Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2017, Vol. 11 Issue (3) : 15    https://doi.org/10.1007/s11783-017-0955-1
RESEARCH ARTICLE
Greenhouse gas emissions during co-composting of cattle feedlot manure with construction and demolition (C&D) waste
Xiying Hao(), Francis J. Larney
Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta T1J 4B1, Canada
 Download: PDF(385 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Co-composted cattle manure and construction & demolition (C&D) waste.

Studied two types of cattle manure, from typical vs. dried distillers’ grain with solubles (DDGS) diets.

C&D waste reduces CH4 emission from cattle manure composting.

Cattle manure composting emits lower CH4 than stockpiling.

No difference in GHG emissions between types of cattle manure.

Manure management strategies should reflect current animal feeding practices and encourage recycling of organic waste to help protect our environment. This research investigated greenhouse gas (GHG) emissions during cattle manure stockpiling or composting with and without construction and demolition (C&D) waste. Manure was collected from cattle fed a typical finishing diet (CK manure) and from cattle on diets which included 30% dried distillers grains with solubles (DG manure). The CK and DG manures were co-composted with (4:1) C&D waste (treatments: CK_CD, DG_CD), composted alone (treatments: CK and DG) in 13 m3 bins or stockpiled without C&D waste (treatments: CK_ST and DG_ST) for 99 days. Manure type (CK vs. DG manure) had no effect on GHG emissions over the 99 day manure composting or stockpiling. Composting with C&D waste produced similar CO2 emissions, about double that from manure stockpiling (7.0 kgC·m2). In contrast, CH4 emissions were reduced by the inclusion of C&D waste (64 gC·m2 with C&D vs. 244 gC·m2 without C&D) while the manure stockpile emitted the greatest amount of CH4 (464 gC·m2). Additionally, only 0.48% of C was emitted in CH4 form with C&D waste, compared to 1.68% when composting without C&D waste and 7.00% when cattle manure was stockpiled. The N2O emissions (12.4 to 18.0 gN·m2) were similar across all treatments. The lower CH4 emissions with C&D waste are beneficial in reducing overall GHG emissions from manure composting, while reducing the amount of material entering landfills.

Keywords Livestock manure      greenhouse gas flux      straw bale compost bin      N2O      CH4      CO2     
Corresponding Author(s): Xiying Hao   
Issue Date: 07 June 2017
 Cite this article:   
Xiying Hao,Francis J. Larney. Greenhouse gas emissions during co-composting of cattle feedlot manure with construction and demolition (C&D) waste[J]. Front. Environ. Sci. Eng., 2017, 11(3): 15.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-017-0955-1
https://academic.hep.com.cn/fese/EN/Y2017/V11/I3/15
Fig.1  Daily precipitation and ambient temperatures during the composting period (precipitation covered by shaded area from Day 0 to 14 was in the form of snow while the remaining compost period precipitation was in the form of rain)
Fig.2  Daily compost temperatures as affected by C&D waste addition. Arrows indicate dates (Day 14, 37 and 64) when compost was turned
propertyC&D wasteCK manureDG manure
water content/(kg·kg-1)0.144±0.010 b)0.609±0.0140.619±0.010
pH7.6±0.18.0±0.18.1±0.0
total C/(g·kg-1)312.2±23.6266.2±12.5275.5±17.2
total N/(g·kg-1)3.47±0.1915.15±0.8716.46±0.89
C/N ratio90.4±6.117.7±0.616.8±0.6
NPOC/(g·kg-1)0.9±0.116.9±2.519.5±2.2
water-extractable N/(g·kg-1)0.05±0.014.26±0.656.19±0.43
water-extractable NH4-N/(mg·kg-1)43±32489±4434207±512
water-extractable NO3-N/(mg·kg-1)c)
water-extractable SO4-S/(mg·kg-1)11212±192518±1141690±200
Tab.1  Selected basic properties a) of the materials used in the compost experiment
propertysampling datetreatmentAvga
CKDGCK_CDDG_CD
water content/(kg·kg-1)10.610.620.570.560.59
140.630.660.560.610.61
370.580.600.530.530.56
640.560.600.460.490.52
990.570.580.430.470.51
Avg0.590.610.510.53
water-extractable-OC/(g·kg-1)116.919.510.113.515.0
1429.930.132.926.429.7
3730.028.528.025.528.0
6429.525.527.925.026.7
9922.421.811.49.415.6
Avg25.725.122.120.0
water-extractable N/(g·kg-1)14.266.192.735.744.73
147.938.198.026.587.66
376.887.236.516.386.74
647.346.996.186.666.69
994.666.783.273.394.35
Avg6.217.085.345.75
water-OC/water-TN ratio14.03.13.72.53.34.0
144.03.84.14.04.04.0
374.44.14.34.04.24.4
644.13.64.73.54.04.1
994.83.23.62.83.64.8
Avg4.33.64.13.3
water-extractable NH4-N/(mg·kg-1)124894207176740953139
1451857236658460516264
3741505391352958064719
6435826213231333633868
9923074025175622312569
Avg3543541431904309
water-extractable NO3-N/(mg·kg-1)100000
1400000
3700000
6400000
994955418
Avg12111
water-extractable SO4-S/(mg·kg-1)15181690680660183758
14532956628743023019
373491275555855413181
644681084368270333067
995412005631861893763
Avg482140257305817
Tab.2  Responses of selected properties to manure type and C&D waste addition over the 99 day experimental period
Fig.3  Greenhouse gas fluxes over 99 days. CK and DG manure were stockpiled and co-composted with and without C&D waste. CK and DG represent composting manure from regular and DDG diets; _CD indicates C&D waste was added during composting while _ST indicates manure was stockpiled. Arrows indicate dates (Day 14, 37 and 64) when compost was turned
CO2-CCH4-CN2O-N
surface flux/(mg·m-2·min-1)——— probability level ———
manure type (MT)0.340.910.05
manage management strategy (MS)<0.01<0.010.02
MT × MS0.530.790.33
sampling date (SD)<0.01<0.01<0.01
SD × MT0.840.810.84
SD × MS0.68<0.01<0.01
SD × MT × MS0.560.650.82
cumulative emissions per surface area/(gC or N·m-2)
MT0.370.510.26
MS<0.01<0.010.49
MT × MS0.950.770.54
cumulative emissions per initial DM/(kgC or N·Mg -1 DM)
MT0.110.030.98
MS0.13<0.010.20
MT × MS0.820.070.23
cumulative emissions per initial TC or TN (NH4-N)/(kgC·Mg -1 TC) or /(kgN·Mg-1 TN (NH4-N))
MT0.090.030.80 (<0.01)
MS0.12<0.010.47 (0.09)
MT × MS0.920.060.18 (<0.10)
CH4 fraction CH4-C/(CO2-C+ CH4-C)
MT0.70
MS<0.01
MT × MS0.93
Tab.3  Analyses of variance of GHG fluxes and cumulative emissions over the 99 day experimental period
CO2-CCH4-C
CKDGAvgCKDGAvg
per surface area/(kgC·m-2)
compost with C&D waste15.3912.9414.1 a0.0710.0560.064 c
compost without C&D waste15.9914.8315.4 a0.1730.2550.214 b
stockpiled7.646.287.0 b0.4450.4830.464 a
Avg13.01 A11.35 A0.230 A0.265A
per initial DM/(kgC·Mg -1 DM)
compost with C&D waste148.0111.6129.8 a0.690.500.59 c
compost without C&D waste147.7132.4140.0 a1.622.291.95 b
stockpiled114.573.694.0 a3.715.664.68 a
Avg136.7 A105.9 A2.00 B2.82 A
per initial TC/(kgC or N·Mg-1 C)
compost with C&D waste577.8434.9496.2 a2.701.932.27 c
compost without C&D waste570.4481.2525.8 a6.248.327.28 b
stockpiled430.0277.2348.7 a13.9321.3217.64 a
Avg519.3A394.5 A7.62 B10.52 A
CH4 fraction (CH4-C/(CO2-C+ CH4-C)/%
compost with C&D waste0.500.47
compost without C&D waste1.131.73
stockpiled6.877.13 a
Avg2.83 a3.27 a
Tab.4  Cumulative CO2 and CH4 emissions over the 99 day experimental period
Fig.4  Effect of C&D waste addition on CO2 equivalent emission for each tonne of manure (DM) composted
manure type
CKDGaverage
per surface area/(kg N2O-N·m-2)
compost with C&D waste0.01430.02170.018 a
compost without C&D waste0.01070.01800.145 a
stockpiled0.01330.01170.125 a
Avg0.0128 A0.0172 A
per initial DM/(kg N2O-N·Mg -1 DM)
compost with C&D waste0.1350.1880.162 a
compost without C&D waste0.0990.1610.130 a
stockpiled0.2010.1340.168 a
Avg0.145 A0.161 A
per initial TN amount/(kg N2O-N·Mg-1 TN)
compost with C&D waste8.914.311.6 a
compost without C&D waste6.69.58.1 a
stockpiled13.38.210.7 a
Avg9.6 A10.7 A
per initial NH4-N amount/(kg N2O-N·Mg-1 NH4-N)
compost with C&D waste76.645.961.3 a
compost without C&D waste39.633.636.6 a
stockpiled113.925.869.8 a
Avg76.7 A35.1 B
Tab.5  Cumulative N2O emissions over the 99 day experimental period
1 Statistics Canada. A geographical profile of livestock manure production in Canada, 2015. available at  ( Last accessed March 1, 2017).
2 Environment and Climate Change Canada. National inventory report 1990–2014: Greenhouse gas sources and sinks in Canada- Executive summary, 2016. Available online at ( Last accessed March 1, 2017).
3 Census of Agriculture, manure and manure application methods in the year prior to the census 2011. Available at  ( Last accessed March 1, 2017).
4 Larney F J, Olson A F, Carcamo A A, Chang C. Physical changes during active and passive composting of beef feedlot manure in winter and summer. Bioresource Technology, 2000, 75(2): 139–148 
https://doi.org/10.1016/S0960-8524(00)00040-7
5 Larney F J, Blackshaw R E. Weed seed viability in composted beef cattle feedlot manure. Journal of Environmental Quality, 2003, 32(3): 1105–1113 PMID:12809312
https://doi.org/10.2134/jeq2003.1105
6 Hao X, Chang C, Larney F J, Travis G R. Greenhouse gas emissions during cattle feedlot manure composting. Journal of Environmental Quality, 2001, 30(2): 376–386 
https://doi.org/10.2134/jeq2001.302376x pmid: 11285897
7 Hao X, Larney F J, Chang C, Travis G R, Nichol C K, Bremer E. The effect of phosphogypsum on greenhouse gas emissions during cattle manure composting. Journal of Environmental Quality, 2005, 34(3): 774–781 
https://doi.org/10.2134/jeq2004.0388 pmid: 15843640
8 Environmental Protection Agency. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2014. Available at  ( Accessed January 15, 2017).
9 Hünerberg M, Beauchemin K A, McGinn S M, Okine E K, Harstad O M, McAllister T A. Effect of dried distillers’ grains with solubles on enteric methane emissions and nitrogen excretion from finishing beef cattle. Canadian Journal of Animal Science, 2013, 93(3): 373–385
https://doi.org/10.4141/cjas2012-151
10 Hünerberg M, McGinn S M, Beauchemin K A, Okine E K, Harstad O M, McAllister T A. Effect of dried distillers grains plus solubles on enteric methane emissions and nitrogen excretion from growing beef cattle. Journal of Animal Science, 2013, 91(6): 2846–2857 
https://doi.org/10.2527/jas.2012-5564 pmid: 23508022
11 Hao X, Benke M B, Gibb D J, Stronks A, Travis G, McAllister T A. Effects of dried distillers’ grains with solubles (wheat-based) in feedlot cattle diets on feces and manure composition. Journal of Environmental Quality, 2009, 38(4): 1709–1718 
https://doi.org/10.2134/jeq2008.0252 pmid: 19549948
12 Hao X, Benke M B, Li C, Larney F J, Beauchemin K A, McAllister T A. Nitrogen transformations and greenhouse gas emissions during composting of manure from cattle fed diets containing corn dried distillers grains with soluble and condensed tannins. Animal Feed Science and Technology, 2011, 166–167: 539–549 
https://doi.org/10.1016/j.anifeedsci.2011.04.038
13 Hünerberg M, Little S M, Beauchemin K A, McGinn S M, O’Connor D, Okine E K, Harstad O M, Kröbel R, McAllister T A. Feeding high concentrations of corn dried distillers’ grains decreases methane, but increases nitrous oxide emissions from beef cattle production. Agricultural Systems, 2014, 127: 19–27 
https://doi.org/10.1016/j.agsy.2014.01.005
14 Hao X, Benke M B, Larney F J, McAllister T A. Greenhouse gas emissions when composting manure from cattle fed wheat dried distillers’ grains with solubles. Nutrient Cycling in Agroecosystems, 2011, 89(1): 105–114
https://doi.org/10.1007/s10705-010-9380-6
15 U.S. Environmental Protection Agency. DRAFT Inventory of U.S. Greenhouse Gas 7 Emissions and Sinks: 1994–2014. Available online at  ( Last accessed 11/10/16)
16 Environment Canada. Municipal Solid Waste and Greenhouse Gases. 2014, Available online at  ( Last accessed 11/10/16)
17 Public Works and Government Services Canada. Chapter 8- Construction, Renovation and Demolition Waste. In The Environmentally Responsible Construction and Renovation Handbook. 2014, Available online at  ( Last accessed 11/10/16).
18 McMahon V, Garg A, Aldred D, Hobbs G, Smith R, Tothill I E. Composting and bioremediation process evaluation of wood waste materials generated from the construction and demolition industry. Chemosphere, 2008, 71(9): 1617–1628 
https://doi.org/10.1016/j.chemosphere.2008.01.031 pmid: 18325565
19 Saludes R B, Iwabuchi K, Miyatake F, Abe Y, Honda Y. Characterization of dairy cattle manure/wallboard paper compost mixture. Bioresource Technology, 2008, 99(15): 7285–7290 
https://doi.org/10.1016/j.biortech.2007.12.080 pmid: 18296045
20 Naeth M A, Wilkinson S R. Can we build better compost? Use of waste drywall to enhance plant growth on reclamation sites. Journal of Environmental Management, 2013, 129: 503–509 
https://doi.org/10.1016/j.jenvman.2013.08.012 pmid: 24013559
21 Hao X, Hill B, Caffyn P, Travis G, Olson A F, Larney F J, McAllister T, Alexander T. Co-composting of beef cattle feedlot manure with construction and demolition waste. Journal of Environmental Quality, 2014, 43(5): 1799–1808 
https://doi.org/10.2134/jeq2014.02.0087 pmid: 25603264
22 SAS Institute Inc. SAS OnlineDoc® 9.2. Cary, NC: SAS Institute Inc. 2008.
23 Xu S, Sura S, Zaheer R, Wang G, Smith A, Cook S, Olson A F, Cessna A J, Larney F J, McAllister T A. Dissipation of antimicrobial resistance determinants in composted and stockpiled beef cattle manure. Journal of Environmental Quality, 2016, 45(2): 528–536
https://doi.org/10.2134/jeq2015.03.0146 pmid: 27065400 
24 Sura S, Degenhardt D, Cessna A J, Larney F J, Olson A F, McAllister T A. Dissipation of three veterinary antimicrobials in beef cattle feedlot manure stockpiled over winter. Journal of Environmental Quality, 2014, 43(3): 1061–1070
https://doi.org/10.2134/jeq2013.11.0455 pmid: 25602835
25 Scheutz C, Kjeldsen P. Environmental factors influencing attenuation of methane and hydrochlorofluorocarbons in landfill cover soils. Journal of Environmental Quality, 2004, 33(1): 72–79 
https://doi.org/10.2134/jeq2004.7200 pmid: 14964360
26 Venglovsky J, Sasakova N, Vargova M, Pacajova Z, Placha I, Petrovsky M, Harichova D. Evolution of temperature and chemical parameters during composting of the pig slurry solid fraction amended with natural zeolite. Bioresource Technology, 2005, 96(2): 181–189
https://doi.org/10.1016/j.biortech.2004.05.006 pmid: 15381214
27 Ermolaev E, Jarvis Å, Sundberg C, Smårs S, Pell M, Jönsson H. Nitrous oxide and methane emissions from food waste composting at different temperatures. Waste Management (New York, N.Y.), 2015, 46: 113–119 
https://doi.org/10.1016/j.wasman.2015.08.021 pmid: 26321382
28 Yamulki S. Effect of straw addition on nitrous oxide and methane emissions from stored farmyard manures. Agriculture, Ecosystems & Environment, 2006, 112(2-3): 140–145 
https://doi.org/10.1016/j.agee.2005.08.013
29 Mahimairaja S, Bolan N S, Hedley M J. Denitrification losses of N from fresh and Composted manures. Soil Biology & Biochemistry, 1995, 27(9): 1223–1225
https://doi.org/10.1016/0038-0717(95)00042-D
30 Fukumoto Y, Osada T, Hanajima D, Haga K. Patterns and quantities of NH3, N2O and CH4 emissions during swine manure composting without forced aeration--effect of compost pile scale. Bioresource Technology, 2003, 89(2): 109–114 
https://doi.org/10.1016/S0960-8524(03)00060-9 pmid: 12699927
31 Lopez-Real J, Baptista M. A preliminary comparative study of three manure composting systems and their influence on process parameters and methane emissions. Compost Science & Utilization, 1996, 4(3): 71–82 
https://doi.org/10.1080/1065657X.1996.10701842
32 Sommer S G, Møller H D. Emission of greenhouse gases during composting of deep litter from pig production – effect of straw content. Journal of Agricultural Science (Cambridge), 2000, 134(3): 327–335 
https://doi.org/10.1017/S0021859699007625
[1] Boyi Cheng, Yi Wang, Yumei Hua, Kate V. Heal. The performance of nitrate-reducing Fe(II) oxidation processes under variable initial Fe/N ratios: The fate of nitrogen and iron species[J]. Front. Environ. Sci. Eng., 2021, 15(4): 73-.
[2] Pol Masclans Abelló, Vicente Medina Iglesias, M. Antonia de los Santos López, Jesús Álvarez-Flórez. Real drive cycles analysis by ordered power methodology applied to fuel consumption, CO2, NOx and PM emissions estimation[J]. Front. Environ. Sci. Eng., 2021, 15(1): 4-.
[3] Mingxin Dong, Jun Wang, Jinxin Zhu, Jianqiang Wang, Wulin Wang, Meiqing Shen. Effects of Pd doping on N2O formation over Pt/BaO/Al2O3 during NOx storage and reduction process[J]. Front. Environ. Sci. Eng., 2017, 11(6): 11-.
[4] Conor Dennehy, Peadar G. Lawlor, Yan Jiang, Gillian E. Gardiner, Sihuang Xie, Long D Nghiem, Xinmin Zhan. Greenhouse gas emissions from different pig manure management techniques: a critical analysis[J]. Front. Environ. Sci. Eng., 2017, 11(3): 11-.
[5] Di Li,Swati Yewalkar,Xiaotao Bi,Sheldon Duff,Dusko Posarac,Heli Wang,Layne A. Woodfin,Jan-Hendrik Hehemann,Sheila C. Potter,Francis E. Nano. Heterologous expression of LamA gene encoded endo-β-1,3-glucanase and CO2 fixation by bioengineered Synechococcus sp. PCC 7002[J]. Front. Environ. Sci. Eng., 2017, 11(2): 9-.
[6] Jie ZHU,Wei WANG,Xiuning HUA,Zhou XIA,Zhou DENG. Simultaneous CO2 capture and H2 generation using Fe2O3/Al2O3 and Fe2O3/CuO/Al2O3 as oxygen carriers in single packed bed reactor via chemical looping process[J]. Front. Environ. Sci. Eng., 2015, 9(6): 1117-1129.
[7] Jiafang XIE,Yuxi HUANG,Hanqing YU. Tuning the catalytic selectivity in electrochemical CO2 reduction on copper oxide-derived nanomaterials[J]. Front. Environ. Sci. Eng., 2015, 9(5): 861-866.
[8] Youkui GONG,Yongzhen PENG,Shuying WANG,Sai WANG. Production of N2O in two biologic nitrogen removal processes: a comparison between conventional and short-cut Nitrogen removal processes[J]. Front.Environ.Sci.Eng., 2014, 8(4): 589-597.
[9] Jiangkun XIE, Naiqiang YAN, Fei LIU, Zan QU, Shijian YANG, Ping LIU. CO2 adsorption performance of ZIF-7 and its endurance in flue gas components[J]. Front Envir Sci Eng, 2014, 8(2): 162-168.
[10] Jiaxing GUO, Huan LIU, Yang JIANG, Dongquan HE, Qidong WANG, Fei MENG, Kebin HE. Neighborhood form and CO2 emission: evidence from 23 neighborhoods in Jinan, China[J]. Front Envir Sci Eng, 2014, 8(1): 79-88.
[11] Zhenhe CHEN, Shubo DENG, Haoran WEI, Bin WANG, Jun HUANG, Gang YU. Activated carbons and amine-modified materials for carbon dioxide capture –– a review[J]. Front Envir Sci Eng, 2013, 7(3): 326-340.
[12] Wenqiang SUN, Jiuju CAI, Hai YU, Lei DAI. Decomposition analysis of energy-related carbon dioxide emissions in the iron and steel industry in China[J]. Front Envir Sci Eng, 2012, 6(2): 265-270.
[13] Qi YING. Physical and chemical processes of wintertime secondary nitrate aerosol formation[J]. Front Envir Sci Eng Chin, 2011, 5(3): 348-361.
[14] Hongjing LI, Xiurong CHEN, Yinguang CHEN. Effect of the addition of organic carbon sources on nitrous oxide emission in anaerobic-aerobic (low dissolved oxygen) sequencing batch reactors[J]. Front Envir Sci Eng Chin, 2010, 4(4): 490-499.
[15] Michael B. MCELROY. Challenge of global climate change: Prospects for a new energy paradigm[J]. Front.Environ.Sci.Eng., 2010, 4(1): 2-11.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed