Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2017, Vol. 11 Issue (6) : 9    https://doi.org/10.1007/s11783-017-0950-6
RESEARCH ARTICLE
Transport and selectivity of indium through polymer inclusion membrane in hydrochloric acid medium
Xiaorong Meng1,2,3, Conghui Wang2, Pan Zhou2, Xiaoqiang Xin2, Lei Wang2,3()
1. School of Science, Xi’an University of Architecture and Technology, Xi’an 710055, China
2. School of Environmental & Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
3. Key Laboratory of Membrane Separation of Shaanxi Province, Xi’an 710055, China
 Download: PDF(298 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The mass transfer of PIM to In(III) is of high efficiency.

The separation selectivity of In(III)/Cu(II) is related to the pH value and Cl concentration of the feed phase.

The mass transfer of In(III) is controlled by chemical interaction.

The stability of the membrane is improved by increasing the membrane thickness.

In the present paper, a polymer inclusion membrane (PIM) containing polyvinyl chloride (PVC), and bis-(2-ethylhexyl) phosphate (D2EHPA) which was used as extracting agent was used for the recovery of In(III) ions in hydrochloric acid medium. The effects of carrier concentration, feed phase pH, strip phase HCl concentration, temperature on the transport, and the membrane’s stability and thickness were examined. And the conditions for the selective separation of In(III) and Cu(II) were optimized. The results showed that the transport of In(III) across PIM was consistent with the first order kinetics equation, and also it was controlled by both the diffusion of the metal complex in the membrane and the chemical reaction at the interface of the boundary layers. The transport flux (J0) was inversely proportional to the membrane thickness, however, the transport stability improved as the membrane thickness increased. The transport flux of In(III) and Cu(II) was decreased by excessive acidity of feed phase and high concentration of Cl. The selectivity separation coefficient of In(III)/Cu(II) was up to 34.33 when the original concentration of both In(III) and Cu(II) was 80 mg·L−1 as well as the pH of the feed phase and the concentration of Cl in the adjusting context were0.6 and 0.5 mol·L−1, respectively. Within the range of pH= 1–3, the separation selectivity of In(III)/Cu(II) reached the peak in the case when the Cl concentration was 0.7 mol·L−1 .

Keywords Polymer inclusion membrane      Selective transport      D2EHPA      In(III)      Cu(II)     
Corresponding Author(s): Lei Wang   
Issue Date: 05 June 2017
 Cite this article:   
Xiaorong Meng,Conghui Wang,Pan Zhou, et al. Transport and selectivity of indium through polymer inclusion membrane in hydrochloric acid medium[J]. Front. Environ. Sci. Eng., 2017, 11(6): 9.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-017-0950-6
https://academic.hep.com.cn/fese/EN/Y2017/V11/I6/9
Fig.1  Scanning electron microscopy of various carrier contents surface of PIM
Fig.2  (a)Variation of In(III) concentration in both phases during the transport; (b) Kinetics of In(III) transport through PIM (Transport conditions: Feed phase: 80 mg·L−1 In(III), pH= 1.0, Stripping phase: 4 mol·L−1 HCl, Carrier: 69%. Results are means of three independent experiments performed at T= 30±1°C)
Fig.3  Effect of D2EHPA concentration on the transport of In(III) through PIM (Feed phase: 80 mg·L−1 In(III), pH= 2.0, Stripping phase: 4 mol·L−1 HCl. Results are means of three independent experiments performed at T= 30±1°C)
Fig.4  Effect of the thickness of PIM on the transport (Feed phase: 80 mg·L−1 In(III), pH= 2.0, Stripping phase: 4 mol·L−1 HCl, Carrier: 69%, Operation temperature: 30±1°C)
Fig.5  Stability of PIMs with different thicknesses (Feed phase: 80 mg·L−1 In(III), pH= 2.0, Stripping phase: 4 mol·L−1 HCl, Carrier: 69%, Operation temperature: 30±1°C)
Fig.6  Arrhenius plot of In(III) transport through PIM (Feed phase: 80 mg·L−1 In(III), pH= 2.0, Stripping phase: 4 mol·L−1HCl, Thickness of PIM: 160 μm, Carrier: 69%)
Fig.7  (a) Effect of pH in feed phase on the In(III) transport in 4 mol·L−1 HCl of strip phase (b) Effect of stripping HCl concentration on the In(III) transport in pH 2 of feed phase (Feed phase: 80 mg·L−1 In(III), Carrier: 69%, Thickness of PIM: 160 μm. Results are means of three independent experiments performed at T= 30±1°C)
pHCClmental ionK/(10−6·s−1)P/(µm·s1)S
0.30.5In(III)7.10833.39568.53
Cu(II)0.83330.3981
0.7In(III)5.11412.44306.35
Cu(II)0.80490.3845
0.60.25In(III)9.97224.763726.20
Cu(II)0.38060.1818
0.5In(III)11.12025.342134.33
Cu(II)0.32570.1556
0.7In(III)10.72245.122129.35
Cu(II)0.36530.1745
10.1In(III)14.16676.767414.97
Cu(II)0.94640.4521
0.25In(III)14.89207.114015.97
Cu(II)0.93240.4454
0.5In(III)15.10287.214616.73
Cu(II)0.90280.4313
0.7In(III)14.98937.160421.47
Cu(II)0.69810.3335
1In(III)14.63896.993016.89
Cu(II)0.86670.4140
20.01In(III)11.34725.42067.32
Cu(II)1.54990.7404
0.1In(III)17.25008.240312.18
Cu(II)1.41680.6768
0.25In(III)17.34528.285813.36
Cu(II)1.29800.6201
0.5In(III)15.007.165515.00
Cu(II)1.00000.4777
0.7In(III)14.79787.068920.03
Cu(II)0.73870.3529
1In(III)14.42816.892317.72
Cu(II)0.81410.3889
30.01In(III)7.77783.71555.49
Cu(II)1.41670.6768
0.1In(III)17.02228.131512.01
Cu(II)1.41670.6768
0.25In(III)17.67388.442813.14
Cu(II)1.34500.6425
0.5In(III)18.30568.744614.52
Cu(II)1.26110.6024
0.7In(III)17.94728.573418.78
Cu(II)0.95560.4565
1In(III)15.31557.316215.30
Cu(II)1.00100.4782
Tab.1  Permeability coefficient (P) of In(III) and Cu(II) selectivity coefficient (S) in competitive metal transport through PIM in different feed phase pH. (Feed phase: 80 mg·L−1 In(III) and 80 mg·L−1Cu(II), Feed phase pH: 0.3, 0.6, 1,2,3, Stripping phase: 4 mol·L HCl, Carrier: 69%, Operation temperature 30°C)
1 Hines C J, Roberts J L, Andrews R N, Jackson M V, Deddens J A. Use of and occupational exposure to indium in the United States. Journal of Occupational and Environmental Hygiene, 2013, 10(12): 723–733
https://doi.org/10.1080/15459624.2013.836279 pmid: 24195539
2 Alfantazi A M, Moskalyk R R. Processing of indium: a review. Minerals Engineering, 2003, 16(8): 687–694
https://doi.org/10.1016/S0892-6875(03)00168-7
3 Rahman M L, Sarkar S M, Yusoff M M. Efficient removal of heavy metals from electroplating wastewater using polymer ligands. Frontiers of Environmental Science & Engineering, 2016, 10(2): 352–361
https://doi.org/10.1007/s11783-015-0783-0
4 Ma D, Gao H. Reuse of heavy metal-accumulating cynondon dactylon in remediation of water contaminated by heavy metals. Frontiers of Environmental Science & Engineering, 2014, 8(6): 952–959
https://doi.org/10.1007/s11783-013-0619-8
5 Lee S K, Lee U H. Adsorption and desorption property of iminodiacetate resin (Lewatit® TP207) for indium recovery. Journal of Industrial and Engineering Chemistry, 2016, 40: 23–25
https://doi.org/10.1016/j.jiec.2016.05.016
6 Ju J, Liu R, He Z, Liu H, Zhang X, Qu J. Utilization of aluminum hydroxide waste generated in fluoride adsorption and coagulation processes for adsorptive removal of cadmium ion. Frontiers of Environmental Science & Engineering, 2016, 10(3): 467–476
https://doi.org/10.1007/s11783-015-0809-7
7 Sato T, Sato K. Liquid-liquid extraction of indium(III) from aqueous acid solutions by acid organophosphorus compounds. Hydrometallurgy, 1992, 30(1–3): 367–383
https://doi.org/10.1016/0304-386X(92)90094-G
8 Li X, Deng Z, Li C, Wei C, Li M, Fan G, Rong H. Direct solvent extraction of indium from a zinc residue reductive leach solution by D2EHPA. Hydrometallurgy, 2015, 156: 1–5
https://doi.org/10.1016/j.hydromet.2015.05.003
9 Ruan J, Guo Y, Qiao Q. Recovery of indium from scrap TFT-LCDs by solvent extraction. Procedia Environmental Sciences, 2012, 16: 545–551
https://doi.org/10.1016/j.proenv.2012.10.075
10 Guerriero R, Meregalli L, Zhang X. Indium recovery from sulphuric solutions by supported liquid membranes. Hydrometallurgy, 1988, 20(1): 109–120
11 Fan S, Jia Q, Song N, Su R, Liao W. Synergistic extraction study of indium from chloride medium by mixtures of sec-nonylphenoxy acetic acid and trialkyl amine. Separation and Purification Technology, 2010, 75(1): 76–80
https://doi.org/10.1016/j.seppur.2010.07.015
12 Jayawardane B M, Coo L, Cattrall R W, Kolev S D. The use of a polymer inclusion membrane in a paper-based sensor for the selective determination of Cu(II). Analytica Chimica Acta, 2013, 803: 106–112
https://doi.org/10.1016/j.aca.2013.07.029 pmid: 24216203
13 Sasaki Y, Matsuo N, Oshima T, Baba Y. Selective extraction of In(III), Ga(III) and Zn(II) using a novel extractant with phenylphosphinic acid. Chinese Journal of Chemical Engineering, 2016, 24(2): 232–236
https://doi.org/10.1016/j.cjche.2015.06.001
14 Zimmermann Y S, Niewersch C, Lenz M, Kül Z Z, Corvini P F X, Schäffer A, Wintgens T. Recycling of indium from CIGS photovoltaic cells: potential of combining acid-resistant nanofiltration with liquid-liquid extraction. Environmental Science & Technology, 2014, 48(22): 13412–13418
https://doi.org/10.1021/es502695k pmid: 25310266
15 Kolev S D, Baba Y, Cattrall R W, Tasaki T, Pereira N, Perera J M, Stevens G W. Solid phase extraction of zinc(II) using a PVC-based polymer inclusion membrane with di(2-ethylhexyl)phosphoric acid (D2EHPA) as the carrier. Talanta, 2009, 78(3): 795–799
https://doi.org/10.1016/j.talanta.2008.12.047 pmid: 19269430
16 Sato T. The extraction of indium(III), lanthanum(III) and bismuth(III) from sulphuric acid solutions by di-(2-ethylhexyl)-phosphoric acid. Journal of Inorganic and Nuclear Chemistry, 1975, 37(6): 1485–1488
https://doi.org/10.1016/0022-1902(75)80795-0
17 Lupi C, Pilone D. In(III) hydrometallurgical recovery from secondary materials by solvent extraction. Journal of Environmental Chemical Engineering, 2014, 2(1): 100–104
https://doi.org/10.1016/j.jece.2013.12.004
18 Zhang L, Wang Y, Guo X, Yuan Z, Zhao Z. Separation and preconcentration of trace indium(III) from environmental samples with nanometer-size titanium dioxide. Hydrometallurgy, 2009, 95(1): 92–95
https://doi.org/10.1016/j.hydromet.2008.05.001
19 Hasegawa Y, Shimada T, Niitsu M. Solvent extraction of 3B group metal ions from hydrochloric acid with trioctylphosphine oxide. Journal of Inorganic and Nuclear Chemistry, 1980, 42(10): 1487–1489
https://doi.org/10.1016/0022-1902(80)80117-5
20 Wang D, Hu J, Li Y, Fu M, Liu D, Chen Q. Evidence on the 2-nitrophenyl octyl ether (NPOE) facilitating copper(II) transport through polymer inclusion membranes. Journal of Membrane Science, 2016, 501: 228–235
https://doi.org/10.1016/j.memsci.2015.12.013
21 Zhang Y, Zhang T A, Lv G, Zhang G, Liu Y, Zhang W. Synergistic extraction of vanadium(IV) in sulfuric acid media using a mixture of D2EHPA and EHEHPA. Hydrometallurgy, 2016, 166: 87–93
https://doi.org/10.1016/j.hydromet.2016.09.003
22 Turgut H I, Eyupoglu V, Kumbasar R A, Sisman I. Alkyl chain length dependent Cr(VI) transport by polymer inclusion membrane using room temperature ionic liquids as carrier and PVDF-co-HFP as polymer matrix. Separation & Purification, 2017, 175: 406–417
https://doi.org/10.1016/j.seppur.2016.11.056
23 Eyupoglu V, Kumbasar R A. Selective and synergistic extraction of nickel from simulated Cr-Ni electroplating bath solutions using LIX 63 and D2EHPA as carriers. Separation Science and Technology, 2014, 49(16): 2485–2494
https://doi.org/10.1080/01496395.2014.938167
24 de San Miguel E R, Aguilar J C, de Gyves J. Structural effects on metal ion migration across polymer inclusion membranes: dependence of transport profiles on nature of active plasticizer. Journal of Membrane Science, 2008, 307(1): 105–116
https://doi.org/10.1016/j.memsci.2007.09.012
25 de San Miguel E R, Monroy-Barreto M, Aguilar J C, Ocampo A L, de Gyves J. Structural effects on metal ion migration across polymer inclusion membranes: dependence of membrane properties and transport profiles on the weight and volume fractions of the components. Journal of Membrane Science, 2011, 379(1): 416–425
https://doi.org/10.1016/j.memsci.2011.06.013
26 Meng X, Wang L, Wang X, Tang W. Transport of phenol through polymer inclusion membrane with N,N-di (1-methylheptyl) acetamide as carriers from aqueous solution. Journal of Membrane Science, 2015, 493: 615–621
https://doi.org/10.1016/j.memsci.2015.06.037
27 Kolev S D, Argiropoulos G, Cattrall R W, Hamilton I C, Paimin R. Mathematical modelling of membrane extraction of gold(III) from hydrochloric acid solutions. Journal of Membrane Science, 1997, 137(1–2): 261–269
https://doi.org/10.1016/S0376-7388(97)00209-3
28 Kavitha N, Palanivelu K. Recovery of copper(II) through polymer inclusion membrane with di (2-ethylhexyl) phosphoric acid as carrier from e-waste. Journal of Membrane Science, 2012, 415: 663–669
https://doi.org/10.1016/j.memsci.2012.05.047
29 Tor A, Arslan G, Muslu H, Celiktas A, Cengeloglu Y, Ersoz M. Facilitated transport of Cr(III) through polymer inclusion membrane with di (2-ethylhexyl) phosphoric acid (DEHPA). Journal of Membrane Science, 2009, 329(1): 169–174
https://doi.org/10.1016/j.memsci.2008.12.032
30 Kaya A, Onac C, Alpoguz H K, Yilmaz A, Atar N. Removal of Cr(VI) through calixarene based polymer inclusion membrane from chrome plating bath water. Chemical Engineering Journal, 2016, 283: 141–149
https://doi.org/ 10.1016/j.cej.2015.07.052
31 Rajewski J, Łobodzin P. Abexperimental analysis of the transport mechanism of chromium(III) ions in the polymer inclusion membrane system stract. Problemy Eksploatacji, 2016
32 Konczyk J, Kozlowski C, Walkowiak W. Removal of chromium(III) from acidic aqueous solution by polymer inclusion membranes with D2EHPA and Aliquat 336. Desalination, 2010, 263(1): 211–216
https://doi.org/10.1016/j.desal.2010.06.061
33 de Lourdes Ballinas M, Rodríguez de San Miguel E, de Jesús Rodríguez M T, Silva O, Muñoz M, de Gyves J. Arsenic(V) removal with polymer inclusion membranes from sulfuric acid media using DBBP as carrier. Environmental Science & Technology, 2004, 38(3): 886–891
https://doi.org/10.1021/es030422j pmid: 14968878
34 Salazar-Alvarez G, Bautista-Flores A N, de San Miguel E R, Muhammed M, de Gyves J. Transport characterisation of a PIM system used for the extraction of Pb(II) using D2EHPA as carrier. Journal of Membrane Science, 2005, 250(1): 247–257
https://doi.org/10.1016/j.memsci.2004.09.048
35 Venkateswaran P, Navaneetha Gopalakrishnan A, Palanivelu K. Di(2-ethylhexyl)phosphoric acid-coconut oil supported liquid membrane for the separation of copper ions from copper plating wastewater. Journal of Environmental Sciences (China), 2007, 19(12): 1446–1453
https://doi.org/10.1016/S1001-0742(07)60236-8 pmid: 18277648
36 Brooks R R, Lloyd P J. Influence of molecular structure on the liquid/liquid extraction of the chloro-complexes of gallium and indium with aliphatic ethers. Nature, 1961, 189(4762): 375–376
https://doi.org/10.1038/189375a0
[1] Hongwei LUO,Longfei WANG,Zhonghua TONG,Hanqing YU,Guoping SHENG. Approaching the binding between Cu(II) and aerobic granules by a modified titration and µ-XRF[J]. Front. Environ. Sci. Eng., 2016, 10(2): 362-367.
[2] Jingya SHEN,Yuliang SUN,Liping HUANG,Jinhui YANG. Microbial electrolysis cells with biocathodes and driven by microbial fuel cells for simultaneous enhanced Co(II) and Cu(II) removal[J]. Front. Environ. Sci. Eng., 2015, 9(6): 1084-1095.
[3] Yanlai HAN,Michael D. Y. YANG,Weixian ZHANG,Weile YAN. Optimizing synthesis conditions of nanoscale zero-valent iron (nZVI) through aqueous reactivity assessment[J]. Front. Environ. Sci. Eng., 2015, 9(5): 813-822.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed