Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2017, Vol. 11 Issue (4) : 11    https://doi.org/10.1007/s11783-017-0952-4
RESEARCH ARTICLE
Quantitative analysis of impact of green stormwater infrastructures on combined sewer overflow control and urban flooding control
Jinsong Tao1, Zijian Li2, Xinlai Peng3, Gaoxiang Ying4()
1. State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
2. Department of Civil Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
3. Unified Investigations & Sciences. Fort Lauderdale, FL 33071, USA
4. Office of Watersheds, Philadelphia Water, 1101 Market Street, 4th Floor, Philadelphia, PA 19107, USA
 Download: PDF(694 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

GSI systems perform very well for low intensity and short duration events.

GSI systems have the worst performance for high intensity events.

GSI systems are capable for CSO control in long-term control strategy.

GSI systems are not suitable for the urban flooding control.

Stimulated by the recent USEPA’s green stormwater infrastructure (GSI) guidance and policies, GSI systems have been widely implemented in the municipal area to control the combined sewer overflows (CSOs), also known as low impact development (LID) approaches. To quantitatively evaluate the performance of GSI systems on CSO and urban flooding control, USEPA-Stormwater Management Model (SWMM) model was adopted in this study to simulate the behaviors of GSI systems in a well-developed urban drainage area, PSW45, under different circumstances. The impact of different percentages of stormwater runoff transported from impervious surfaces to the GSI systems on CSO and urban flooding control has also been investigated. Results show that with current buildup, GSI systems in PSW45 have the best performance for low intensity and short duration events on both volume and peak flow reductions, and have the worst performance for high intensity and long duration events. Since the low intensity and short duration events are dominant from a long-term perspective, utilizing GSI systems is considered as an effective measure of CSO control to meet the long-term control strategy for PSW45 watershed. However, GSI systems are not suitable for the flooding control purpose in PSW45 due to the high occurrence possibility of urban flooding during or after high intensity events where GSI systems have relatively poor performance no matter for a short or long duration event.

Keywords Green stormwater infrastructure (GSI)      Combined sewer overflows (CSOs)      Urban flooding      Low impact development (LID)      Stormwater Management Model (SWMM)     
Corresponding Author(s): Gaoxiang Ying   
Issue Date: 24 May 2017
 Cite this article:   
Jinsong Tao,Zijian Li,Xinlai Peng, et al. Quantitative analysis of impact of green stormwater infrastructures on combined sewer overflow control and urban flooding control[J]. Front. Environ. Sci. Eng., 2017, 11(4): 11.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-017-0952-4
https://academic.hep.com.cn/fese/EN/Y2017/V11/I4/11
Fig.1  Schematic view of green stormwater infrastructures (GSIs) located in the drainage area of PSW45
Fig.2  Drainage area of PSW45 with highlighted wastewater network and impervious surface area. The location of PSW45 is shown in the up-right corner in the map. The deep dark area in PSW45 represents the imperviousness of covered surface area
Fig.3  SWMM model set up for PSW45, including 6 subcatchments within the drainage area of PWD45 and another 3 adjunct subcatchments.
subcatchmentarea (km2% ImpslopeN-ImpN-PerS-ImpS-Pernon-DCIAroute to
10.1789.684.990.010.100.020.1525pervious
20.1588.986.710.010.100.020.1525pervious
30.1395.025.420.010.100.020.1525pervious
40.1390.785.560.010.100.020.1525pervious
50.2577.945.940.010.100.020.1525pervious
60.1781.374.490.010.100.020.1525pervious
sum1.0086.045.530.010.10.020.1525pervious
Tab.1  Summary of subcatchment characteristics for shed PSW45
subcatchmentcontrol nameGSI Typeunits% of areawidth (m)
11_ITInfil. Trench11.011842.5
1_BOBumpout20.421.8
1_TTTree Trench10.193.6
22_ITInfil. Trench11.071741.9
33_ITInfil. Trench21.86680.6
44_ITInfil. Trench11.451997.0
55_ITInfil. Trench10.631726.4
5_TTTree Trench20.52177.1
66_ITInfil. Trench34.741010.4
Tab.2  Summary of green stormwater infrastructure systems installed at shed PSW45
Fig.4  Model calibration event summary and calibration results (modeled vs monitored volume, peak flow, and cumulative frequency distribution of volume) for PSW45 baseline model during the period from 11/10/2011 to 12/31/2012 (1 MG= 3785.4 m3)
subcatchmentarea (km2)total P. (mm)total E. (mm)total I. (mm)total R. (103 m3)peak R. (m3·s–1)R. Coeff
design event10.131550923.363.100.907
20.1715501020.902.860.906
30.151550519.422.550.938
40.131550917.832.410.914
50.1715501933.014.450.854
60.2515501623.513.170.87
Sum1.00155075138.02
small event
(12/5/2011 to 12/8/2011)
10.1313321.290.150.58
20.1713321.170.140.583
30.1513321.100.130.618
40.1313321.020.120.594
50.1712241.550.180.497
60.2513331.170.130.522
Sum1.001316157.31
Large Event
(07/19/2012 to 07/21/2012)
10.1363488.330.430.791
20.1763497.420.410.787
30.1563457.150.390.844
40.1363486.400.370.804
50.176341510.860.550.69
60.25634137.950.410.72
Sum1.0063266548.11
Multiple Events over one year (11/10/2011 to 12/31/2012)10.131240234171138.921.020.673
20.171239226178124.620.920.674
30.151240245102119.470.850.72
40.131240232157107.390.820.687
50.171237202310181.131.510.586
60.251240212271132.221.140.61
Sum1.00124014891311803.76
Tab.3  Model simulation results for site PSW45 without constructed GSI systems (0% GSI option) under different circumstances
Fig.5  Comparison of total runoff volume and peak flow for different GSI options (0, 25, 50, 75, 100% of total runoff transferred to GSI units) under different circumstances (design event, small event, large event, and multiple events over one-year period), based on the SWMM results (1 inch= 25.4 mm; 1 CFS= 0.03 m3·s–1)
1 Qin H P, Li Z X, Fu G. The effects of low impact development on urban flooding under different rainfall characteristics. Journal of Environmental Management, 2013, 129: 577–585 
https://doi.org/10.1016/j.jenvman.2013.08.026 pmid: 24029461 
2 Schmitt T G, Thomas M, Ettrich N. Analysis and modeling of flooding in urban drainage systems. Journal of Hydrology (Amsterdam), 2004, 299(3–4): 300–311
https://doi.org/10.1016/S0022-1694(04)00374-9
3 Chen B, Liu J, She N, Xu K. Optimization of low impact development facilities in Beijing CITIC complex. In: Proceedings of International Low Impact Development Conference 2015, 2015, 342–351
4 Common Wealth of Pennnsylvania Department of Environmental Protection. Pennsylvania Code, Title 25 Environmental Protection, Chapter 93 Water Quality Standards Version: (324889) No. 388. 2007
5 Pensylvania Department of Environmental Protection. Pennsylvania Integrated Water Quality Monitoring and Assessment Report, 2004
6 Philadelphia Water Department. The City of Philadelphia’s Program for Combined Sewer Overflow Control—Long Term Control Plan Update, 2009
7 Kambites C, Owen S. Renewed prospects for green infrastructure planning in the UK. Planning Practice and Research, 2006, 21(4): 483–496 
https://doi.org/10.1080/02697450601173413
8 MartyM, RustyT. Low Impact Development Manual for Arkansas, 2010.
9 Myers R D, Smullen J, Cromwell J, Raucher B, Cammarata M. Balancing green and traditional infrastructure for sustainable urban wet weather management. SIWW Paper, 2009
10 Robert N S, Long G, Jaffee J. Assessment of the economic impact of additional combined sewer overflow controls in the massachusetts water resource authority service area. Analysis Group Incorporated, 2004, 13
11 U.S. Environmental Protection Agency (US EPA). Combined sewer overflow (CSO) control policy. Federal Register, 1994, 75(59): 18688–18698
12 Pieschek R L, Carpenter D D. Modeling green infrastructure in the support of the re-development of Detroit’s neighborhoods. In: Proceedings of World Environmental and Water Resources Congress 2016, 247–254.
13 Lucas W C, Sample D J. Reducing combined sewer overflows by using outlet controls for Green Stormwater Infrastructure: case study in Richmond, Virginia. Journal of Hydrology (Amsterdam), 2015, 520: 473–488
https://doi.org/10.1016/j.jhydrol.2014.10.029
14 Liu W, Chen W, Peng C. Assessing the effectiveness of green infrastructures on urban flooding reduction: a community scale study. Ecological Modelling, 2014, 291: 6–14
https://doi.org/10.1016/j.ecolmodel.2014.07.012
15 McCutcheon M, Wride D, Reinicke J. An evaluation of modeling green infrastructure using LID controls. Journal of Water Management Modeling, R245–12, 2012, 193–205
16 Pitt R, Voorhees J, Clark S. Integrating green infrastructure into a combined sewer service area model. In: Proceedings of World Environmental and Water Resources Congress 2010. Challenges of Change, 2010, 2950–2963.
17 York C, Goharian E, Burian S J. Impacts of large-scale stormwater green infrastructure implementation and climate variability on receiving water response in the Salt Lake City area. American Journal of Environmental Sciences, 2015, 11(4): 278–292
https://doi.org/10.3844/ajessp.2015.278.292
18 Jayasooriya V M, Ng A W M. Tools for modeling of stormwater management and economics of green infrastructure practices: a review. Water, Air, and Soil Pollution, 2014, 225(8): 2055-2061 
https://doi.org/10.1007/s11270-014-2055-1
19 Huber W C, Dickinson R E. Stormwater management model user's manual. Version 4, EPA/600/3–88/001a (NTIS PB88–236641/AS). Athens, GA: Environmental Protection Agency, 1988
20 USEPA. Computer tools for sanitary sewer system capacity analysis and planning. EPA/600/R-07/111, National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, 2007
21 USEPA. Storm water management model reference manual volume I—Hydrology (Revised), EPA/600/R-15/162A, U.S. Environmental Protection Agency, 2016
22 Zimmer A, Schmidt A, Ostfeld A, Minsker B. Computationally implicit hydraulics for real-time combined sewer overflow modeling and decision support. In: Proceedings of World Environmental and Water Resources Congress 2012, 295–304
23 Abi Aad M, Suidan M T, Shuster W D. Modeling techniques of best management practices: rain barrels and rain gardens using EPA SWMM-5. Journal of Hydrologic Engineering, 2009, 15(6): 434–443 
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000136
24 Zhang S, Guo Y. SWMM simulation of the storm water volume control performance of permeable pavement systems. Journal of Hydrologic Engineering, 2014, 20(8): 06014010 
https://doi.org/10.1061/(ASCE)HE.1943-5584.0001092
25 Zhang G, Hamlett J,Saravanapavan T.Representation of low impact development scenarios in SWMM, Journal of Water Management Modeling, 2010, R236–12, 183–196 doi: 10.14796/JWMM.R236-12.
26 Ormsbee L. Rainfall Disaggregation Model for Continuous Hydrologic Modeling. Journal of Hydraulic Engineering, 1989, 115(4), 507–525
27 Sun N, Hall M, Hong B, Zhang L. Impact of SWMM catchment discretization: Case study in Syracuse, New York. Journal of Hydrologic Engineering, 2012, 19(1): 223–234
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000777
28 Edwards T K, Glysson G D. Field Methods for Measurement of Fluvial Sediment. U.S. Geological Survey Open-File Report, 1988, 118, 86–531
29 Rawls W J, Brakensiek D L, Miller N. Green-Ampt infiltration parameters from soils data. Journal of Hydraulic Engineering, 1983, 109(1): 62–70
https://doi.org/10.1061/(ASCE)0733-9429(1983)109:1(62)
30 Feng Y, Burian S, Pomeroy C. ET influence on urban stormwater runoff estimation. In: ASCE Proceedings of World Environmental and Water Resources Congress 2013, 2013, 154–163
31 Muleta M K. Uncertainty analysis and calibration of SWMM using a formal, Bayesian methodology. In: Proceedings of World Environmental and Water Resources Congress 2012, 2012, 562–568
32 Barco J, Wong K M, Stenstrom M K. Automatic calibration of the U.S. EPA SWMM Model for a large urban catchment. Journal of Hydraulic Engineering, 2008, 134(4): 466–474
https://doi.org/10.1061/(ASCE)0733-9429(2008)134:4(466)
[1] Haifeng Jia, Zheng Wang, Xiaoyue Zhen, Mike Clar, Shaw L. Yu. China’s Sponge City construction: A discussion on technical approaches[J]. Front. Environ. Sci. Eng., 2017, 11(4): 18-.
[2] Robert G. Traver, Ali Ebrahimian. Dynamic design of green stormwater infrastructure[J]. Front. Environ. Sci. Eng., 2017, 11(4): 15-.
[3] Hyunju Jeong, Osvaldo A. Broesicke, Bob Drew, Duo Li, John C. Crittenden. Life cycle assessment of low impact development technologies combined with conventional centralized water systems for the City of Atlanta, Georgia[J]. Front. Environ. Sci. Eng., 2016, 10(6): 1-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed