Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2017, Vol. 11 Issue (6) : 16    https://doi.org/10.1007/s11783-017-0964-0
RESEARCH ARTICLE
Impact of dissolved oxygen on the production of nitrous oxide in biological aerated filters
Qiang He, Yinying Zhu, Guo Li, Leilei Fan, Hainan Ai, Xiaoliu Huangfu, Hong Li()
Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400045, China
 Download: PDF(391 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The dominant Cloacibacterium normanense may be responsible for N2O production.

N2O concentrations varied along the biofilm depth depending on the DO levels.

Low DO concentration leads to high N2O production rate.

Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and microelectrode technology were employed to evaluate the Nitrous oxide (N2O) production in biological aerated filters (BAFs) under varied dissolved oxygen (DO) concentrations during treating wastewater under laboratory scale. The average yield of gasous N2O showed more than 4-fold increase when the DO levels were reduced from 6.0 to 2.0 mg·L1, indicating that low DO may drive N2O generation. PCR-DGGE results revealed that Nitratifractor salsuginis were dominant and may be responsible for N2O emission from the BAFs system. While at a low DO concentration (2.0 mg·L1), Flavobacterium urocaniciphilum might play a role. When DO concentration was the limiting factor (reduced from 6.0 to 2.0 mg·L1) for nitrification, it reduced NO2-N oxidation as well as the total nitrification. The data from this study contribute to explain how N2O production changes in response to DO concentration, and may be helpful for reduction of N2O through regulation of DO levels.

Keywords Nitrous oxide      Biological aerated filter      Microelectrode      Dissolved oxygen      Biofilm     
Corresponding Author(s): Hong Li   
Issue Date: 10 July 2017
 Cite this article:   
Qiang He,Yinying Zhu,Guo Li, et al. Impact of dissolved oxygen on the production of nitrous oxide in biological aerated filters[J]. Front. Environ. Sci. Eng., 2017, 11(6): 16.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-017-0964-0
https://academic.hep.com.cn/fese/EN/Y2017/V11/I6/16
Fig.1  Simulated BAF system in this study. a, plexiglass tank; b, flowrator (MP200-YZ15, PreFluid, Changzhou, China); c, flowrator (LZB-2, Variable-area Flowmeter, Shanghai, China); d, air pump (WT-ZWS24Z, China) and e, flowrator (Q-Flow, Zhuoang, Shanghai, China)
Fig.2  COD (a), TN (b), NH4-N (c), NO3--N (d), and NO2--N (e) concentration in the influent and effluent of BAF systems exposed at different DO levels, pH 7.2, 20℃
Fig.3  Effect of DO on the production rate of N2O, pH 7.2, 20℃
time/dtreatment (DO level)
DO= 2.0 mg·L-1DO= 4.0 mg·L-1DO= 6.0 mg·L-1
31.971.330.51
61.360.890.48
91.700.880.41
122.571.330.71
151.740.800.37
181.970.560.33
211.150.420.24
241.790.480.25
271.750.650.28
Tab.1  Dynamic of N2O emission factors (N2O /TNinfluent) under varied DO levels
Fig.4  DGGE profile of 16S rRNA gene fragments of microbial communities from BAF biofilm under different DO levels, pH 7.2, 20℃
numbermost similar strainaccession numbersemblancemost similar groups
band 1Caulobacter daechungensisNR_118485100Proteobacteria
band 2Cloacibacterium normanenseNR_04218799Bacteroidetes
band 3Lutibacter aestuariiNR_10899590Bacteroidetes
band 4Acidovorax radicisNR_117776100Proteobacteria
band 5Epistylis urceolataAF33551698Alveolata
band 6Nitratifractor salsuginisNR_07443088Proteobacteria
band 7Crenotalea thermophilaNR_12547391Bacteroidetes
band 8Ferruginibacter alkalilentusNR_04458897Bacteroidetes
band 9Peptoniphilus lacrimalisNR_04193884Firmicutes
band 10Cloacibacterium normanenseNR_042187100Bacteroidetes
band 11Ottowia shaoguanensisNR_12565698Proteobacteria
band 12Flavobacterium ginsengisoliNR_10902498Bacteroidetes
band 13Clostridium cellulovoransNR_02758988Firmicutes
band 14Clostridium acidisoliNR_028898100Firmicutes
band 15Kofleria flavaNR_04198189Proteobacteria
band 16Tahibacter aquaticusNR_11509895Proteobacteria
band 17Desulfobulbus rhabdoformisNR_02917696Proteobacteria
band 18Thiothrix caldifontisNR_116398100Proteobacteria
band 19Flavobacterium urocaniciphilumNR_12546791Bacteroidetes
band 20Methylocaldum marinumNR_12618992Proteobacteria
band 21Thiobacillus thioparusNR_11786495Proteobacteria
band 22Blastocatella fastidiosaNR_11835096Acidobacteria
Tab.2  Results of 16S rDNA sequences using BLAST in GeneBank
Fig.5  Changes in concentrations of N2O with depth in biofilm, pH 7.2, 20℃
Fig.6  Changes in DO concentrations (a), ORP value (b), NH4+-N concentrations (c), NO2--N concentrations (d), NO3--N concentrations (e) with depth in biofilm, pH 7.2, 20℃
1 Garrido J M, van Benthum W A, van Loosdrecht M C, Heijnen J J. Influence of dissolved oxygen concentration on nitrite accumulation in a biofilm airlift suspension reactor. Biotechnology and Bioengineering, 1997, 53(2): 168–178
https://doi.org/10.1002/(SICI)1097-0290(19970120)53:2<168::AID-BIT6>3.0.CO;2-M pmid: 18633961
2 Osada T, Shiraishi M, Hasegawa T, Kawahara H. Methane, nitrous oxide and ammonia generation in full-scale swine wastewater purification facilities. Frontiers of Environmental Science & Engineering, 2017, 11(3): 10–17
https://doi.org/10.1007/s11783-017-0933-7
3 Wunderlin P, Mohn J, Joss A, Emmenegger L, Siegrist H. Mechanisms of N2O production in biological wastewater treatment under nitrifying and denitrifying conditions. Water Research, 2012, 46(4): 1027–1037
https://doi.org/10.1016/j.watres.2011.11.080 pmid: 22227243
4 Tsuneda S, Mikami M, Kimochi Y, Hirata A. Effect of salinity on nitrous oxide emission in the biological nitrogen removal process for industrial wastewater. Journal of Hazardous Materials, 2005, 119(1–3): 93–98
https://doi.org/10.1016/j.jhazmat.2004.10.025 pmid: 15752853
5 Wan T, Zhang G, Du F, He J, Wu P. Combined biologic aerated filter and sulfur/ceramisite autotrophic denitrification for advanced wastewater nitrogen removal at low temperatures. Frontiers of Environmental Science & Engineering, 2014, 8(6): 967–972
https://doi.org/10.1007/s11783-014-0690-9
6 Wang Y, Fang H, Zhou D, Han H, Chen J. Characterization of nitrous oxide and nitric oxide emissions from a full-scale biological aerated filter for secondary nitrification. Chemical Engineering Journal, 2016, 299: 304–313
https://doi.org/10.1016/j.cej.2016.04.050
7 Peng L, Ni B J, Erler D, Ye L, Yuan Z. The effect of dissolved oxygen on N2O production by ammonia-oxidizing bacteria in an enriched nitrifying sludge. Water Research, 2014, 66: 12–21
https://doi.org/10.1016/j.watres.2014.08.009 pmid: 25179869
8 Aboobakar A, Cartmell E, Stephenson T, Jones M, Vale P, Dotro G. Nitrous oxide emissions and dissolved oxygen profiling in a full-scale nitrifying activated sludge treatment plant. Water Research, 2013, 47(2): 524–534
https://doi.org/10.1016/j.watres.2012.10.004 pmid: 23159006
9 Eldyasti A, Nakhla G, Zhu J. Mitigation of nitrous oxide (N2O) emissions from denitrifying fluidized bed bioreactors (DFBBRs) using calcium. Bioresource Technology, 2014, 173: 272–283
https://doi.org/10.1016/j.biortech.2014.09.121 pmid: 25310863
10 Sabba F, Picioreanu C, Pérez J, Nerenberg R. Hydroxylamine diffusion can enhance N2O emissions in nitrifying biofilms: a modeling study. Environmental Science & Technology, 2015, 49(3): 1486–1494
https://doi.org/10.1021/es5046919 pmid: 25539140
11 Ray R, Henshaw P, Biswas N. Effects of reduced aeration in a biological aerated filter. Canadian Journal of Civil Engineering, 2012, 39(4): 432–438
https://doi.org/10.1139/l2012-022
12 Okabe S, Oshiki M, Takahashi Y, Satoh H. N2O emission from a partial nitrification-anammox process and identification of a key biological process of N2O emission from anammox granules. Water Research, 2011, 45(19): 6461–6470
https://doi.org/10.1016/j.watres.2011.09.040 pmid: 21996609
13 Rathnayake R M L D, Oshiki M, Ishii S, Segawa T, Satoh H, Okabe S. Effects of dissolved oxygen and pH on nitrous oxide production rates in autotrophic partial nitrification granules. Bioresource Technology, 2015, 197: 15–22
https://doi.org/10.1016/j.biortech.2015.08.054 pmid: 26318242
14 Lv Y, Chen X, Wang L, Ju K, Chen X, Miao R, Wang X. Microprofiles of activated sludge aggregates using microelectrodes in completely autotrophic nitrogen removal over nitrite (CANON) reactor. Frontiers of Environmental Science & Engineering, 2016, 10(2): 390–398
https://doi.org/10.1007/s11783-015-0818-6
15 Hao X, Heijnen J J, van Loosdrecht M C M. Sensitivity analysis of a biofilm model describing a one-stage completely autotrophic nitrogen removal (CANON) process. Biotechnology and Bioengineering, 2002, 77(3): 266–277
https://doi.org/10.1002/bit.10105 pmid: 11753935
16 APHA. Standard Methods for the Examination of Water and Wastewater. Washington, DC, USA: American Public Health Association, 2005
17 Egli K, Bosshard F, Werlen C, Lais P, Siegrist H, Zehnder A J B, Van der Meer J R. Microbial composition and structure of a rotating biological contactor biofilm treating ammonium-rich wastewater without organic carbon. Microbial Ecology, 2003, 45(4): 419–432
https://doi.org/10.1007/s00248-002-2037-5 pmid: 12704553
18 Ji G, Tong J, Tan Y. Wastewater treatment efficiency of a multi-media biological aerated filter (MBAF) containing clinoptilolite and bioceramsite in a brick-wall embedded design. Bioresource Technology, 2011, 102(2): 550–557
https://doi.org/10.1016/j.biortech.2010.07.075 pmid: 20797854
19 Gieseke A, Beer D D. Use of microelectrodes to measure in situ microbial activities in biofilms, sediments, and microbial mats. In: Kowalchuk G G, Bruijn F J, Head I M, Akkermans A D, Elsas J D V, eds. Molecular Microbial Ecology Manual, 2nd ed. Heidelberg: Springer Netherlands, 2004
20 Bollon J, Filali A, Fayolle Y, Guerin S, Rocher V, Gillot S. N2O emissions from full-scale nitrifying biofilters. Water Research, 2016, 102: 41–51
https://doi.org/10.1016/j.watres.2016.05.091 pmid: 27318446
21 Li X, Sun S, Badgley B D, Sung S, Zhang H, He Z. Nitrogen removal by granular nitritation-anammox in an upflow membrane-aerated biofilm reactor. Water Research, 2016, 94: 23–31
https://doi.org/10.1016/j.watres.2016.02.031 pmid: 26921710
22 Joo S H, Kim D J, Yoo I K, Park K, Cha G C. Partial nitrification in an upflow biological aerated filter by O2 limitation. Biotechnology Letters, 2000, 22(11): 937–940
https://doi.org/10.1023/A:1005646632504
23 Pynaert K, Sprengers R, Laenen J, Verstraete W. Oxygen-limited nitrification and denitrification in a lab-scale rotating biological contactor. Environmental Technology, 2002, 23(3): 353–362
https://doi.org/10.1080/09593332508618419 pmid: 11999997
24 Albuquerque A, Makinia J, Pagilla K. Impact of aeration conditions on the removal of low concentrations of nitrogen in a tertiary partially aerated biological filter. Ecological Engineering, 2012, 44: 44–52
https://doi.org/10.1016/j.ecoleng.2012.03.006
25 Desloover J, De Clippeleir H, Boeckx P, Du Laing G, Colsen J, Verstraete W, Vlaeminck S E. Floc-based sequential partial nitritation and anammox at full scale with contrasting N2O emissions. Water Research, 2011, 45(9): 2811–2821
https://doi.org/10.1016/j.watres.2011.02.028 pmid: 21440280
26 Li Q, Sun S, Guo T, Yang C, Song C, Geng W, Zhang W, Feng J, Wang S. Short-cut nitrification in biological aerated filters with modified zeolite and nitrifying sludge. Bioresource Technology, 2013, 136(3): 148–154
https://doi.org/10.1016/j.biortech.2013.02.081 pmid: 23567675
27 Wang J Y, Xiong Z Q, Yan X Y. Fertilizer-induced emission factors and background emissions of N2O from vegetable fields in China. Atmospheric Environment, 2011, 45(38): 6923–6929
https://doi.org/10.1016/j.atmosenv.2011.09.045
28 Ahn J H, Kim S, Park H, Rahm B, Pagilla K, Chandran K. N2O emissions from activated sludge processes, 2008–2009: results of a national monitoring survey in the United States. Environmental Science & Technology, 2010, 44(12): 4505–4511
https://doi.org/10.1021/es903845y pmid: 20465250
29 Kampschreur M J, van der Star W R L, Wielders H A, Mulder J W, Jetten M S M, van Loosdrecht M C M. Dynamics of nitric oxide and nitrous oxide emission during full-scale reject water treatment. Water Research, 2008, 42(3): 812–826
https://doi.org/10.1016/j.watres.2007.08.022 pmid: 17920100
30 Jun Y, Wenfeng X. Ammonia biofiltration and community analysis of ammonia-oxidizing bacteria in biofilters. Bioresource Technology, 2009, 100(17): 3869–3876
https://doi.org/10.1016/j.biortech.2009.03.021 pmid: 19359165
31 Frutos O D, Quijano G, Pérez R, Muñoz R. Simultaneous biological nitrous oxide abatement and wastewater treatment in a denitrifying off-gas bioscrubber. Chemical Engineering Journal, 2016, 288: 28–37
https://doi.org/10.1016/j.cej.2015.11.088
32 Garrido J M, van Benthum W A J, van Loosdrecht M C M, Heijnen J J. Influence of dissolved oxygen concentration on nitrite accumulation in a biofilm airlift suspension reactor. Biotechnology and Bioengineering, 1997, 53(2): 168–178
https://doi.org/10.1002/(SICI)1097-0290(19970120)53:2<168::AID-BIT6>3.0.CO;2-M pmid: 18633961
33 Kampschreur M J, Temmink H, Kleerebezem R, Jetten M S M, van Loosdrecht M C M. Nitrous oxide emission during wastewater treatment. Water Research, 2009, 43(17): 4093–4103
https://doi.org/10.1016/j.watres.2009.03.001 pmid: 19666183
34 Peng L, Liu Y, Ni B J. Nitrous oxide production in completely autotrophic nitrogen removal biofilm process: a simulation study. Chemical Engineering Journal, 2016, 287: 217–224
https://doi.org/10.1016/j.cej.2015.11.026
[1] Shujuan Meng, Rui Wang, Kaijing Zhang, Xianghao Meng, Wenchao Xue, Hongju Liu, Dawei Liang, Qian Zhao, Yu Liu. Transparent exopolymer particles (TEPs)-associated protobiofilm: A neglected contributor to biofouling during membrane filtration[J]. Front. Environ. Sci. Eng., 2021, 15(4): 64-.
[2] Ouchen Cai, Yuanxiao Xiong, Haijun Yang, Jinyong Liu, Hui Wang. Phosphorus transformation under the influence of aluminum, organic carbon, and dissolved oxygen at the water-sediment interface: A simulative study[J]. Front. Environ. Sci. Eng., 2020, 14(3): 50-.
[3] Aoshuang Jing, Tao Liu, Xie Quan, Shuo Chen, Yaobin Zhang. Enhanced nitrification in integrated floating fixed-film activated sludge (IFFAS) system using novel clinoptilolite composite carrier[J]. Front. Environ. Sci. Eng., 2019, 13(5): 69-.
[4] Wanqi Qi, Weiying Li, Junpeng Zhang, Xuan Wu, Jie Zhang, Wei Zhang. Effect of biological activated carbon filter depth and backwashing process on transformation of biofilm community[J]. Front. Environ. Sci. Eng., 2019, 13(1): 15-.
[5] Xiao Quan, Kai Huang, Mei Li, Meichao Lan, Baoan Li. Nitrogen removal performance of municipal reverse osmosis concentrate with low C/N ratio by membrane-aerated biofilm reactor[J]. Front. Environ. Sci. Eng., 2018, 12(6): 5-.
[6] Bingjie Xu, Gang Xue, Xing Yang. Isolation and application of an ibuprofen-degrading bacterium to a biological aerated filter for the treatment of micro-polluted water[J]. Front. Environ. Sci. Eng., 2018, 12(5): 15-.
[7] Yonglei Wang, Baozhen Liu, Kefeng Zhang, Yongjian Liu, Xuexin Xu, Junqi Jia. Investigate of in situ sludge reduction in sequencing batch biofilm reactor: Performances, mechanisms and comparison of different carriers[J]. Front. Environ. Sci. Eng., 2018, 12(5): 5-.
[8] Gang Guo, Yayi Wang, Tianwei Hao, Di Wu, Guang-Hao Chen. Enzymatic nitrous oxide emissions from wastewater treatment[J]. Front. Environ. Sci. Eng., 2018, 12(1): 10-.
[9] Takashi Osada, Makoto Shiraishi, Teruaki Hasegawa, Hirofumi Kawahara. Methane, Nitrous Oxide and Ammonia generation in full-scale swine wastewater purification facilities[J]. Front. Environ. Sci. Eng., 2017, 11(3): 10-.
[10] Yu Qi, Jin Li, Rui Liang, Sitong Ji, Jianxiang Li, Meng Liu. Chemical additives affect sulfate reducing bacteria biofilm properties adsorbed on stainless steel 316L surface in circulating cooling water system[J]. Front. Environ. Sci. Eng., 2017, 11(2): 14-.
[11] Xiaoyan Song, Rui Liu, Lujun Chen, Tomoki Kawagishi. Comparative experiment on treating digested piggery wastewater with a biofilm MBR and conventional MBR: simultaneous removal of nitrogen and antibiotics[J]. Front. Environ. Sci. Eng., 2017, 11(2): 11-.
[12] Hallvard Ødegaard. A road-map for energy-neutral wastewater treatment plants of the future based on compact technologies (including MBBR)[J]. Front. Environ. Sci. Eng., 2016, 10(4): 2-.
[13] Veena Bangalore Rangappa, Vidya Shetty Kodialbail, Saidutta Malur Bharthaiyengar. Effect of dilution rate on dynamic and steady-state biofilm characteristics during phenol biodegradation by immobilized Pseudomonas desmolyticum cells in a pulsed plate bioreactor[J]. Front. Environ. Sci. Eng., 2016, 10(4): 16-.
[14] Feng ZHANG,Shengsong YU,Jie LI,Wenwei LI,Hanqing YU. Mechanisms behind the accelerated extracellular electron transfer in Geobacter sulfurreducens DL-1 by modifying gold electrode with self-assembled monolayers[J]. Front. Environ. Sci. Eng., 2016, 10(3): 531-538.
[15] Yanling WEI,Xunfei YIN,Lu QI,Hongchen WANG,Yiwei GONG,Yaqian LUO. Effects of carrier-attached biofilm on oxygen transfer efficiency in a moving bed biofilm reactor[J]. Front. Environ. Sci. Eng., 2016, 10(3): 569-577.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed