Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2017, Vol. 11 Issue (6) : 17    https://doi.org/10.1007/s11783-017-0965-z
RESEARCH ARTICLE
Optimization of microwave pretreatment of lignocellulosic waste for enhancing methane production: Hyacinth as an example
Bai-Hang Zhao1,2, Jie Chen1, Han-Qing Yu2(), Zhen-Hu Hu3(), Zheng-Bo Yue3, Jun Li1
1. Department of Municipal Engineering, Beijing University of Technology, Beijing 100124, China
2. Department of Chemistry, University of Science & Technology of China, Hefei 230026, China
3. School of Civil Engineering, Hefei University of Technology, Hefei 230092, China
 Download: PDF(461 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The physical structure of hyacinth was disrupted by microwave pretreatment.

Methane production increased by 38.3% with microwave pretreatment.

The maximum methane production and maximum methane production rate were optimized.

Mechanism of enhanced methane production by microwave pretreatment was analyzed.

The effect of microwave pretreatment on the anaerobic degradation of hyacinth was investigated using response surface methodology (RSM). The components of lignin and the other constituents of hyacinth were altered by microwave pretreatment. Comparison of the near-infrared spectra of hyacinth pretreated by microwave irradiation and water-heating pretreatment revealed that no new compounds were generated during hyacinth pretreatment by microwave irradiation. Atomic force microscopy observations indicated that the physical structures of hyacinth were disrupted by microwave pretreatment. The yield of methane per gram of the microwave-irradiated substrate increased by 38.3% as compared to that of the substrate pretreated via water-heating. A maximum methane yield of 221 mL·g-sub–1 was obtained under the optimum pretreatment conditions (substrate concentration (PSC) = 20.1 g·L–1 and pretreatment time (PT) = 14.6 min) using RSM analysis. A maximum methane production rate of 0.76 mL·h–1·g-sub–1 was obtained by applying PSC= 9.5 g·L–1 and PT= 11 min. Interactive item coefficient analysis showed that methane production was dependent on the PSC and PT, separately, whereas the interactive effect of the PSC and PT on methane production was not significant. The same trend was also observed for the methane production rate.

Keywords Microwave pretreatment      Response surface methodology      Methane production      Hyacinth      Anaerobic digestion     
Corresponding Author(s): Han-Qing Yu,Zhen-Hu Hu   
Issue Date: 09 August 2017
 Cite this article:   
Bai-Hang Zhao,Jie Chen,Han-Qing Yu, et al. Optimization of microwave pretreatment of lignocellulosic waste for enhancing methane production: Hyacinth as an example[J]. Front. Environ. Sci. Eng., 2017, 11(6): 17.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-017-0965-z
https://academic.hep.com.cn/fese/EN/Y2017/V11/I6/17
components percentage a) percentage
(after pretreatment)
removal efficiency b)
volatile solids (VS) 78.6±7.6 76.0±3.1 13.6±2.7
hemicellulose 23.2±6.2 18.4±5.6 29.5±1.8
cellulose 24.9±4.3 26.4±4.0 5.0±1.7
lignin 10.1±2.5 10.6±2.3 5.9±2.3
protein 20.4±3.2 19.4±1.9 15.1±0.9
ash 21.4±1.5 24.0±0.2
Tab.1  Chemical components of hyacinth before and after microwave pretreatment
trial coded values real values methane production
x1 x2 X 1a) /(g·L-1) X 2b)
/min
Hmax
/(mL·g-sub-1)
Rmax
/(mL·h-1·g-sub-1)
1 -1 -1 12 10 162±11.93 0.847±0.043
2 1 -1 32 10 123±7.50 0.367±0.075
3 -1 1 12 20 177±9.62 0.464±0.069
4 1 1 32 20 180±7.91 0.495±0.049
5 -1.414 0 7.8 15 185±10.83 0.503±0.035
6 1.414 0 36.1 15 178±6.12 0.480±0.041
7 0 -1.414 22 7.9 161±13.36 0.449±0.028
8 0 1.414 22 22.1 77±6.07 0.116±0.013
9–13 0 0 22 15.0 221±7.75 0.697±0.081
Tab.2  Design matrices for microwave pretreatment conditions and methane production using pretreated hyacinth
Fig.1  NIR spectrum: (a) solid sample and (b) supernatant sample
Fig.2  AFM images: (a) and (b) different parts of hyacinth surfaces pretreated by water-heating, (c) and (d) different parts of hyacinth surfaces pretreated by microwave irradiation
Fig.3  Accumulated CH4 production in blank, control, and microwave pretreatment experiments
Fig.4  Effect of PSC and PT on Hmax: (a) three-dimensional response surface plot and (b) two dimensional contour plot
Fig.5  Effect of PSC and PT on Rmax: (a) three-dimensional response surface plot and (b) two-dimensional contour plot
trial experimental conditions Hmax /(mL·g-sub1) Rmax /(mL·h1·g-sub1)
measured calculated measured calculated
14 PSC= 9 g·L 1 PT= 10 min 180±9.23 170 0.69±0.08 0.76
15 PSC= 15 g·L 1 PT= 20 min 152±3.75 155 0.35±0.09 0.37
16 PSC= 35 g·L 1 PT= 20 min 135±6.82 144 0.51±0.05 0.40
Tab.3  Measured and calculated values for the verification tests
1 Hallin S, Hellman  M, Choudhury M I ,  Ecke F. Relative importance of plant uptake and plant associated denitrification for removal of nitrogen from mine drainage in sub-arctic wetlands. Water Research, 2015, 85: 377–383
https://doi.org/10.1016/j.watres.2015.08.060 pmid: 26360231
2 Singh J, Kalamdhad  A S. Effect of lime on speciation of heavy metals during composting of water hyacinth. Frontiers of Environmental Science & Engineering, 2016, 10(1): 93–102
https://doi.org/10.1007/s11783-014-0704-7
3 Toyama T, Nishimura  Y, Ogata Y ,  Sei K, Mori  K, Ike M . Effects of planting Phragmites australis on nitrogen removal, microbial nitrogen cycling, and abundance of ammonia-oxidizing and denitrifying microorganisms in sediments. Environmental Technology, 2015, 37(4): 1–8
pmid: 26198662
4 Lyubenova L, Schröder  P. Plants for waste water treatment—effects of heavy metals on the detoxification system of Typha latifolia. Bioresource Technology, 2011, 102(2): 996–1004
https://doi.org/10.1016/j.biortech.2010.09.072 pmid: 20951580
5 Woon K S, Lo  I M C. A proposed framework of food waste collection and recycling for renewable biogas fuel production in Hong Kong. Waste Management (New York, N.Y.), 2016, 47(Pt A): 3–10
https://doi.org/10.1016/j.wasman.2015.03.022 pmid: 25890872
6 Spears B M, Mackay  E B, Yasseri  S, Gunn I D ,  Waters K E ,  Andrews C ,  Cole S, De Ville  M, Kelly A ,  Meis S, Moore  A L, Nürnberg  G K, van Oosterhout  F, Pitt J A ,  Madgwick G ,  Woods H J ,  Lürling M . A meta-analysis of water quality and aquatic macrophyte responses in 18 lakes treated with lanthanum modified bentonite (Phoslock(®)). Water Research, 2016, 97: 111–121 doi:10.1016/j.watres.2015.08.020
pmid: 26433547
7 De Philippis R . Biotech for bioenergy. Process Biochemistry, 2012, 47(11): 1563–1563
https://doi.org/10.1016/j.procbio.2012.11.011
8 Climent M, Ferrer  I, Baeza M D ,  Artola A ,  Vazquez F ,  Font X. Effects of thermal and mechanical pretreatments of secondary sludge on biogas production under thermophilic conditions. Chemical Engineering Journal, 2007, 133(1–3): 335–342
https://doi.org/10.1016/j.cej.2007.02.020
9 Park B, Ahn  J H, Kim  J, Hwang S . Use of microwave pretreatment for enhanced anaerobiosis of secondary sludge. Water Science Technology, 2004, 50(9): 17–23
pmid: 15580990
10 Saha M, Eskicioglu  C, Marin J . Microwave, ultrasonic and chemo-mechanical pretreatments for enhancing methane potential of pulp mill wastewater treatment sludge. Bioresource Technology, 2011, 102(17): 7815–7826
https://doi.org/10.1016/j.biortech.2011.06.053 pmid: 21727004
11 Taherzadeh M J ,  Karimi K . Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. International Journal of Molecular Sciences, 2008, 9(9): 1621–1651
https://doi.org/10.3390/ijms9091621 pmid: 19325822
12 Zhao B H, Yue  Z B, Ni  B J, Mu  Y, Yu H Q ,  Harada H . Modeling anaerobic digestion of aquatic plants by rumen cultures: cattail as an example. Water Research, 2009, 43(7): 2047–2055 doi:10.1016/j.watres.2009.02.006
pmid: 19297004
13 Wu C H, Zhou  H, Yang F Y ,  Zhang Y W ,  Gao F Q . Microwave pretreatments of switchgrass leaf and stem fractions to increase methane production. BioResources, 2015, 10(3): 3922–3933
https://doi.org/10.15376/biores.10.3.3922-3933
14 Jackowiak D, Frigon  J C, Ribeiro  T, Pauss A ,  Guiot S . Enhancing solubilisation and methane production kinetic of switchgrass by microwave pretreatment. Bioresource Technology, 2011, 102(3): 3535–3540
https://doi.org/10.1016/j.biortech.2010.11.069 pmid: 21147525
15 Ferreira L C, Nilsen  P J, Fdz-Polanco  F, Perez-Elvira S I . Biomethane potential of wheat straw: influence of particle size, water impregnation and thermal hydrolysis. Chemical Engineering Journal, 2014, 242: 254–259
https://doi.org/10.1016/j.cej.2013.08.041
16 Theuretzbacher F, Lizasoain  J, Lefever C ,  Saylor M K ,  Enguidanos R ,  Weran N ,  Gronauer A ,  Bauer A . Steam explosion pretreatment of wheat straw to improve methane yields: investigation of the degradation kinetics of structural compounds during anaerobic digestion. Bioresource Technology, 2015, 179: 299–305
https://doi.org/10.1016/j.biortech.2014.12.008 pmid: 25549903
17 Monlau F, Latrille  E, Da Costa A C ,  SteyerJ P ,  Carrère H . Enhancement of methane production from sunflower oil cakes by dilute acid pretreatment. Applied Energy, 2013, 102: 1105–1113
https://doi.org/10.1016/j.apenergy.2012.06.042
18 Zhu S D, Wu  Y X, Yu  Z N, Liao  J T, Zhang  Y. Pretreatment by microwave/alkali of rice straw and its enzymic hydrolysis. Process Biochemistry, 2005, 40(9): 3082–3086
https://doi.org/10.1016/j.procbio.2005.03.016
19 Zhou S, Liu  L, Wang B ,  Xu F, Sun  R C. Microwave-enhanced extraction of lignin from birch in formic acid: Structural characterization and antioxidant activity study. Process Biochemistry, 2012, 47(12): 1799–1806
https://doi.org/10.1016/j.procbio.2012.06.006
20 Li L, Kong  X, Yang F ,  Li D, Yuan  Z, Sun Y . Biogas production potential and kinetics of microwave and conventional thermal pretreatment of grass. Applied Biochemistry and Biotechnology, 2012, 166(5): 1183–1191
https://doi.org/10.1007/s12010-011-9503-9 pmid: 22205322
21 Kitchaiya P, Intanakul  P, Krairiksh M . Enhancement of enzymatic hydrolysis of lignocellulosic wastes by microwave pretreatment under atmospheric-pressure. Journal of Wood Chemistry and Technology, 2003, 23(2): 217–225
https://doi.org/10.1081/WCT-120021926
22 Hu Z H, Yue  Z B, Yu  H Q, Liu  S Y, Harada  H, Li Y Y . Mechanisms of microwave irradiation pretreatment for enhancing anaerobic digestion of cattail by rumen microorganisms. Applied Energy, 2012, 93: 229–236
https://doi.org/10.1016/j.apenergy.2011.12.015
23 Su H B, Cheng  J, Zhou J H ,  Song W L ,  Cen K F . Hydrogen production from water hyacinth through dark- and photo-fermentation. International Journal of Hydrogen Energy, 2010, 35(17): 8929–8937
https://doi.org/10.1016/j.ijhydene.2010.06.035
24 Ding L K, Cheng  J, Yue L C ,  Liu J Z ,  Zhang L ,  Zhou J H ,  Cen K F . Fermentative hydrogen and methane co-production from pretreated Spartina anglica biomass with optimal saccharification effect under acid/alkali-assisted steam/microwave heating and enzymolysis. Energy Conversion and Management, 2016, 127: 554–560
https://doi.org/10.1016/j.enconman.2016.09.045
25 Cheng J, Lin  R C, Song  W L, Xia  A, Zhou J H ,  Cen K F . Enhancement of fermentative hydrogen production from hydrolyzed water hyacinth with activated carbon detoxification and bacteria domestication. International Journal of Hydrogen Energy, 2015, 40(6): 2545–2551
https://doi.org/10.1016/j.ijhydene.2014.12.097
26 Cheng J, Xia  A, Su H B ,  Song W L ,  Zhou J H ,  Cen K F . Promotion of H2 production by microwave-assisted treatment of water hyacinth with dilute H2SO4 through combined dark fermentation and photofermentation. Energy Conversion and Management, 2013, 73: 329–334 doi:10.1016/j.enconman.2013.05.018
27 Lin R, Cheng  J, Song W ,  Ding L, Xie  B, Zhou J ,  Cen K. Characterisation of water hyacinth with microwave-heated alkali pretreatment for enhanced enzymatic digestibility and hydrogen/methane fermentation. Bioresource Technology, 2015, 182: 1–7
https://doi.org/10.1016/j.biortech.2015.01.105 pmid: 25668753
28 Wasser S. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Applied Microbiology and Biotechnology, 2002, 60(3): 258–274
https://doi.org/10.1007/s00253-002-1076-7 pmid: 12436306
29 Xie Y, Chen  L, Liu R . Oxidation of AOX and organic compounds in pharmaceutical wastewater in RSM-optimized-Fenton system. Chemosphere, 2016, 155: 217–224
https://doi.org/10.1016/j.chemosphere.2016.04.057 pmid: 27115846
30 Guo Y, Wu  C F, Wang  Q H, Yang  M, Huang Q Q ,  Magep M ,  Zheng T L . Wastewater-nitrogen removal using polylactic acid/starch as carbon source: optimization of operating parameters using response surface methodology. Frontiers of Environmental Science & Engineering, 2016, 10(4): 6
https://doi.org/10.1007/s11783-016-0845-y
31 APHA A, WEF. Standard Methods for the Examination of Water and Wastewater, 19th ed. Washington, DC: American Public Health Association, 1995
32 de la Hoz A ,  Díaz-Ortiz A ,  Moreno A . Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chemical Society Reviews, 2005, 34(2): 164–178 PMID:15672180 doi:10.1039/B411438H
33 Lestander T A ,  Samuelsson R . Prediction of resin and fatty acid content of biorefinery feedstock by on-line near-infrared (NIR) spectroscopy. Energy & Fuels, 2010, 24(9): 5148–5152
https://doi.org/10.1021/ef1004682
34 Zhao Y, Lu  W J, Chen  J J, Zhang  X F, Wang  H T. Research progress on hydrothermal dissolution and hydrolysis of lignocellulose and lignocellulosic waste. Frontiers of Environmental Science & Engineering, 2014, 8(2): 151–161
https://doi.org/10.1007/s11783-013-0607-z
35 Hu Z H, Wen  Z Y. Enhancing enzymatic digestibility of switchgrass by microwave-assisted alkali pretreatment. Biochemical Engineering Journal, 2008, 38(3): 369–378
https://doi.org/10.1016/j.bej.2007.08.001
[1] Qinxue Wen, Shuo Yang, Zhiqiang Chen. Mesophilic and thermophilic anaerobic digestion of swine manure with sulfamethoxazole and norfloxacin: Dynamics of microbial communities and evolution of resistance genes[J]. Front. Environ. Sci. Eng., 2021, 15(5): 94-.
[2] Haoran Feng, Min Liu, Wei Zeng, Ying Chen. Optimization of the O3/H2O2 process with response surface methodology for pretreatment of mother liquor of gas field wastewater[J]. Front. Environ. Sci. Eng., 2021, 15(4): 78-.
[3] Ying Xu, Hui Gong, Xiaohu Dai. High-solid anaerobic digestion of sewage sludge: achievements and perspectives[J]. Front. Environ. Sci. Eng., 2021, 15(4): 71-.
[4] Mona Akbar, Muhammad Farooq Saleem Khan, Ling Qian, Hui Wang. Degradation of polyacrylamide (PAM) and methane production by mesophilic and thermophilic anaerobic digestion: Effect of temperature and concentration[J]. Front. Environ. Sci. Eng., 2020, 14(6): 98-.
[5] Yan Zhang, Yuyan Zhang, Xue Li, Xiaohan Zhao, Cosmos Anning, John Crittenden, Xianjun Lyu. Photocatalytic water splitting of ternary graphene-like photocatalyst for the photocatalytic hydrogen production[J]. Front. Environ. Sci. Eng., 2020, 14(4): 69-.
[6] Ziming Zhao, Wenjun Sun, Madhumita B. Ray, Ajay K Ray, Tianyin Huang, Jiabin Chen. Optimization and modeling of coagulation-flocculation to remove algae and organic matter from surface water by response surface methodology[J]. Front. Environ. Sci. Eng., 2019, 13(5): 75-.
[7] Xiaomeng Wang, Ning Li, Jianye Li, Junjun Feng, Zhun Ma, Yuting Xu, Yongchao Sun, Dongmei Xu, Jian Wang, Xueli Gao, Jun Gao. Fluoride removal from secondary effluent of the graphite industry using electrodialysis: Optimization with response surface methodology[J]. Front. Environ. Sci. Eng., 2019, 13(4): 51-.
[8] Sijia Ai, Hongyu Liu, Mengjie Wu, Guangming Zeng, Chunping Yang. Roles of acid-producing bacteria in anaerobic digestion of waste activated sludge[J]. Front. Environ. Sci. Eng., 2018, 12(6): 3-.
[9] Yi Chen, Shilong He, Mengmeng Zhou, Tingting Pan, Yujia Xu, Yingxin Gao, Hengkang Wang. Feasibility assessment of up-flow anaerobic sludge blanket treatment of sulfamethoxazole pharmaceutical wastewater[J]. Front. Environ. Sci. Eng., 2018, 12(5): 13-.
[10] Kishore Gopalakrishnan, Javad Roostaei, Yongli Zhang. Mixed culture of Chlorella sp. and wastewater wild algae for enhanced biomass and lipid accumulation in artificial wastewater medium[J]. Front. Environ. Sci. Eng., 2018, 12(4): 14-.
[11] Zechong Guo, Lei Gao, Ling Wang, Wenzong Liu, Aijie Wang. Enhanced methane recovery and exoelectrogen-methanogen evolution from low-strength wastewater in an up-flow biofilm reactor with conductive granular graphite fillers[J]. Front. Environ. Sci. Eng., 2018, 12(4): 13-.
[12] Panagiotis G. Kougias, Irini Angelidaki. Biogas and its opportunities—A review[J]. Front. Environ. Sci. Eng., 2018, 12(3): 14-.
[13] Yulun Nie, Xike Tian, Zhaoxin Zhou, Yu-You Li. Impact of food to microorganism ratio and alcohol ethoxylate dosage on methane production in treatment of low-strength wastewater by a submerged anaerobic membrane bioreactor[J]. Front. Environ. Sci. Eng., 2017, 11(6): 6-.
[14] Conor Dennehy, Peadar G. Lawlor, Yan Jiang, Gillian E. Gardiner, Sihuang Xie, Long D Nghiem, Xinmin Zhan. Greenhouse gas emissions from different pig manure management techniques: a critical analysis[J]. Front. Environ. Sci. Eng., 2017, 11(3): 11-.
[15] Mengchuan Shui, Feng Ji, Rui Tang, Shoujun Yuan, Xinmin Zhan, Wei Wang, Zhenhu Hu. Impact of roxarsone on the UASB reactor performance and its degradation[J]. Front. Environ. Sci. Eng., 2016, 10(6): 4-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed