Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2017, Vol. 11 Issue (4) : 14    https://doi.org/10.1007/s11783-017-0969-8
RESEARCH ARTICLE
Pollutant reduction effectiveness of low-impact development drainage system in a campus
Shuhan Zhang(), Yingying Meng, Jiao Pan, Jiangang Chen
Beijing Water Science and Technology Institute, Chegongzhuang West Road 21, Haidian District, Beijing 100048, China
 Download: PDF(1671 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The average reused rainwater was 5256 m3 annually in the school.

The runoff removal rate was 80.37% annually in the school.

Runoff pollutant concentration was positively related with the rainfall interval.

The NSP reduction effectiveness of the LID system was very obvious.

Building a rainwater system based on the idea of low-impact development (LID) is an important aspect of the current “sponge city” construction in China. The “sponge city” concept emphasizes that the runoff can permeate the soil or be stored temporarily, and rainwater could be used again when it is needed. Beijing is one of the earliest cities to study rainwater harvesting and LID techniques in China. Through long-term monitoring of rainfall, runoff flow, and water quality of a campus demonstration project in Beijing, the runoff quantity and pollutant concentration variations have been analyzed. Furthermore, the runoff reduction effects of single LID measure, such as green roof, filtration chamber, and permeable pavement, have been investigated. Additionally, the overall reduction effectiveness of the LID system on the average annual rainfall runoff and pollution load has been discussed. Preliminary studies suggest that runoff pollutant concentration is positively correlated with the rainfall interval time, and the longer rainfall interval time leads to higher runoff pollutant concentrations. The very good outflow quality of the rainwater harvesting system could satisfy the reclaimed water quality standard for scenic entertainment use. The non-point-source pollution reduction effects of the LID system are obvious because the pollutants could be removed by filtration on the one hand and the pollution load could be reduced because of the significantly reduced outflow on the other hand.

Keywords Low-impact development      Rainwater harvesting      Non-point-source pollution reduction      Campus     
Corresponding Author(s): Shuhan Zhang   
Issue Date: 25 July 2017
 Cite this article:   
Shuhan Zhang,Yingying Meng,Jiao Pan, et al. Pollutant reduction effectiveness of low-impact development drainage system in a campus[J]. Front. Environ. Sci. Eng., 2017, 11(4): 14.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-017-0969-8
https://academic.hep.com.cn/fese/EN/Y2017/V11/I4/14
Fig.1  Sketch map of LID system in researched campus
Fig.2  Runoff reduction effectiveness. (a) Correlation between rainfall intensity and peak flow retardation time, (b) correlation between rainfall intensity and runoff coefficient, (c) runoff producing time in plastic circular runway, (d) correlation between rainfall intensity and runoff depth
Fig.3  Water quality characteristics of collection system. (a) Roof runoff quality in the same rainfall, (b) roof runoff quality in different rainfalls, (c) runoff quality of plastic circular runway in the same rain, (d) runoff quality of plastic circular runway in different rainfalls
Fig.4  Water quality in circular groove in different rainfalls
datepollutantrunoff from plastic circular runway /(mg·L-1)runoff from circular groove /(mg·L-1)concentration removal rate /%
July 29COD16.642?153.01
SS662069.70
NH3-N2.441.9420.49
August 9COD20416718.14
SS741875.68
NH3-N5.042.6447.62
Tab.1  Reduction effectiveness of some pollutants in precipitations on July 29 and August 9
Fig.5  Infiltrated water quality of permeable football field in different rainfalls
Fig.6  Water quality in reservoir in different rainfalls
Fig.7  Quality of surface water and infiltration water of football field in different rainfalls
1 Dietz M E. Low impact development practices: a review of current research and recommendations for future directions. Water, Air, and Soil Pollution, 2007, 186(1): 351–363
https://doi.org/10.1007/s11270-007-9484-z
2 Khan S, Stenstorm M K, Lau S L, Kayhanian M. Oil and grease measurement in highway runoff-sampling time and event mean concentrations. Journal of Environmental Engineering, 2006, 132(3): 415–422
https://doi.org/10.1061/(ASCE)0733-9372(2006)132:3(415)
3 Mcduffie E, Mallari N, Pate D, Smith B, Zeder L M. A study of ecosystem services provided by a storm water retrofit system on a public school campus in orange county, North Carolina. Sustainability the Journal of Record, 2015, 8(2): 85–94
https://doi.org/10.1089/SUS.2015.0016
4 Walsh C J, Kunapo J. The importance of upland flow paths in determining urban effects on stream ecosystems. Freshwater Science, 2009, 28(4): 977–990
5 Chow M F, Yusop Z, Shirazi S M. Storm runoff quality and pollutant loading from commercial, residential, and industrial catchments in the tropic. Environmental Monitoring and Assessment, 2013, 185(10): 8321–8331
https://doi.org/10.1007/s10661-013-3175-6 pmid: 23591675
6 Li W, Shen Z, Tian T, Liu R, Qiu J. Temporal variations of heavy metal pollution in urban stormwater runoff. Frontiers of Environmental Science & Engineering, 2012, 6(5): 692–700
https://doi.org/10.1007/s11783-012-0444-5
7 Wengrove M E, Ballestero T P. Upstream to downstream: stormwater quality in Mayagüez, Puerto Rico. Environmental Monitoring and Assessment, 2012, 184(8): 5025–5034
https://doi.org/10.1007/s10661-011-2318-x pmid: 21927787
8 Environmental Protection Agency. Water: Outreach & Communication-Nonpoint Source Pollution: The Nation’s Largest Water Quality Problem.  (last accessed  01/18/2017)
9 Schueler T, Claytor R. Maryland Stormwater Design Manual. Maryland Department of the Environment Baltimore, MD, 2000
10 United States Environmental Protection Agency. Storm Water Technology Fact Sheet. Washington, DC; USEPA, 1999, 1–10
11 Jia H F, Yao H R, Yu SL. Advances in LID BMPs research and practices for urban runoff control in China. Frontiers of Environmental Science & Engineering, 2013, 7(5): 709–720
https://doi.org/10.1007/s11783-013-0557-5
12 Burns M J, Fletcher T D, Walsh C J, Ladson A R, Hatt B E. Hydrologic shortcomings of conventional urban stormwater management and opportunities for reform. Landscape and Urban Planning, 2012, 105(3): 230–240
https://doi.org/10.1016/j.landurbplan.2011.12.012
13 Burns M J, Fletcher T D, Duncan H P, Hatt B E, Ladson A R, Walsh C J. The performance of rainwater tanks for stormwater retention and water supply at the household scale: an empirical study. Hydrological Processes, 2015, 29(1): 152–160
https://doi.org/10.1002/hyp.10142
14 Thomas N D, Andrew J R. Municipal Stormwater Management. Washington, DC: Lewis Publishers, 2002.
15 Mu H Z, Zheng T, Huang Y C, Zhang C P, Liu C. Reducing non-point source pollution with enhancing infiltration. Journal of Environmental Sciences (China), 2006, 18(1): 115–119
pmid: 20050558
16 Murakami M, Sato N, Anegawa A, Nakada N, Harada A, Komatsu T, Takada H, Tanaka H, Ono Y, Furumai H. Multiple evaluations of the removal of pollutants in road runoff by soil infiltration. Water Research, 2008, 42(10-11): 2745–2755
https://doi.org/10.1016/j.watres.2008.02.004 pmid: 18328527
17 Davis A P, Shokouhian M, Sharma H, Minami C. Water quality improvement through bioretention media: nitrogen and phosphorus removal. Water Environment Research, 2006, 78(3): 284–293
https://doi.org/10.2175/106143005X94376 pmid: 16629269
18 Chen C F, Lin J Y, Chen Y L. Evaluating LID runoff control efficiency in Taipei Tech Eco-campus with SUSTAIN model. 2013 International Low Impact Development Symposium, 2013. (in Chinese)
19 Jia H, Wang X, Ti C, Zhai Y, Field R, Tafuri A N, Cai H, Yu S L. Field monitoring of a LID-BMP treatment train system in China. Environmental Monitoring and Assessment, 2015, 187(6): 373
https://doi.org/10.1007/s10661-015-4595-2 pmid: 26009159
20 Ihsan M, Setiawan B I, Pandjaitan N H. Design of zero runoff system at IPB Darmaga Campus, Bogor, West Java. Jurnal TeknikSipil Dan Lingkungan, 2016, 1(1): 1–9
21 Stevens H. Stormwater Retrofit at Mt. Tabor Middle School: Lessons Learned about Designing Landscape Systems at Schools. International Low Impact Development Conference, 2014(333): 1–10
22 Zhao R, Zhang S H, Chen J G. Low-impact development of campus rainwater system application case study. China Flood Control and Drought, 2010, 5 (25): 80–82 (in Chinese)
23 Zhao J Q. Urban Surface Runoff Pollution and Control. Beijing: China Environmental Science Press, 2002 (in Chinese)
[1] Hyunju Jeong, Osvaldo A. Broesicke, Bob Drew, Duo Li, John C. Crittenden. Life cycle assessment of low impact development technologies combined with conventional centralized water systems for the City of Atlanta, Georgia[J]. Front. Environ. Sci. Eng., 2016, 10(6): 1-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed