Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2017, Vol. 11 Issue (6) : 15    https://doi.org/10.1007/s11783-017-0961-3
RESEARCH ARTICLE
Preparation and characterization of a novel microorganism embedding material for simultaneous nitrification and denitrification
Ming Zeng1, Ping Li1, Nan Wu2, Xiaofang Li1, Chang Wang1()
1. College of Marine and Environmental Science, Tianjin University of Science &Technology, Tianjin 300457, China
2. College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300384, China
 Download: PDF(335 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

CD enhances the hydrophilic property of traditional PVA-SA gel solution.

CD increases the density of embedded microorganism and micro porosity of bead.

CD makes the maximum endogenous respiration rate being high.

30-1.7-CD contributes the highest total inorganic nitrogen removal efficiency.

Comamonas sp. mainly realize the simultaneous nitrification and denitrification.

A novel microorganism embedding material was prepared to enhance the biological nitrogen removal through simultaneous nitrification and denitrification. Polyvinyl alcohol (PVA), sodium alginate (SA) and cyclodextrin (CD) were used to compose gel bead with embedded activated sludge. The effects of temperature, CD addition and concentrations of PVA and SA on nitrogen removal were evaluated. Results show that the gel bead with CD addition at 30°C contributed to the highest nitrogen removal efficiency and nitrogen removal rate of 85.4% and 2.08 mg·(L·h)?1, respectively. Meanwhile, negligible NO3? and NO2? were observed, proving the occurrence of simultaneous nitrification and denitrification. The High-Throughput Sequencing confirms that the microbial community mainly contained Comamonadaceae in the proportion of 61.3%. Overall, CD increased gel bead’s porosity and resulted in the high specific endogenous respiration rate and high nitrogen removal efficiency, which is a favorable additional agent to the traditional embedding material.

Keywords Immobilization technology      Nitrogen removal      Cyclodextrin      Microbial community      Wastewater treatment     
Corresponding Author(s): Chang Wang   
Issue Date: 23 June 2017
 Cite this article:   
Ming Zeng,Ping Li,Nan Wu, et al. Preparation and characterization of a novel microorganism embedding material for simultaneous nitrification and denitrification[J]. Front. Environ. Sci. Eng., 2017, 11(6): 15.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-017-0961-3
https://academic.hep.com.cn/fese/EN/Y2017/V11/I6/15
30-1.7-CD a30-1.2 b25-1.2-CD c25-1.7 d
diameter /cm
moisture/%
porosity of fixed bed %
0.34±0.024
55.98±0.98
25.0
0.33±0.016
54.51±0.48
25.2
0.37±0.026
60.96±1.28
24.9
0.37±0.26
59.82±1.36
24.8
Tab.1  Summary of physical properties of different gel beads
Fig.1  Adsorption curves of methylene blue for gel beads with and without CD
Fig.2  Fourier transforms infrared spectra of different compounds
Fig.3  The SEM micrograph of gel bead prepared by PVA and SA concentrations of both 1.2% with embedding microorganisms (A: external of bead with CD; B: internal of bead with CD; C: external of bead without CD; D: internal of bead without CD)
30-1.7-CD a30-1.2 b25-1.2-CD c25-1.7 dSS3
specific 1endo. respiration rate
(mgO2·(g MLVSS·h)1)
9.373.258.524.56-
Max. 2exo. respiration rate
(mgO2·(L·h)1)
19.4411.1617.2817.3110.97
MLVSS of embedded sludge
(g MLVSS·L1)
1.420.781.101.101.42
Max. specific exo. respiration rate
(mgO2·(g MLVSS·h)1)
13.6714.3915.7315.757.73
Tab.2  Respiration rates of gel beads with embedded microorganism of four treatments and suspended sludge
Fig.4  The comparison of (A) TIN removal efficiencies and (B) ammonium concentrations of four treatments during the batch test (30-1.7-CD: 1.7% PVA+ 1.7% SA+ 1.0% CD at 30°C; 30-1.2: 1.2% PVA+ 1.2% SA without CD at 30°C; 25-1.2-CD: 1.2% PVA+ 1.2% SA+ 1.0% CD at 25°C; 25-1.7: 1.7% PVA+ 1.7% SA without CD at 25°C)
temperature/°Cβ-CDconcentrations of PVA and SA/%TIN removal efficiency /%
125with1.258.1
225without1.746.3
330with1.785.4
430without1.256.1
K152.1871.7257.07
K270.7451.2165.85
R18.5620.518.78
F value11.2271.4980.275
Tab.3  Results of orthogonal experiments
Fig.5  The barplot of relative abundance of mcrobial communities inside gel bead
1 Paredes D, Kuschk P, Mbwette T S A, Stange F, Müller R A, Köser H. New aspects of microbial nitrogen transformations in the context of wastewater treatment – A review. Engineering in Life Sciences, 2007, 7(1): 13–25
https://doi.org/10.1002/elsc.200620170
2 Jie F, Tao T, Jing Z, You G L. Performance evaluation of a modified anaerobic/anoxic/oxic (A2/O) process treating low strength wastewater. Desalination, 2009, 249(2): 822–827
https://doi.org/10.1016/j.desal.2009.03.015
3 Jun L I, Peng Y, Guowei G U, Wei S. Factors affecting simultaneous nitrification and denitrification in an SBBR treating domestic wastewater. Frontiers of Environmental Science & Engineering in China, 2007, 1(2): 246–250
https://doi.org/10.1007/s11783-007-0042-0
4 Zhang P, Zhou Q. Simultaneous nitrification and denitrification in activated sludge system under low oxygen concentration. Frontiers of Environmental Science & Engineering in China, 2007, 1(1): 49–52
https://doi.org/10.1007/s11783-007-0009-1
5 Aoi Y, Shiramasa Y, Kakimoto E, Tsuneda S, Hirata A, Nagamune T. Single-stage autotrophic nitrogen-removal process using a composite matrix immobilizing nitrifying and sulfur-denitrifying bacteria. Applied Microbiology and Biotechnology, 2005, 68(1): 124–130
https://doi.org/10.1007/s00253-005-1910-9 pmid: 15692803
6 Santos V A, Tramper J, Wijffels R H. Simultaneous nitrification and denitrification using immobilized microorganisms. Biomaterials, Artificial Cells, and Immobilization Biotechnology, 1993, 21(3): 317–322
https://doi.org/10.3109/10731199309117369 pmid: 8399972
7 Quan L M, Khanh P, Hira D, Fujii T, Furukawa K. Reject water treatment by improvement of whole cell anammox entrapment using polyvinyl alcohol/alginate gel. Biodegradation, 2011, 22(6): 1155–1167
https://doi.org/10.1007/s10532-011-9471-3 pmid: 21455769
8 Zhu G L, Hu Y Y, Wang Q R. Nitrogen removal performance of anaerobic ammonia oxidation co-culture immobilized in different gel carriers. Water Science and Technology, 2009, 59(12): 2379–2386
https://doi.org/10.2166/wst.2009.293 pmid: 19542643
9 Duan X M. The Anammox activity enhancement by low intensity ultrasound and co-immobilized with partial nitrifying sludge for autotrophic nitrogen removal. Dissertation for the Doctoral Degree. Dalian: Dalian University of Technology, 2012
10 Hu J. Biodegradation of di-n-butyl phthalate in wastewater by immobilized Micrococcus sp. Dissertation for the Doctoral Degree. Beijing: China University of Geosciences, 2014
11 Kozlowski C A, Wa S. Cyclodextrin polymers: recent applications. In: Matyjaszewski K, ed. Encyclopedia of Polymer Science and Technology. New York: John Wiley and Sons, Inc., 2013
12 Oishi K, Moriuchi A. Removal of dissolved estrogen in sewage effluents by β-cyclodextrin polymer. Science of the Total Environment, 2010, 409(1): 112–115
https://doi.org/10.1016/j.scitotenv.2010.09.031 pmid: 20980045
13 Walter W G. APHA standard methods for the examination of water and wastewater. American Journal of Public Health and the Nation’s Health, 1961
https://doi.org/10.2105/AJPH.51.6.940-a
14 Bai X, Ye Z, Li Y, Yang L, Qu Y, Yang X. Preparation and characterization of a novel macroporous immobilized micro-organism carrier. Chemistry of Materials, 2010, 12(3): 665–670
15 Cao G M, Zhao Q X, Sun X B, Tong Z. Characterization of nitrifying and denitrifying bacteria coimmobilized in PVA and kinetics model of biological nitrogen removal by coimmobilized cells. Enzyme and Microbial Technology, 2002, 30(1): 49–55
https://doi.org/10.1016/S0141-0229(01)00458-6
16 Isaka K, Kimura Y, Osaka T, Tsuneda S. High-rate denitrification using polyethylene glycol gel carriers entrapping heterotrophic denitrifying bacteria. Water Research, 2012, 46(16): 4941–4948
https://doi.org/10.1016/j.watres.2012.05.050 pmid: 22828382
17 Bano S, Mahmood A, Kim S J, Lee K H. Chlorine resistant binary complexed NaAlg/PVA composite membrane for nanofiltration. Separation and Purification Technology, 2014, 137: 21–27
https://doi.org/10.1016/j.seppur.2014.09.024
18 Spanjers H, Vanrolleghem P. Respirometry as a tool for rapid characterization of wastewater and activated sludge. Water Science and Technology, 1995, 31(2): 105–114
https://doi.org/10.1016/0273-1223(95)00184-O
19 Zhang L S, Wu W Z, Wang J L. Immobilization of activated sludge using improved polyvinyl alcohol (PVA) gel. Journal of Environmental Sciences (China), 2007, 19(11): 1293–1297
https://doi.org/10.1016/S1001-0742(07)60211-3 pmid: 18232221
20 Charley R C. European Patent, 0 346 545, 1995–09–13
21 Li C, Zheng C X, Li J. Synthesis and application of -cyclodextrin modified reticulate polyurethane foam. In: Sixth Annual Meeting of Water Treatment Chemicals Industry of China Fine Chemical Association 2010, Kunming, China (in Chinese)
22 Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner F O. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research, 2013, 41(Database issue): D590–D596
https://doi.org/10.1093/nar/gks1219 pmid: 23193283
23 Cole J R, Wang Q, Cardenas E, Fish J, Chai B, Farris R J, Kulam-Syed-Mohideen A S, McGarrell D M, Marsh T, Garrity G M, Tiedje J M. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Research, 2009, 37(Database issue): D141–D145
https://doi.org/10.1093/nar/gkn879 pmid: 19004872
24 DeSantis T Z, Hugenholtz P, Larsen N, Rojas M, Brodie E L, Keller K, Huber T, Dalevi D, Hu P, Andersen G L. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied and Environmental Microbiology, 2006, 72(7): 5069–5072
https://doi.org/10.1128/AEM.03006-05 pmid: 16820507
25 Sadaie T, Sadaie A, Takada M, Hamano K, Ohnishi J, Ohta N, Matsumoto K, Sadaie Y. Reducing sludge production and the domination of Comamonadaceae by reducing the oxygen supply in the wastewater treatment procedure of a food-processing factory. Bioscience, Biotechnology, and Biochemistry, 2007, 71(3): 791–799
https://doi.org/10.1271/bbb.60632 pmid: 17341826
26 Li A J, Yang S F, Li X Y, Gu J D. Microbial population dynamics during aerobic sludge granulation at different organic loading rates. Water Research, 2008, 42(13): 3552–3560
https://doi.org/10.1016/j.watres.2008.05.005 pmid: 18541284
27 Li J T, Ji S L, Liu Z P, Qin Z P, Liu Y, Yang Y Y. Analysis of bacterial composition of aerobic granular sludge with 16S rDNA clone library. Research of Environemtal Science, 2009, 22(10): 1218–1223 (in Chinese)
28 Patureau D, Zumstein E, Delgenes J P, Moletta R. Aerobic denitrifiers isolated from diverse natural and managed ecosystems. Microbial Ecology, 2000, 39(2): 145–152
https://doi.org/10.1007/s002480000009 pmid: 10833227
29 Zhong F, Wu J, Dai Y, Yang L, Zhang Z, Cheng S, Zhang Q. Bacterial community analysis by PCR-DGGE and 454-pyrosequencing of horizontal subsurface flow constructed wetlands with front aeration. Applied Microbiology and Biotechnology, 2015, 99(3): 1499–1512
https://doi.org/10.1007/s00253-014-6063-2 pmid: 25213915
30 Wu Y, Shukal S, Mukherjee M, Cao B. Involvement in denitrification is beneficial to the biofilm lifestyle of Comamonas testosteroni: a mechanistic study and its environmental implications. Environmental Science & Technology, 2015, 49(19): 11551–11559
https://doi.org/10.1021/acs.est.5b03381 pmid: 26327221
31 Chen Q, Ni J. Heterotrophic nitrification-aerobic denitrification by novel isolated bacteria. Journal of Industrial Microbiology, 2011, 38(9): 1305–1310
https://doi.org/10.1007/s10295-010-0911-6 pmid: 21113643
32 Bock E, Schmidt I, Stüven R, Zart D. Nitrogen loss caused by denitrifying Nitrosomonas cells using ammonium or hydrogen as electron donors and nitrite as electron acceptor. Archives of Microbiology, 1995, 163(1): 16–20
https://doi.org/10.1007/BF00262198 pmid: 7646315
33 Huang W, Wang W, Shi W, Lei Z, Zhang Z, Chen R, Zhou B. Use low direct current electric field to augment nitrification and structural stability of aerobic granular sludge when treating low COD/NH4-N wastewater. Bioresource Technology, 2014, 171(1): 139–144
https://doi.org/10.1016/j.biortech.2014.08.043 pmid: 25194262
34 Calli B, Tas N, Mertoglu B, Inanc B, Ozturk I. Molecular analysis of microbial communities in nitrification and denitrification reactors treating high ammonia leachate. Journal of Environmental Science & Health Part A, 2003, 38(10): 1997–2007
https://doi.org/10.1081/ESE-120023327 pmid: 14524656
35 Sun Y, Li A, Zhang X, Ma F. Regulation of dissolved oxygen from accumulated nitrite during the heterotrophic nitrification and aerobic denitrification of Pseudomonas stutzeri T13. Applied Microbiology and Biotechnology, 2015, 99(7): 3243–3248
https://doi.org/10.1007/s00253-014-6221-6 pmid: 25417744
[1] FSE-17062-OF-ZM_suppl_1 Download
[1] Kangying Guo, Baoyu Gao, Jie Wang, Jingwen Pan, Qinyan Yue, Xing Xu. Flocculation behaviors of a novel papermaking sludge-based flocculant in practical printing and dyeing wastewater treatment[J]. Front. Environ. Sci. Eng., 2021, 15(5): 103-.
[2] Qinxue Wen, Shuo Yang, Zhiqiang Chen. Mesophilic and thermophilic anaerobic digestion of swine manure with sulfamethoxazole and norfloxacin: Dynamics of microbial communities and evolution of resistance genes[J]. Front. Environ. Sci. Eng., 2021, 15(5): 94-.
[3] Ruijie Li, Mengmeng Zhou, Shilong He, Tingting Pan, Jing Liu, Jiabao Zhu. Deciphering the effect of sodium dodecylbenzene sulfonate on up-flow anaerobic sludge blanket treatment of synthetic sulfate-containing wastewater[J]. Front. Environ. Sci. Eng., 2021, 15(5): 91-.
[4] Yunping Han, Lin Li, Ying Wang, Jiawei Ma, Pengyu Li, Chao Han, Junxin Liu. Composition, dispersion, and health risks of bioaerosols in wastewater treatment plants: A review[J]. Front. Environ. Sci. Eng., 2021, 15(3): 38-.
[5] Shengjie Qiu, Jinjin Liu, Liang Zhang, Qiong Zhang, Yongzhen Peng. Sludge fermentation liquid addition attained advanced nitrogen removal in low C/N ratio municipal wastewater through short-cut nitrification-denitrification and partial anammox[J]. Front. Environ. Sci. Eng., 2021, 15(2): 26-.
[6] Weichuan Qiao, Rong Li, Tianhao Tang, Achuo Anitta Zuh. Removal, distribution and plant uptake of perfluorooctane sulfonate (PFOS) in a simulated constructed wetland system[J]. Front. Environ. Sci. Eng., 2021, 15(2): 20-.
[7] Yanqing Duan, Aijuan Zhou, Xiuping Yue, Zhichun Zhang, Yanjuan Gao, Yanhong Luo, Xiao Zhang. Acceleration of the particulate organic matter hydrolysis by start-up stage recovery and its original microbial mechanism[J]. Front. Environ. Sci. Eng., 2021, 15(1): 12-.
[8] Wenyue Li, Min Chen, Zhaoxiang Zhong, Ming Zhou, Weihong Xing. Hydroxyl radical intensified Cu2O NPs/H2O2 process in ceramic membrane reactor for degradation on DMAc wastewater from polymeric membrane manufacturer[J]. Front. Environ. Sci. Eng., 2020, 14(6): 102-.
[9] Luxi Zou, Huaibo Li, Shuo Wang, Kaikai Zheng, Yan Wang, Guocheng Du, Ji Li. Characteristic and correlation analysis of influent and energy consumption of wastewater treatment plants in Taihu Basin[J]. Front. Environ. Sci. Eng., 2019, 13(6): 83-.
[10] Jiuhui Qu, Hongchen Wang, Kaijun Wang, Gang Yu, Bing Ke, Han-Qing Yu, Hongqiang Ren, Xingcan Zheng, Ji Li, Wen-Wei Li, Song Gao, Hui Gong. Municipal wastewater treatment in China: Development history and future perspectives[J]. Front. Environ. Sci. Eng., 2019, 13(6): 88-.
[11] Yuhan Zheng, Zhiguo Su, Tianjiao Dai, Feifei Li, Bei Huang, Qinglin Mu, Chuanping Feng, Donghui Wen. Identifying human-induced influence on microbial community: A comparative study in the effluent-receiving areas in Hangzhou Bay[J]. Front. Environ. Sci. Eng., 2019, 13(6): 90-.
[12] Aoshuang Jing, Tao Liu, Xie Quan, Shuo Chen, Yaobin Zhang. Enhanced nitrification in integrated floating fixed-film activated sludge (IFFAS) system using novel clinoptilolite composite carrier[J]. Front. Environ. Sci. Eng., 2019, 13(5): 69-.
[13] Muhammad Kashif Shahid, Yunjung Kim, Young-Gyun Choi. Adsorption of phosphate on magnetite-enriched particles (MEP) separated from the mill scale[J]. Front. Environ. Sci. Eng., 2019, 13(5): 71-.
[14] Xiaoya Liu, Yu Hong, Peirui Liu, Jingjing Zhan, Ran Yan. Effects of cultivation strategies on the cultivation of Chlorella sp. HQ in photoreactors[J]. Front. Environ. Sci. Eng., 2019, 13(5): 78-.
[15] Tiezheng Tong, Kenneth H. Carlson, Cristian A. Robbins, Zuoyou Zhang, Xuewei Du. Membrane-based treatment of shale oil and gas wastewater: The current state of knowledge[J]. Front. Environ. Sci. Eng., 2019, 13(4): 63-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed