Lingling Zhang, Shikun Cheng. Utilization of MSWI fly ash as partial cement or sand substitute with focus on cementing efficiency and health risk assessment[J]. Front. Environ. Sci. Eng., 2020, 14(1): 5-.
[6] Bao Yu, Guodi Zheng, Xuedong Wang, Min Wang, Tongbin Chen. Biodegradation of triclosan and triclocarban in sewage sludge during composting under three ventilation strategies[J]. Front. Environ. Sci. Eng., 2019, 13(3): 41-.
[7] Xinshu Jiang, Yingxi Qu, Liquan Liu, Yuan He, Wenchao Li, Jun Huang, Hongwei Yang, Gang Yu. PPCPs in a drinking water treatment plant in the Yangtze River Delta of China: Occurrence, removal and risk assessment[J]. Front. Environ. Sci. Eng., 2019, 13(2): 27-.
[8] Huang Huang, Jie Wu, Jian Ye, Tingjin Ye, Jia Deng, Yongmei Liang, Wei Liu. Occurrence, removal, and environmental risks of pharmaceuticals in wastewater treatment plants in south China[J]. Front. Environ. Sci. Eng., 2018, 12(6): 7-.
[9] Chunfeng Wang, Yanchen Zhu, Dan Yao, Guanfei Chen, Lianjun Wang. Assessing human bioaccessibility of trace contaminants in size-fractionated red mud, derived precipitates and geopolymeric blocks[J]. Front. Environ. Sci. Eng., 2017, 11(6): 12-.
[10] Bin Lu, Xiaolong Song, Jianxin Yang, Dong Yang. Comparison on End-of-Life strategies of WEEE in China based on LCA[J]. Front. Environ. Sci. Eng., 2017, 11(5): 7-.
[11] William Finnegan, Jamie Goggins, Aksana Chyzheuskaya, Xinmin Zhan. Global warming potential associated with Irish milk powder production[J]. Front. Environ. Sci. Eng., 2017, 11(3): 12-.
[12] Sheng Huang, Xin Zhao, Yanqiu Sun, Jianli Ma, Xiaofeng Gao, Tian Xie, Dongsheng Xu, Yi Yu, Youcai Zhao. Pollution of hazardous substances in industrial construction and demolition wastes and their multi-path risk within an abandoned pesticide manufacturing plant[J]. Front. Environ. Sci. Eng., 2017, 11(1): 12-.
[13] Ying Han, Huiting Xie, Wenbin Liu, Haifeng Li, Mengjing Wang, Xuebin Chen, Xiao Liao, Nan Yan. Assessment of pollution of potentially harmful elements in soils surrounding a municipal solid waste incinerator, China[J]. Front. Environ. Sci. Eng., 2016, 10(6): 7-.
[14] Wentao Zhao, Ying Guo, Shuguang Lu, Pingping Yan, Qian Sui. Recent advances in pharmaceuticals and personal care products in the surface water and sediments in China[J]. Front. Environ. Sci. Eng., 2016, 10(6): 2-.
[15] Hyunju Jeong, Osvaldo A. Broesicke, Bob Drew, Duo Li, John C. Crittenden. Life cycle assessment of low impact development technologies combined with conventional centralized water systems for the City of Atlanta, Georgia[J]. Front. Environ. Sci. Eng., 2016, 10(6): 1-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed