Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2017, Vol. 11 Issue (6) : 7    https://doi.org/10.1007/s11783-017-0948-0
RESEARCH ARTICLE
Roles of glutathione and L-cysteine in the biomimetic green synthesis of CdSe quantum dots
Ling-Li Li, Yin-Hua Cui, Jie-Jie Chen, Han-Qing Yu()
CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei 230026, China
 Download: PDF(3156 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

CdSe QDs were synthesized with CdCl2, Na2SeO3 and bio-thiols under mild conditions.

Compared with L-cysteine, glutathione was superior for CdSe QDs formation.

Cd2+ binding capacity of glutathione contributed to the CdSe QDs formation.

Biological synthesis of quantum dots (QDs) as an environmental-friendly and facile preparation method has attracted increasing interests. However, it is difficult to distinguish the roles of bio-thiols in QDs synthesis process because of the complex nature in organisms. In this work, the CdSe QDs synthesis conditions in organisms were reconstructed by using a simplified in vitro approach to uncover the roles of two small bio-thiols in the QDs formation. CdSe QDs were synthesized with glutathione (GSH) and L-cysteine (Cys) respectively. Compared with Cys at the same molar concentration, the CdSe QDs synthesized by GSH had a larger and broader particle size distribution with improved optical properties and crystal structure. Furthermore, quantum chemical calculations indicate that the stronger Cd2+ binding capacity of GSH contributed a lot to the CdSe QDs formation despite of the greater capability Cys for selenite reduction. This work clearly demonstrates the different roles of small thiols in the Cd2+ stabilization in the environment and biomimetic QDs synthesis process.

Keywords CdSe      Quantum dots (QDs)      Biomimetic synthesis      Bio-thiols      Glutathione (GSH)      Cysteine (Cys)     
Corresponding Author(s): Han-Qing Yu   
Issue Date: 11 May 2017
 Cite this article:   
Ling-Li Li,Yin-Hua Cui,Jie-Jie Chen, et al. Roles of glutathione and L-cysteine in the biomimetic green synthesis of CdSe quantum dots[J]. Front. Environ. Sci. Eng., 2017, 11(6): 7.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-017-0948-0
https://academic.hep.com.cn/fese/EN/Y2017/V11/I6/7
Fig.1  CdSe QDs synthesis at 20℃ and neutral pH. Photos of the resulted solutions after synthesis process with GSH (a) and with Cys (b) under visual light and under UV irradiation (365 nm) (insert image)
Fig.2  Raman spectrum of the formed CdSe with GSH (Cd-Se@GSH) (a) with Cys (Cd-Se@Cys) (b), and FT magnitude of EXAFS spectra (c). The characteristic peaks were marked with Dash line
Fig.3  TEM images of the CdSe QDs from Cd-Se@GSH ((a1)–(a3)) and Cd-Se@Cys ((b1)–(b3)). TEM ((a1) and (b1)), HRTEM ((a2) and (b2)) and EDX spectroscopy ((a3) and (b3)) of the formed CdSe
Fig.4  Absorbance spectra of the resulted solutions with GSH (@GSH, (a)) and with Cys (@Cys, (b)). Samples were withdrawn in different treatment groups
Fig.5  EEM fluorescence spectra of the resulted solutions with GSH (@GSH, (a)) and with Cys (@Cys, (b)). Samples were withdrawn from different treatment groups. Insert image in panel b shows the detailed information in dashed box
ReactionDG?
/(kcal·mol-1)
DH?
/(kcal·mol-1)
SeO32- + 2H3O+ + 4CysH → Cys-Se-Cys+ Cys-Cys+ 5H2O-112.11-117.61
Cys-Se-Cys → Cys-Cys+ Se058.4662.90
total-53.65-54.71
SeO32- + 2H3O+ + 4GSH → GS-Se-SG+ GS-SG+ 5H2O-47.51-44.63
GS-Se-SG → GS-SG+ Se055.0961.67
total7.5817.04
Cd2+ + Cys+ H2O → Cd-Cys+ H3O+-68.01-51.33
Cd2+ + 2Cys+ 2H2O → Cys-Cd-Cys+ 2H3O+-80.41-102.44
Cd2+ + GSH+ H2O → Cd-SG+ H3O+-86.94-92.54
Cd2+ + 2GSH+ 2H2O → GS-Cd-SG+ 2H3O+-90.49-112.07
Tab.1  Energy changes of selenite reduction and Cd2+ binding for Cys/GSH reactions. Standard Gibb’s free energy change (DG?) and enthalpy change (DH?) of the reactions between Cys/GSH and selenite/Cd2+ are calculated in aqueous solution at room temperature
1 Brus L. Electronic wave functions in semiconductor clusters: experiment and theory. Journal of Physical Chemistry, 1986, 90(12): 2555–2560
https://doi.org/10.1021/j100403a003
2 Shu T, Zhou Z M, Wang H, Liu G H, Xiang P, Rong Y G, Han H W, Zhao Y D. Efficient quantum dot-sensitized solar cell with tunable energy band CdSexS(1-x) quantum dots. Journal of Materials Chemistry, 2012, 22(21): 10525–10529
https://doi.org/10.1039/c2jm31177a
3 Kuang H, Zhao Y, Ma W, Xu L G, Wang L B, Xu C L. Recent developments in analytical applications of quantum dots. TrAC Trends in Analytical Chemistry, 2011, 30(10): 1620–1636
https://doi.org/10.1016/j.trac.2011.04.022
4 Zrazhevskiy P, Sena M, Gao X. Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chemical Society Reviews, 2010, 39(11): 4326–4354
https://doi.org/10.1039/b915139g pmid: 20697629
5 Zhang Y, Clapp A. Overview of stabilizing ligands for biocompatible quantum dot nanocrystals. Sensors (Basel), 2011, 11(12): 11036–11055
https://doi.org/10.3390/s111211036 pmid: 22247651
6 Dameron C T, Reese R N, Mehra R K, Kortan A R, Carroll P J, Steigerwald M L, Brus L E, Winge D R. Biosynthesis of cadmium-sulfide quantum semiconductor crystallites. Nature, 1989, 338(6216): 596–597
https://doi.org/10.1038/338596a0
7 Cui R, Liu H H, Xie H Y, Zhang Z L, Yang Y R, Pang D W, Xie Z X, Chen B B, Hu B, Shen P. Living yeast cells as a controllable biosynthesizer for fluorescent quantum dots. Advanced Functional Materials, 2009, 19(15): 2359–2364
https://doi.org/10.1002/adfm.200801492
8 Park T J, Lee S Y, Heo N S, Seo T S. In vivo synthesis of diverse metal nanoparticles by recombinant Escherichia coli. Angewandte Chemie International Edition in English, 2010, 49(39): 7019–7024
https://doi.org/10.1002/anie.201001524 pmid: 20842627
9 Li Y, Cui R, Zhang P, Chen B B, Tian Z Q, Li L, Hu B, Pang D W, Xie Z X. Mechanism-oriented controllability of intracellular quantum dots formation: the role of glutathione metabolic pathway. ACS Nano, 2013, 7(3): 2240–2248
https://doi.org/10.1021/nn305346a pmid: 23398777
10 Patsoukis N, Georgiou C D. Determination of the thiol redox state of organisms: new oxidative stress indicators. Analytical and Bioanalytical Chemistry, 2004, 378(7): 1783–1792
https://doi.org/10.1007/s00216-004-2525-1 pmid: 14985909
11 Hansen R E, Roth D, Winther J R. Quantifying the global cellular thiol-disulfide status. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(2): 422–427
https://doi.org/10.1073/pnas.0812149106 pmid: 19122143
12 Zhang J, Wang F, House J D, Page B, Thiols in wetland interstitial waters and their role in mercury and methylmercury speciation. Limnology and Oceanography, 2004, 49(6): 2276–2286 doi:10.4319/lo.2004.49.6.2276
13 Moingt M, Bressac M, Bélanger D, Amyot M, Role of ultra-violet radiation, mercury and copper on the stability of dissolved glutathione in natural and artificial freshwater and saltwater. Chemosphere, 2010, 80(11): 1314–1320 PMID:20598342 doi:10.1016/j.chemosphere.2010.06.041
14 Liu J, Yang T, Chen Q, Liu F, Wang B, Distribution and potential ecological risk of heavy metals in the typical eco-units of Haihe River Basin. Frontiers of Environmental Science & Engineering, 2016, 10(1): 103–113 doi:10.1007/s11783-014-0686-5
15 Pérez-Donoso J M, Monrás J P, Bravo D, Aguirre A, Quest A F, Osorio-Román I O, Aroca R F, Chasteen T G, Vásquez C C. Biomimetic, mild chemical synthesis of CdTe-GSH quantum dots with improved biocompatibility. PLoS One, 2012, 7(1): e30741
https://doi.org/10.1371/journal.pone.0030741 pmid: 22292028
16 Shi Y, Ma Z, Cui N, Liu Y, Hou X, Du W, Liu L, Gangsheng T. In situ preparation of fluorescent CdTe quantum dots with small thiols and hyperbranched polymers as co-stabilizers. Nanoscale Research Letters, 2014, 9(1): 121
https://doi.org/10.1186/1556-276X-9-121 pmid: 24636234
17 Xue S, Zhao Q, Wei L, Hui X, Ma X, Lin  Y.Fluorescence spectroscopic studies of the effect of granular activated carbon adsorption on structural properties of dissolved organic matter fractions. Frontiers of Environmental Science & Engineering, 2012, 6(6): 784–796 doi:10.1007/s11783-012-0436-5
18 Williams A T R, Winfield S A,Miller J N. Relative fluorescence quantum yields using a computer controlled luminescence spectrometer. Analyst, 1983, 108(1290): 1067–1071 doi:10.1039/an9830801067
19 Delley B. Fast calculation of electrostatics in crystals and large molecules. Journal of Physical Chemistry, 1996, 100(15): 6107–6110
https://doi.org/10.1021/jp952713n
20 Delley B. From molecules to solids with the DMol3 approach. Journal of Chemical Physics, 2000, 113(18): 7756–7764
https://doi.org/10.1063/1.1316015
21 Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters, 1996, 77(18): 3865–3868
https://doi.org/10.1103/PhysRevLett.77.3865 pmid: 10062328
22 Klamt A, Jonas V, Bürger T, Lohrenz J C W. Refinement and parametrization of COSMO-RS. Journal of Physical Chemistry A, 1998, 102(26): 5074–5085
https://doi.org/10.1021/jp980017s
23 Klamt A, Schuurmann G. COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. Journal of the Chemical Society, Perkin Transactions 2: Physical Organic Chemistry, 1993, 2(5): 799–805
https://doi.org/10.1039/P29930000799
24 Cui Y H, Li L L, Zhou N Q, Liu J H, Huang Q, Wang H J, Tian J, Yu H Q. In vivo synthesis of nano-selenium by Tetrahymena thermophila SB210. Enzyme and Microbial Technology, 2016, 95: 185–191
https://doi.org/10.1016/j.enzmictec.2016.08.017 pmid: 27866614
25 Ganther H E. Reduction of the selenotrisulfide derivative of glutathione to a persulfide analog by glutathione reductase. Biochemistry, 1971, 10(22): 4089–4098
https://doi.org/10.1021/bi00798a013 pmid: 4400818
26 Guo X T, Ni Z J, Liao C Y, Nan H Y, Zhang Y, Zhao W W, Wang W H. Fluorescence quenching of CdSe QDs on graphene. Applied Physics Letters, 2013, 103(20): 201909
https://doi.org/10.1063/1.4831670
27 Neto E S F, da Silva S W, Morais P C, Vasilevskiy M I, Pereira-da-Silva M A, Dantas N O. Resonant raman scattering in CdSxSe1-x nanocrystals: effects of phonon confinement, composition, and elastic strain. Journal of Raman Spectroscopy: JRS, 2011, 42(8): 1660–1669
https://doi.org/10.1002/jrs.2918
28 Qian H, Qiu X, Li L, Ren J. Microwave-assisted aqueous synthesis: a rapid approach to prepare highly luminescent ZnSe(S) alloyed quantum dots. Journal of Physical Chemistry B, 2006, 110(18): 9034–9040
https://doi.org/10.1021/jp0539324 pmid: 16671712
29 Zhang Y H, Zhang H S, Ma M, Guo X F, Wang H. The influence of ligands on the preparation and optical properties of water-soluble CdTe QDs. Applied Surface Science, 2009, 255(9): 4747–4753
https://doi.org/10.1016/j.apsusc.2008.09.009
30 Mir I A, Das K, Rawat K, Bohidar H B. Hot injection versus room temperature synthesis of CdSe QDs: a differential spectroscopic and bioanalyte sensing efficacy evaluation. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2016, 494: 162–169
https://doi.org/10.1016/j.colsurfa.2016.01.002
31 Silva F O, Carvalho M S, Mendonça R, Macedo W A A, Balzuweit K, Reiss P, Schiavon M A. Effect of surface ligands on the optical properties of aqueous soluble CdTe quantum dots. Nanoscale Research Letters, 2012, 7(1): 536–538
https://doi.org/10.1186/1556-276X-7-536 pmid: 23017183
32 Borovaya M N, Naumenko A P, Matvieieva N A, Blume Y B, Yemets A I. Biosynthesis of luminescent CdS QDs using plant hairy root culture. Nanoscale Research Letters, 2014, 9(1): 686
https://doi.org/10.1186/1556-276X-9-686
33 Gonçalves H, Mendonça C, Esteves da Silva J C. PARAFAC analysis of the quenching of EEM of fluorescence of glutathione capped CdTe quantum dots by Pb(II). Journal of Fluorescence, 2009, 19(1): 141–149
https://doi.org/10.1007/s10895-008-0395-1 pmid: 18626755
34 Santos CI L, Carvalho M S, Raphael E, Dantas C, Ferrari J L, Schiavon M A. Synthesis, optical characterization, and size distribution determination by curve resolution methods of water-soluble CdSe QDs. Materials Research, 2016, 19(6): 1407–1416
https://doi.org/10.1590/1980-5373-mr-2016-0121
35 Gennari F, Sharma V K, Pettine M, Campanella L, Millero F J. Reduction of selenite by cysteine in ionic media. Geochimica et Cosmochimica Acta, 2014, 124: 98–108
https://doi.org/10.1016/j.gca.2013.09.019
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed