Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2017, Vol. 11 Issue (4) : 10    https://doi.org/10.1007/s11783-017-0951-5
RESEARCH ARTICLE
Hydrologic experiments and modeling of two laboratory bioretention systems under different boundary conditions
Ruifen Liu1(), Elizabeth Fassman-Beck2
1. Department of Civil, Architectural and Environmental Engineering, Hubei University of Technology, Wuhan 430068, China
2. Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
 Download: PDF(425 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A bioretention with internal water storage zone enhances hydrologic performance.

A medium with marine sand is better at delaying drainage than one with pumice sand.

In column studies, air entrapment affects filling of an internal water storage zone.

Medium-specific characteristics are recommended for SWMM v5.1.11 model estimations.

Hydrologic performance of bioretention systems is significantly influenced by the media composition and underdrain configuration. This research measured hydrologic performance of column-scale bioretention systems during a synthetic design storm of 25.9 mm, assuming a system area:catchment area ratio of 5%. The laboratory experiments involved two different engineered media and two different drainage configurations. Results show that the two engineered media with different sand aggregates were able to retain about 36% of the inflow volume with free drainage configuration. However, the medium with marine sand is better at delaying the occurrence of drainage than the one with pumice sand, denoting the better detention ability of the former. For both engineered media, an underdrain configuration with internal water storage (IWS) zone lowered drainage volume and peak drainage rate as well as delayed the occurrence of drainage and peak drainage rate, as compared to a free drainage configuration. The USEPA SWMM v5.1.11 model was applied for the free drainage configuration case, and there is a reasonable fit between observed and modeled drainage-rates when media-specific characteristics are available. For the IWS drainage configuration case, air entrapment was observed to occur in the engineered medium with marine sand. Filling of an IWS zone is most likely to be influenced by many factors, such as the structure of the bioretention system, medium physical and hydraulic properties, and inflow characteristics. More research is needed on the analysis and modeling of hydrologic process in bioretention with IWS drainage configuration.

Keywords Bioretention      Hydrologic process      Underdrain configuration      SWMM      Modeling     
Corresponding Author(s): Ruifen Liu   
Issue Date: 24 May 2017
 Cite this article:   
Ruifen Liu,Elizabeth Fassman-Beck. Hydrologic experiments and modeling of two laboratory bioretention systems under different boundary conditions[J]. Front. Environ. Sci. Eng., 2017, 11(4): 10.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-017-0951-5
https://academic.hep.com.cn/fese/EN/Y2017/V11/I4/10
Fig.1  Bioretention system with an internal water storage (IWS) zone drainage configuration (not to scale)
Fig.2  Experimental column-scale bioretention systems: (a) with free drainage configuration (Hydrological Processes, John Wiley & Sons, Inc.) [14] and (b) with IWS drainage configuration
Fig.3  Conceptual diagram of a bioretention in SWMM
media
name
initial
saturation a)
/%
calibrated
field capacity /(cm3·cm-3)
nominal
field capacity
/(cm3·cm-3)
wilting
point
/(cm3·cm-3)
conductivity
slope
Medium A23.70.2910.1080.0258.1
Medium B21.20.3180.2840.0467.4
Tab.1  Parameters characterizing medium properties for simulation in SWMM
media nameboundary conditionoccurrence of drainageoccurrence of peak drainagewater balance at the end of measurement
time
/min
infiltrated inflow
/cm
depth-averaged water content in the medium profile /(cm3·cm3)time /mininfiltrated inflow
/cm
depth-averaged water content in the medium profile /(cm3·cm3)peak drainage/ inflow rateinflow depth
/cm
drainage
depth
/cm
retained water in the medium layer
/cm
retained water in the gravel layer
/cm
retained water in the drainage pipe
/cm
error
/cm
Medium Afree drainage44.0
(±1.0)
30.8*
(±0.8)
0.456
(±0.008)
45.7
(±0.6)
32.0
(±0.5)
0.457
(±0.007)
0.99
(±0.02)
42.2*
(±0.0)
27.1
(±0.8)
17.6
(±0.1)
00–2.5
IWS drainage53.3
(±2.1)
36.8
(±0.9)
0.462
(±0.017)
58.7
(±0.6)
40.5
(±1.3)
0.466
(±0.015)
0.41
(±0.05)
41.4
(±1.8)
6.9
(±1.6)
31.7
(±1.5)
01.3+ 1.5
Medium Bfree drainage30.3
(±2.1)
21.2*
(±1.5)
0.366
(±0.013)
57.7
(±4.2)
40.3
(±2.2)
0.412
(±0.015)
0.98
(±0.03)
42.2*
(±0.6)
27.4
(±0.52)
14.2
(±0.9)
00+ 0.6
IWS drainage59.0
(±2.6)
41.6
(±1.0)
0.546
(±0.004)
62.7
(±2.9)
42.9
(±0.9)
0.531
(±0.004)
0.95
(±0.08)
42.9
(±0.9)
6.8
(±1.1)
31.1
(±1.8)
6.21.3–2.5
Tab.2  Averaged results (±standard deviation) of infiltration tests for two bioretention systems
Fig.4  Averaged medium water storage monitored by medium water content sensors: (a) for Medium A and (b) for Medium B
Fig.5  Condensation in the 15-cm gravel layer under Medium A with IWS drainage configuration
Fig.6  Observed vs. modeled drainage for the bioretention systems with free drainage configuration: (a) for Medium A and (b) for Medium B
1 Davis A P, Hunt W F, Traver R G, Clar M. Bioretention technology: overview of current practice and future needs. Journal of Environmental Engineering, 2009, 135(3): 109–117
https://doi.org/10.1061/(ASCE)0733-9372(2009)135:3(109)
2 Roy-Poirier A, Champagne P, Filion Y. Review of bioretention system research and design: past, present, and future. Journal of Environmental Engineering, 2010, 136(9): 878–889
https://doi.org/10.1061/(ASCE)EE.1943-7870.0000227
3 Meng Y, Wang H, Chen J, Zhang S. Modelling hydrology of a single bioretention system with HYDRUS-1D. The Scientific World Journal, 2014, 2014(3–4): 521047
pmid: 25133240
4 Jia H, Wang X, Ti C, Zhai Y, Field R, Tafuri A N, Cai H, Yu S L. Field monitoring of a LID-BMP treatment train system in China. Environmental Monitoring and Assessment, 2015, 187(6): 1–18
https://doi.org/10.1007/s10661-015-4595-2 pmid: 26009159
5 Jia H, Yao H, Yu S L. Advances in LID BMPs research and practice for urban runoff control in China. Frontiers of Environmental Science & Engineering, 2013, 7(5): 709–720
https://doi.org/10.1007/s11783-013-0557-5
6 Brown R A, Hunt W F. Underdrain configuration to enhance bioretention exfiltration to reduce pollutant loads. Journal of Environmental Engineering, 2011, 137(11): 1082–1091
https://doi.org/10.1061/(ASCE)EE.1943-7870.0000437
7 Sharkey L J. The performance of bioretention areas in North Carolina: a study of water quality, water quantity, and soil media. Thesis for Master Degree. Raleigh, NC: North Carolina State University, 2006
8 Winston R J, Dorsey J D, Hunt W F. Quantifying volume reduction and peak flow mitigation for three bioretention cells in clay soils in northeast Ohio. Science of the Total Environment, 2016, 553: 83–95
https://doi.org/10.1016/j.scitotenv.2016.02.081 pmid: 26906696
9 Li H, Sharkey L J, Hunt W F, Davis A P. Mitigation of impervious surface hydrology using bioretention in North Carolina and Maryland. Journal of Hydrologic Engineering, 2009, 14(4): 407–415
https://doi.org/10.1061/(ASCE)1084-0699(2009)14:4(407)
10 Rossman L A. Storm Water Management Model User’s Manual, Version 5.0. Cincinnati, United States: Water Supply and Water Resources Division, National Risk Management Research Laboratory, United States Environmental Protection Agency, 2010
11 Torbati S S. Pollutant removal evaluation and hydrologic characterization by continuous simulation for a concrete lined bioretention. Thesis for Master Degree. Auckland, New Zealand: University of Auckland, 2010
12 Liu R, Fassman-Beck E. Effect of composition on basic properties of engineered media for living roofs and bioretention. Journal of Hydrologic Engineering, 2016, 21(6): 06016002
https://doi.org/10.1061/(ASCE)HE.1943-5584.0001373
13 Fassman-Beck E, Wang S, Simcock R, Liu R. Assessing the effects of bioretention’s engineered media composition and compaction on hydraulic conductivity and water holding capacity. Journal of Sustainable Water in the Built Environment, 2015, 1(4): 04015003
https://doi.org/10.1061/JSWBAY.0000799
14 Liu R, Fassman-Beck E. Hydrologic response of engineered media in living roofs and bioretention to large rainfalls: experiments and modeling. Hydrological Processes, 2017, 31(3): 556–572
https://doi.org/10.1002/hyp.11044
15 National Institute of Water and Atmospheric Research. High Intensity Rainfall System V3. Available online at  (accessed  May 29, 2013)
16 Dooge J C I. The rational method for estimating flood peaks. Engineering, 1957, 184(1): 311–313, 374–377
17 American Society for Testing and Materials. Standard Test Methods for Measurement of Hydraulic Conductivity of Unsaturated Soils: ASTM D7664–10. West Conchohocken, PA: ASTM International, 2010
18 Liu R. Infiltration models for engineered media in living roofs and bioretention. Dissertation for the Doctoral Degree. Auckland, New Zealand: University of Auckland, 2016
19 American Society for Testing and Materials. Standard Test Method for Permeability of Granular Soils (Constant Head): ASTM D2434–68. West Conchohocken, PA: ASTM International, 2006
20 Nash J E, Sutcliffe J V. River flow forecasting through conceptual models: Part I — A discussion of principles. Journal of Hydrology (Amsterdam), 1970, 10(3): 282–290
https://doi.org/10.1016/0022-1694(70)90255-6
21 Jain S K, Sudheer K P. Fitting of hydrologic models: a close look at the Nash–Sutcliffe index. Journal of Hydrologic Engineering, 2008, 13(10): 981–986
https://doi.org/10.1061/(ASCE)1084-0699(2008)13:10(981)
22 Weeks E P. The Lisse effect revisited. Ground Water, 2002, 40(6): 652–656
https://doi.org/10.1111/j.1745-6584.2002.tb02552.x pmid: 12425353
[1] Chao Pan, Daniel Giammar. Interplay of transport processes and interfacial chemistry affecting chromium reduction and reoxidation with iron and manganese[J]. Front. Environ. Sci. Eng., 2020, 14(5): 81-.
[2] Wei Fan, Qi Li, Mingxin Huo, Xiaoyu Wang, Shanshan Lin. Transport of bacterial cell (E. coli) from different recharge water resources in porous media during simulated artificial groundwater recharge[J]. Front. Environ. Sci. Eng., 2020, 14(4): 63-.
[3] Fatih Ilhan, Kubra Ulucan-Altuntas, Yasar Avsar, Ugur Kurt, Arslan Saral. Electrocoagulation process for the treatment of metal-plating wastewater: Kinetic modeling and energy consumption[J]. Front. Environ. Sci. Eng., 2019, 13(5): 73-.
[4] Nan Zhao, Huu Hao Ngo, Yuyou Li, Xiaochang Wang, Lei Yang, Pengkang Jin, Guangxi Sun. A comprehensive simulation approach for pollutant bio-transformation in the gravity sewer[J]. Front. Environ. Sci. Eng., 2019, 13(4): 62-.
[5] Mengqian Lu, Bin-Le Lin, Kazuya Inoue, Zhongfang Lei, Zhenya Zhang, Kiyotaka Tsunemi. PM2.5-related health impacts of utilizing ammonia-hydrogen energy in Kanto Region, Japan[J]. Front. Environ. Sci. Eng., 2018, 12(2): 13-.
[6] Jun Xia, Hongping Wang, Richard L. Stanford, Guoyan Pan, Shaw L. Yu. Hydrologic and water quality performance of a laboratory scale bioretention unit[J]. Front. Environ. Sci. Eng., 2018, 12(1): 14-.
[7] Te Xu, Haifeng Jia, Zheng Wang, Xuhui Mao, Changqing Xu. SWMM-based methodology for block-scale LID-BMPs planning based on site-scale multi-objective optimization: a case study in Tianjin[J]. Front. Environ. Sci. Eng., 2017, 11(4): 1-.
[8] Hannah Kratky, Zhan Li, Yijun Chen, Chengjin Wang, Xiangfei Li, Tong Yu. A critical literature review of bioretention research for stormwater management in cold climate and future research recommendations[J]. Front. Environ. Sci. Eng., 2017, 11(4): 16-.
[9] Isam Alyaseri, Jianpeng Zhou, Susan M. Morgan, Andrew Bartlett. Initial impacts of rain gardens’ application on water quality and quantity in combined sewer: field-scale experiment[J]. Front. Environ. Sci. Eng., 2017, 11(4): 19-.
[10] Jinsong Tao, Zijian Li, Xinlai Peng, Gaoxiang Ying. Quantitative analysis of impact of green stormwater infrastructures on combined sewer overflow control and urban flooding control[J]. Front. Environ. Sci. Eng., 2017, 11(4): 11-.
[11] Yang Liu, Martina G. Vijver, Bo Pan, Willie J. G. M. Peijnenburg. Toxicity models of metal mixtures established on the basis of “additivity” and “interactions”[J]. Front. Environ. Sci. Eng., 2017, 11(2): 10-.
[12] Hyunju Jeong, Osvaldo A. Broesicke, Bob Drew, Duo Li, John C. Crittenden. Life cycle assessment of low impact development technologies combined with conventional centralized water systems for the City of Atlanta, Georgia[J]. Front. Environ. Sci. Eng., 2016, 10(6): 1-.
[13] Cesunica E. Ivey, Heather A. Holmes, Yongtao Hu, James A. Mulholland, Armistead G. Russell. A method for quantifying bias in modeled concentrations and source impacts for secondary particulate matter[J]. Front. Environ. Sci. Eng., 2016, 10(5): 14-.
[14] Yue HUANG,Xin DONG,Siyu ZENG,Jining CHEN. An integrated model for structure optimization and technology screening of urban wastewater systems[J]. Front. Environ. Sci. Eng., 2015, 9(6): 1036-1048.
[15] Hongguang CHENG,Xiao PU,Yiting CHEN,Fanghua HAO,Liming DONG. Characterization of phosphorus species and modeling for its organic forms in eutrophic shallow lake sediments, North China[J]. Front. Environ. Sci. Eng., 2014, 8(6): 905-921.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed