Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2018, Vol. 12 Issue (1) : 1    https://doi.org/10.1007/s11783-017-0970-2
REVIEW ARTICLE
Phenolic compounds removal by wet air oxidation based processes
Linbi Zhou1,2, Hongbin Cao1,2, Claude Descorme3, Yongbing Xie2()
1. School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
2. Division of Environmental Engineering and Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
3. Institut de recherches sur la catalyse et l’environnement de Lyon (IRCELYON), CNRS, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex, France
 Download: PDF(563 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Different reaction parameters are emphasized in the WAO process.

Homogenous catalysts and heterogeneous catalysts are extensively discussed.

Mechanism and kinetic of WAO are elaborated.

Three kinds of the reactors for CWAO are compared.

Integration of CWAO with biological degradation is discussed.

Wet air oxidation (WAO) and catalytic wet air oxidation (CWAO) are efficient processes to degrade organic pollutants in water. In this paper, we especially reviewed the WAO and CWAO processes for phenolic compounds degradation. It provides a comprehensive introduction to the CWAO processes that could be beneficial to the scientists entering this field of research. The influence of different reaction parameters, such as temperature, oxygen pressure, pH, stirring speed are analyzed in detail; Homogenous catalysts and heterogeneous catalysts including carbon materials, transitional metal oxides and noble metals are extensively discussed, among which Cu based catalysts and Ru catalysts were shown to be the most active. Three different kinds of the reactor implemented for the CWAO (autoclave, packed bed and membrane reactors) are illustrated and compared. To enhance the degradation efficiency and reduce the cost of the CWAO process, biological degradation can be combined to develop an integrated technology.

Keywords Wet air oxidation      Catalytic wet air oxidation      Phenolic compounds      Heterogeneous catalysts      Mechanism     
Corresponding Author(s): Yongbing Xie   
Issue Date: 12 July 2017
 Cite this article:   
Linbi Zhou,Hongbin Cao,Claude Descorme, et al. Phenolic compounds removal by wet air oxidation based processes[J]. Front. Environ. Sci. Eng., 2018, 12(1): 1.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-017-0970-2
https://academic.hep.com.cn/fese/EN/Y2018/V12/I1/1
Fig.1  WAO of phenol [PO2 = 0.4 MPa, CPhenol = 0.01mol·L1]. (a) Evaluation of the relative concentration of phenol (Cph/Cph0) upon reaction at ○483K, ▲473K, ●l463K, △458K, █448K; (b) Evaluation of the COD removal at ▲483K, □473K, △463K, █448K [18]
Fig.2  Intermediates produced in the WAO of phenol at 200°C. (a) Under excess of oxygen; (b) Under excess of phenol [17]
Fig.3  Reaction pathway of phenol [17]
substratereaction
condition
phenol/TOC removal/%intermediates
o-cresol265°C, 2 bar95/76oxalic acid, acetic acid, succinic acid, malonic acid, maleic acid, fumaric acid, 4-hydroxybenzoic acid, hydroquinone, p-benzoquinone, phenol.
265°C, 9 bar100/85
phenol265°C, 2 bar26/14oxalic acid, acetic acid, succinic acid, malonic acid, maleic acid, formic acid, fumaric acid, 4-hydroxybenzoic acid, 2-hydroxybenzoic acid, hydroquinone, p-benzoquinone.
265°C, 9 bar90/73
o-chlorophenol265°C, 2 bar97/81oxalic acid, acetic acid, succinic acid, malonic acid, phenol, HCl.
265°C, 9 bar99/86
Tab.1  Most common intermediates in the WAO of phenolic compounds [34]
Fig.4  SEM images of the functionalized MWCNTs (a), CNFs (b) and graphite (c) [56]
catalystreaction conditionconveration of substrates/%TOC (COD) removal/%metal leachingreference
Fe/ACCPhenol = 1000 mg·L-1, Pair = 8 atm, t = 400 K, catalyst: 2.5 g, pH 3.5, reactor: trickle bed, 350 min7060[57]
Cu(17.8%wt)/MCM-41CPhenol = 1300 mg·L-1PO2 = 2.0 MPa, t = 150°C, catatlyst:1 g·L-1
batch reactor, 2 h
905059.8%[65]
CPhenol = 1300 mg·L-1, t = 200°C, PO2 = 3.4MPa, catatlyst:1 g·L-1,
batch reactor, 2 h
10090>59.8%[65]
35%CuO-65%ZnOCPhenol = 3000 mg·L-1, PO2 = 300 psig, t = 403 K, catalyst: 5 g·L-1
reactor: autoclave, 1000 r·min-1, 2 h
100//[42]
26%CuO-74%Cu chromiteCPhenol = 3000 mg·L-1, PO2 = 300 psig, t = 393 K, catalyst: 5 g·L-1
reactor: autoclave, 1000 r·min-1, 2 h
100//[42]
CuO-85-95%Al2O3CPhenol = 3000 mg·L-1, PO2 = 300 psig, t = 393 K, catalyst: 5 g·L-1
reactor: autoclave, 1000 r·min-1, 2 h
100//[42]
10%CuO-2%ZnO- Al2O3CPhenol = 5000 mg·L-1, t = 140°C, PO2 = 0.9 MPa, pH:5.9, packed bed reactor, 192 h40/Cu2+≤2%[43]
10%CuO-2%Fe2O3- Al2O3CPhenol = 5000 mg·L-1, t = 140°C, PO2 = 0.9 MPa, pH:5.9, packed bed reactor, 192 h30/Cu2+≤2%[43]
10%CuO-2%CoO- Al2O3CPhenol = 5000 mg·L-1, t = 140°C, PO2 = 0.9 MPa, pH:5.9, packed bed reactor, 192 h25/Cu2+≤2%[43]
10%CuO-2%MnO2- Al2O3CPhenol = 5000 mg·L-1, t = 140°C, PO2 = 0.9 MPa, pH:5.9, packed bed reactor, 192 h20/Cu2+≤2%[43]
10%CuO- Al2O3CPhenol = 5000 mg·L-1, t = 140°C, PO2 = 0.9 MPa, pH:5.9, packed bed reactor, 192 h25/Cu2+≤2%[43]
42wt%CuO-47wt%ZnO-Al2O3CPhenol = 0.0532 mol·L-1, PO2 = 5.6 bar, catalyst: 5 g·L-1
t = 130°C, batch reactor, 1000 r·min-1, 2 h
10090/[66]
Cu0.10Zn0.90Al1.90Fe0.10O4CPhenol = 4.29 g·L-1, PO2 = 10 bar, t = 150°C,
catalyst:25 g·L-1, autoclave, 800 r·min-1, pH: 5.9, 2 h
100COD:95Cu2+:60 mg/L,
Fe2+:4.05 mg/L
[67]
CeO2CPhenol = 400 mg·L-1, PO2 = 10 bar, catalyst: 1 g·L-1,
t = 160°C, reactor: autoclave, 3 h
9080/[67]
CeO2-TiO2CPhenol = 1000 mg·L-1, Pair = 30 bar, catalyst: 4 g·L-1
t = 150°C, batch reactor, 2 h
/100(COD)/77(TOC)/[44]
CPhenol = 1000 mg·L-1, Pair = 35 bar, catalyst: 4 g·L-1, t = 140°C, packed bed reactor, 100 h/91(COD)/80(TOC)Ce2+:0.2, Ti2+:0.04 mg/L
CeO2(20wt%)/g-Al2O3CPhenol = 1000 mg·L-1, PO2 = 15 bar, catalyst: 3 g·L-1
t = 180°C, autoclave, 2 h
10080/[68]
CuO0.2-Ce0.8O2, (Co-precipitation)CPhenol = 1 g·L-1, PO2 = 0.73 MPa, catalyst: 1 g·L-1, t = 150°C, semi batch CST reactor, 1000 r·min-110085Cu2+:103 mg·L-1[69]
CuO-CeO2(so-gel)CPhenol = 1 g·L-1, t = 150°C, PO2 = 0.73 MPa, catalyst: 1 g·L-1, semi batch CST reactor, 1000 r·min-110090Cu2+:5.7 mg·L-1,Ce:30 mg·L-1[69]
Ce0.80Zr0.20O2CPhenol = 650 mg·L-1, PO2 = 2 MPa, catalyst:1 g·L-1, t = 160°C,
autoclave, 2 h
98.285.2≤0.05 mg·L-1[70]
CuO(wt5%)/CeO2–ZrO2CPhenol = 1000 mg·L-1, PO2 = 10 bar, catalyst: 9 g·L-1
t = 160°C, reactor: autoclave, 800 r·min-1, 3 h
100//[71]
Cu-CeO2/g-Al2O3CPhenol = 1000 mg·L-1, PO2 = 1.5 MPa, catalyst: 3 g·L-1, t = 180°C, autoclave, 4 h100COD removal:95/[67]
Mn-CeO2/g-Al2O3CPhenol = 1000 mg·L-1, PO2 = 1.5 MPa, catalyst: 3 g·L-1, t = 180°C, autoclave, 4 h55COD removal:45/
Ni(20wt%)/CeO2–ZrO2CPhenol = 1000 mg·L-1, PO2 = 1 atm, catalyst: 9 g·L-1,
t = 160°C, autoclave, 800 r·min-1, 3 h
57.8//[72]
Mn(21.4wt%)CeOxCPhenol = 1000 mg·L-1, catalyst:5 g·L-1, t = 110°C, PO2 = 9 bar, autoclave, 800 r·min-1, 3 h10095≤1 mg·L-1[73]
Mn0.6Ce0.4O2CPhenol = 1000 mg·L-1, PO2 = 5 bar, catalyst: 5 g·L-1
t = 110°C, autoclave, 900 r·min-1
9594/[74]
Ce0.75Zr0.25O2CPhenol = 3000 mg·L-1, PO2 = 5 bar, catalyst: 3.8 g·L-1
t = 140°C, autoclave, 800 r·min-1, 7 h
40.252.4/[75]
Ce0.5Mn0.5O2CPhenol = 1000 mg·L-1, PO2 = 5 bar, catalyst: 3.8 g·L-1
t = 140°C, autoclave, 800 r·min-1, 7 h
96.526.8/
g-Al2O3/Ce–MnCPhenol = 1000 mg·L-1, Ptotal: 3.5–4.5 bar, VO2= 60 mL·min-1,
t = 140°C, membrane autoclave, 7 h
92.453.6/
g-Al2O3/Ce–ZrCPhenol = 1000 mg·L-1, Ptotal: 3.5–4.5 bar, VO2 = 60 mL·min-1,
t = 140°C, membrane autoclave, 7 h
43.775.4/
Tab.2  Transition metal applied in CWAO of phenols
Fig.5  Performances of CeO2 and CeO2 supported catalysts in the CWAO of phenol; (a) Conversion of phenol; (b) COD removal. [T:180°C, cat: 3.0 g·L-1, PO2: 1.5 MPa, Ce: 20 wt%, CPhenol:1000 mg·L-1] [82]
catalystreaction conditionconversation of substrates/%removal of TOC(COD)/%reference
(1%-3%)Ru/(0-6.8%)N-CNFsCPhenol = 1000 mg·L-1, t = 140°C, Pair = 10 bar, catalyst: 1.67 g·L-1, 1 h, autoclave, 1200 r·min-19384.7[39]
Ru(1.5wt%)/ CCODPhenol = 5 g·L-1, PO2 = 2 MPa, catalyst: 4 g·L-1, autoclave, t = 160°C, 3 h8513[58]
Ru(1.5wt%)-CeO2(5.5wt%)/CCPhenol = 5 g·L-1 of COD, PO2 = 2 MPa, catalyst: 4 g·L-1, autoclave, t = 160°C, 3 h99.519
Pt/TiO2-CeO2CPhenol = 1000 mg·L-1, PO2 = 10 bar, catalyst: 1 g·L-1, t = 160°C, batch reactor, 1000 r·min-1, 2 h9696[87]
Ce0.75Zr0.25O2/Pt(1.6wt%)CPhenol = 3000 mg/L, PO2 = 5 bar, catalyst: 3.8 g·L-1
t = 140°C, autoclave, 800 r·min-1, 5 h
96.177.8[75]
Pt/TiO2CPhenol = 1000 mg·L-1, PO2 = 10 bar, catalyst: 1 g·L-1, t = 160°C, batch reactor, 1000 r·min-1, 2 h8577[87]
Ru(5%)/CeO2TOCPhenol = 2000 mg·L-1, PO2 = 10 bar, catalyst: 12 mmol, pH= 5.4, t = 200°C, batch reactor, 1000 r·min-1, 1 h/94.8[88]
Ru(5%)/TiO2-CeO2CPhenol = 2.098 g·L-1, PO2 = 20 bar, catalyst: 4 g·L-1, pH= 5.4, t = 160°C, batch reactor, 1000 r·min-1, 1 h99.535[45]
Pt(5%)/TiO2-CeO2CPhenol = 2.098 g·L-1, PO2 = 20 bar, catalyst: 4 g·L-1, pH= 5.4, t = 160°C, batch reactor, 1000 r·min-1, 3 h10087[45]
Ru/ZrO2-CeO2CPhenol = 2.098 g·L-1, PO2 = 20 bar, catalyst: 4 g·L-1, t = 160°C, batch reactor, 1000 r·min-1, 3 h9880[89]
Pt(1%)/ZrO2-CeO2CPhenol = 2.098 g·L-1, PO2 = 20 bar, catalyst: 4 g·L-1, t = 160°C, batch reactor, 1000 r·min-1, 3 h9060[89]
Ru/ZrO2CPentachlorophenol = 2000 mg·L-1, PO2 = 10 bar, catalyst: 1 g·L-1, t = 180°C, batch reactor, 600 r·min-1, 90 min92/[90]
Ru/ZrSiO2CPentachlorophenol = 2000 mg·L-1, PO2 = 10 bar, catalyst: 1 g·L-1, t = 180°C, batch reactor, 600 r·min-1, 90 min10030[90]
Ru(3wt%)/ZrO2-CeO2Cphenol = 2100 mg·L-1, µL = 0.5 mL·min-1,μO2 = 80 mL·min-1, t = 140°C, Pair = 4 MPa, packed-bubble column reactor, 100 h100100[91]
Ru(3wt%)/TiO2Cp-nitrophenol = 5000 mg·L-1, t = 180°C, PO2 = 7.6 bar, catalyst: 3.6 g·L-1, batch reactor, 1000 r·min-1, 480 min9476[92]
Ru(3wt%)/ZrO2Cp-nitrophenol = 5000 mg·L-1, t = 180°C, PO2 = 7.6 bar, catalyst: 3.6 g·L-1, batch reactor, 1000 r·min-1, 480 min9778
Ru(3wt%)/TiO2Cp-nitrophenol = 5000 mg·L-1, CNaCl = 25 g·L-1, t = 180°C, PO2 = 7.6 bar, batch reactor, 1000 r·min-1, 480 min9476
Pt(3wt%)/TiO2Cp-nitrophenol = 5000 mg·L-1, t = 180°C, PO2 = 7.6 bar, catalyst: 3.6 g·L-1, batch reactor, 1000 r·min-1, 480 min9880
Pt(3wt%)/ZrO2Cp-nitrophenol = 5000 mg·L-1, t = 180°C, PO2 = 7.6 bar, catalyst: 3.6 g·L-1, batch reactor, 1000 r·min-1, 480 min9878
PtxAg1-xMnO2/ CeO2CPhenol = 1000 mg·L-1, t = 80°C, PO2 = 0.5 MPa, catalyst: 5 g·L-1, autoclave, 2 h8080(TOC)[93]
1%Ru/5%CeO2-Al2O3(impregnation)CPhenol = 5000 mg·L-1, µL = 1 mL·min-1, t = 80°C, PO2 = 0.5 MPa, μO2 = 0.46 L·min-1, catalyst: 7.5 g·L-1, trickle bed, t = 140°C, PO2 = 7 atm, 7 h3030[94]
1%Ru/5%CeO2-Al2O3 (co-impregnation)CPhenol = 5000 mg·L-1, µL = 1 mL·min-1, t = 80°C, PO2 = 0.5 MPa, μO2 = 0.46 L·min-1, catalyst: 7.5 g·L-1, trickle bed, t = 140°C, PO2 = 7 atm, 7 h2825.4
1%Ru/5%CeO2-Al2O3 (co-precipitation)CPhenol = 5000 mg·L-1, µL = 1 mL·min-1, t = 80°C, PO2 = 0.5 MPa, μO2 = 0.46 L·min-1, catalyst: 7.5 g·L-1, trickle bed, t = 140°C, PO2 = 7 atm, 7 h65
Ru(0.3wt%)/g-Al2O3CCOD = 200000 mg·L-1,PO2 = 3 MPa, μO2 = 150 mL·min-1, catalyst: 7.5 g·L-1, packed-bed reactor, t = 245°C, PO2 = 7 atm, 100 h95COD removal:75-80[95]
Ru(0.3wt%)-Ce/g-Al2O3CCOD = 200000 mg·L-1, PO2 = 3 MPa, μO2 = 150 mL·min-1, catalyst: 7.5 g·L-1, packed-bed reactor, t = 245°C, PO2 = 7 atm, 100 hCOD removal:95
Pt-Ce(1wt%)/ Al2O3(H2PtCl6 as precursor)CPhenol = 1000 mg·L-1, t = 170°C, Pair = 5.05 MPa, 2 h, catalyst: 7.5 g·L-1, autoclave, 1000 r·min-1, 3 h100/[96]
Pt-Ce(1wt%)/ Al2O3(Pt(NH3)4Cl2 as precursor)CPhenol = 1000 mg·L-1, t = 170°C, Pair = 5.05 MPa, 2 h, catalyst: 7.5 g·L-1, autoclave, 1000 r·min-1, 3 h90/
g-Al2O3/Ce-Zr-Pt(1.6wt%)CPhenol = 1000 mg·L-1,Ptotal: 3.5-4.5 bar, VO2 = 60 mL·min-1, t = 140°C, membrane autoclave, 7 h42.766.7[75]
g-Al2O3/Ce-Mn-Pt (1.6wt%)CPhenol = 1000 mg·L-1, Ptotal: 3.5-4.5 bar, VO2 = 60 mL·min-1, t = 140°C, membrane autoclave, 7 h54.544.4
Tab.3  Noble metal application in CWAO of phenols
Fig.6  Ru and Ru-Ce catalyst performances in the COD removal [initial COD: 200000 mg·L-1, T: 245°C, LHSV: 1.5 h-1, reaction pressure: 3.0 MPa, O2 flowing rate: 150 mL·min-1] [95]
Fig.7  (a) p-nitrophenol degradation; (b) TOC abatement in the CWAO using different catalysts [T:180°C, PO2:7.6 bar, cat.0.5 g·L-1] [92]
Fig.8  (a) Catalytic membrane reactor; (b) autoclave reactor; (c) autoclave reactor with membrane diffuser [stirring speed: 800 r·min-1, PO2:3.5-4.5 bar] at CPhenol: 1000-3000 mg·L-1, T: 140°C, catalyst: Pt/g-Al2O3/Ce-Zr, cat.3.8 g·L-1 [75]
1 Autenrieth R L, Bonner J S, Akgerman A, Okaygun M, McCreary E M. Biodegradation of phenolic watstes. Journal of Hazardous Materials, 1991, 28(1–2): 29–53
https://doi.org/10.1016/0304-3894(91)87004-L
2 Stich H F. The beneficial and hazardous effects of simple phenolic-compounds. Mutation Research, 1991, 259(3–4): 307–324
https://doi.org/10.1016/0165-1218(91)90125-6
3 Mohammadi S, Kargari A, Sanaeepur H, Abbassian K, Najafi A, Mofarrah E. Phenol removal from industrial wastewaters: a short review. Desalination and Water Treatment, 2014, 53(8): 2215–2234
https://doi.org/10.1080/19443994.2014.883327
4 Rappoport Z. The Chemistry of Phenols. New York: John Wiley & Sons, 2004
5 Veeresh G S, Kumar P, Mehrotra I. Treatment of phenol and cresols in upflow anaerobic sludge blanket (UASB) process: a review. Water Research, 2005, 39(1): 154–170
https://doi.org/10.1016/j.watres.2004.07.028
6 Ribeiro A R, Nunes O C, Pereira M F, Silva A M. An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched directive 2013/39/EU. Environment International, 2015, 75: 33–51
https://doi.org/10.1016/j.envint.2014.10.027
7 Andreozzi R, Caprio V, Insola A, Marotta R. Advanced oxidation processes (AOP) for water purification and recovery. Catalysis Today, 1999, 53(1): 51–59
https://doi.org/10.1016/S0920-5861(99)00102-9
8 Debellefontaine H, Chakchouk M, Foussard J N, Tissot D, Striolo P. Treatment of organic aqueous wastes: wet air oxidation and wet peroxide oxidation(R). Environmental Pollution, 1996, 92(2): 155–164
https://doi.org/10.1016/0269-7491(95)00100-X
9 Dietrich M J, Rall T L, Canney P J. Wet air oxidation of hazardous organics in wastewater. Environment and Progress, 1985, 4(3): 171–177
https://doi.org/10.1002/ep.670040312
10 Freeman H. Standard Handbook of Hazardous Waste Treatment and Disposal. New York: McGraw-Hill Book Co., 1989
11 Kim K H, Ihm S K. Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters: a review. Journal of Hazardous Materials, 2011, 186(1): 16–34
https://doi.org/10.1016/j.jhazmat.2010.11.011
12 Kolaczkowski S T, Plucinski P, Beltran F J, Rivas F J, McLurgh D B. Wet air oxidation: a review of process technologies and aspects in reactor design. Chemical Engineering Journal, 1999, 73(2): 143–160
https://doi.org/10.1016/S1385-8947(99)00022-4
13 Levec J, Pintar A. Catalytic wet-air oxidation processes: a review. Catalysis Today, 2007, 124(3–4): 172–184
https://doi.org/10.1016/j.cattod.2007.03.035
14 Guo J, Al-Dahhan M. Catalytic wet air oxidation of phenol in concurrent downflow and upflow packed-bed reactors over pillared clay catalyst. Chemical Engineering Science, 2005, 60(3): 735–746
https://doi.org/10.1016/j.ces.2004.08.043
15 Imamura S. Catalytic and noncatalytic wet oxidation. Industrial & Engineering Chemistry Research, 1999, 38(5): 1743–1753
https://doi.org/10.1021/ie980576l
16 Bhargava S K, Tardio J, Prasad J, Foger K, Akolekar D B, Grocott S C. Wet oxidation and catalytic wet oxidation. Industrial & Engineering Chemistry Research, 2006, 45(4): 1221–1258
https://doi.org/10.1021/ie051059n
17 Devlin H R, Harris I J. Mechanism of the oxidation of aqueous phenol of aqueous phenol with dissolved oxygen. Industrial & Engineering Chemistry Fundamentals, 1984, 23(4): 387–392
https://doi.org/10.1021/i100016a002
18 Kolaczkowski S T, Beltran F J, McLurgh D B, Rivas F J. Wet air oxidation of phenol: factors that may influence global kinetics. Process Safety and Environmental Protection, 1997, 75(4 B4): 257–265
https://doi.org/10.1205/095758297529138
19 Pintar A, Levec J. Catalytic-oxidation of aqueous p-chlorophenol and p-nitrophenol solutions. Chemical Engineering Science, 1994, 49(24): 4391–4407
https://doi.org/10.1016/S0009-2509(05)80029-6
20 Joglekar H S, Samant S D, Joshi J B. Kinetics of wet air oxidation of phenol and substitued phenols. Water Research, 1991, 25(2): 135–145
https://doi.org/10.1016/0043-1354(91)90022-I
21 Rivas F J, Kolaczkowski S T, Beltran F J, McLurgh D B. Development of a model for the wet air oxidation of phenol based on a free radical mechanism. Chemical Engineering Science, 1998, 53(14): 2575–2586
https://doi.org/10.1016/S0009-2509(98)00060-8
22 Lin S H, Chuang T S. Combined treatment of phenol of phenolic wastewater by wet air oxidation and activated sludge. Toxicological and Environmental Chemistry, 1994, 44(3–4): 243–258
https://doi.org/10.1080/02772249409358063
23 Shibaeva L V. Oxidation of phenol with molecular oxygen in aqueous solutions I. The kinetics of the oxidation of phenol with oxygen. Kinetics and Catalysis, 1969, 10: 832–836
24 Willms R S, Balinsky A M, Reible D D, Wetzel D M, Harrison D P. Aqueous phase oxidation: the intrinsic kinetics of single organic compounds. Industrial & Engineering Chemistry Research, 1987, 26(1): 148–154
https://doi.org/10.1021/ie00061a028
25 Vicente J, Rosal R, Diaz M. Noncatalytic oxidation of phenol in aqueous solutions. Industrial & Engineering Chemistry Research, 2002, 41(1): 46–51
https://doi.org/10.1021/ie010130w
26 Pruden B, Le H. Wet air oxidation of soluble components in waste water. Canadian Journal of Chemical Engineering, 1976, 54(4): 319–325
https://doi.org/10.1002/cjce.5450540413
27 Jaulin L, Chornet E. High shear jet-mixers as two-phase reactors: an application to the oxidation of phenol in aqueous media. Canadian Journal of Chemical Engineering, 1987, 65(1): 64–70
https://doi.org/10.1002/cjce.5450650111
28 Mundale V D, Joglekar H S, Kalam A, Joshi J B. Regeneration of spent acitivated carbon by wet air oxidation. Canadian Journal of Chemical Engineering, 1991, 69(5): 1149–1159
https://doi.org/10.1002/cjce.5450690515
29 Vaidya P D, Mahajani V V. Insight into subcritical wet oxidation of phenol. Advances in Environmental Research, 2002, 6(4): 429–439
https://doi.org/10.1016/S1093-0191(01)00071-5
30 Arena F, Italiano C, Raneri A, Saja C. Mechanistic and kinetic insights into the wet air oxidation of phenol with oxygen (CWAO) by homogeneous and heterogeneous transition-metal catalysts. Applied Catalysis B: Environmental, 2010, 99(1–2): 321–328
https://doi.org/10.1016/j.apcatb.2010.06.039
31 Tufano V. A multi-step kinetic model for phenol oxidation in high-pressure water. Chemical Engineering & Technology, 1993, 16(3): 186–190
https://doi.org/10.1002/ceat.270160307
32 Gopalan S, Savage P E. A reaction network model for phenol oxidation in supercritical water. AIChE Journal, 1995, 41(8): 1864–1873
https://doi.org/10.1002/aic.690410805
33 Gopalan S, Savage P E. Reaction mechanism for phenol oxidation in supercritical water. Journal of Physical Chemistry, 1994, 98(48): 12646–12652
https://doi.org/10.1021/j100099a031
34 Suárez-Ojeda M E, Carrera J, Metcalfe I S, Font J. Wet air oxidation (WAO) as a precursor to biological treatment of substituted phenols: refractory nature of the WAO intermediates. Chemical Engineering Journal, 2008, 144(2): 205–212
https://doi.org/10.1016/j.cej.2008.01.022
35 Arena F, Di Chio R, Gumina B, Spadaro L, Trunfio G. Recent advances on wet air oxidation catalysts for treatment of industrial wastewaters. Inorganica Chimica Acta, 2015, 431: 101–109
https://doi.org/10.1016/j.ica.2014.12.017
36 Fu D M, Zhang F F, Wang L Z, Yang F, Liang X M. Simultaneous removal of nitrobenzene and phenol by homogenous catalytic wet air oxidation. Chinese Journal of Catalysis, 2015, 36(7): 952–956
https://doi.org/10.1016/S1872-2067(15)60835-X
37 Priyanka S V, Srivastava V C, Mall I D. Catalytic oxidation of nitrobenzene by copper loaded activated carbon. Separation and Purification Technology, 2014, 125: 284–290
https://doi.org/10.1016/j.seppur.2014.01.045
38 Messele S A, Soares O S G P, Órfão J J M, Stüber F, Bengoa C, Fortuny A, Fabregat A, Font J. Zero-valent iron supported on nitrogen-containing activated carbon for catalytic wet peroxide oxidation of phenol. Applied Catalysis B: Environmental, 2014, 154–155: 329–338
https://doi.org/10.1016/j.apcatb.2014.02.033
39 Ayusheev A B, Taran O P, Seryak I A, Podyacheva O Y, Descorme C, Besson M, Kibis L S, Boronin A I, Romanenko A I, Ismagilov Z R, Parmon V. Ruthenium nanoparticles supported on nitrogen-doped carbon nanofibers for the catalytic wet air oxidation of phenol. Applied Catalysis B: Environmental, 2014, 146: 177–185
https://doi.org/10.1016/j.apcatb.2013.03.017
40 Podyacheva O Y, Ismagilov Z R, Boronin A I, Kibis L S, Slavinskaya E M, Noskov A S, Shikina N V, Ushakov V A, Ischenko A V. Platinum nanoparticles supported on nitrogen-containing carbon nanofibers. Catalysis Today, 2012, 186(1): 42–47
https://doi.org/10.1016/j.cattod.2011.08.031
41 Barroso-Bogeat A, Alexandre-Franco M, Fernández-González C, Gómez-Serrano V. Preparation of activated carbon-metal oxide hybrid catalysts: textural characterization. Fuel Processing Technology, 2014, 126: 95–103
https://doi.org/10.1016/j.fuproc.2014.04.022
42 Akyurtlu J F, Akyurtlu A, Kovenklioglu S. Catalytic oxidation of phenol in aqueous solutions. Catalysis Today, 1998, 40(4): 343–352
https://doi.org/10.1016/S0920-5861(98)00063-7
43 Fortuny A, Bengoa C, Font J, Fabregat A. Bimetallic catalysts for continuous catalytic wet air oxidation of phenol. Journal of Hazardous Materials, 1999, 64(2): 181–193
https://doi.org/10.1016/S0304-3894(98)00245-3
44 Yang S, Zhu W, Wang J, Chen Z. Catalytic wet air oxidation of phenol over CeO2-TiO2 catalyst in the batch reactor and the packed-bed reactor. Journal of Hazardous Materials, 2008, 153(3): 1248–1253
https://doi.org/10.1016/j.jhazmat.2007.09.084
45 Espinosa de los Monteros A, Lafaye G, Cervantes A, Del Angel G, Barbier J, Torres G. Catalytic wet air oxidation of phenol over metal catalyst (Ru, Pt) supported on TiO2-CeO2 oxides. Catalysis Today, 2015, 258: 564–569
https://doi.org/10.1016/j.cattod.2015.01.009
46 Messele S A. Homogenous and heterogenous aqueous phase oxidation of phenol with fenton like process. Doctoral Thesis universitat Rovira I Virgili 2014
47 Shalagina A E, Ismagilov Z R, Podyacheva O Y, Kvon R I, Ushakov V A. Synthesis of nitrogen-containing carbon nanofibers by catalytic decomposition of ethylene/ammonia mixture. Carbon, 2007, 45(9): 1808–1820
https://doi.org/10.1016/j.carbon.2007.04.032
48 Ribeiro R S, Silva A M T, Figueiredo J L, Faria J L, Gomes H T. Catalytic wet peroxide oxidation: a route towards the application of hybrid magnetic carbon nanocomposites for the degradation of organic pollutants: a review. Applied Catalysis B: Environmental, 2016, 187: 428–460
https://doi.org/10.1016/j.apcatb.2016.01.033
49 Baricot M, Dastgheib S A, Fortuny A, Stüber F, Bengoa Ch, Fabregat A. Catalytic wet air oxidation of phenol by surface modified activated carbons. Canadian Journal of Chemical Engineering, 2004, 69(1): 1–6
50 Janecki D, Szczotka A, Burghardt A, Bartelmus G. Modelling wet-air oxidation of phenol in a trickle-bed reactor using active carbon as a catalyst. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2016, 91(3): 596–607
https://doi.org/10.1002/jctb.4610
51 Fortuny A, Font J, Fabregat A. Wet air oxidation of phenol using active carbon as catalyst. Applied Catalysis B: Environmental, 1998, 19(3–4): 165–173
https://doi.org/10.1016/S0926-3373(98)00072-1
52 Soares O S G P, Rocha R P, Gonçalves A G, Figueiredo J L, Órfão J J M, Pereira M F R. Highly active N-doped carbon nanotubes prepared by an easy ball milling method for advanced oxidation processes. Applied Catalysis B: Environmental, 2016, 192: 296–303
https://doi.org/10.1016/j.apcatb.2016.03.069
53 Yang S, Li X, Zhu W, Wang J, Descorme C. Catalytic activity, stability and structure of multi-walled carbon nanotubes in the wet air oxidation of phenol. Carbon, 2008, 46(3): 445–452
https://doi.org/10.1016/j.carbon.2007.12.006
54 Rocha R P, Sousa J P S, Silva A M T, Pereira M F R, Figueiredo J L. Catalytic activity and stability of multiwalled carbon nanotubes in catalytic wet air oxidation of oxalic acid: The role of the basic nature induced by the surface chemistry. Applied Catalysis B: Environmental, 2011, 104(3–4): 330–336
https://doi.org/10.1016/j.apcatb.2011.03.009
55 Yang S X, Sun Y, Yang H W, Wan J F. Catalytic wet air oxidation of phenol, nitrobenzene and aniline over the multi-walled carbon nanotubes (MWCNTs) as catalysts. Frontiers of Environmental Science & Engineering, 2014, 9(3): 436–443
https://doi.org/10.1007/s11783-014-0681-x
56 Wang J, Fu W, He X, Yang S, Zhu W. Catalytic wet air oxidation of phenol with functionalized carbon materials as catalysts: reaction mechanism and pathway. Joural of Enviromental Sciences, 2014, 26(8): 1741–1749
57 Quintanilla A, Menéndez N, Tornero J, Casas J A, Rodríguez J J. Surface modification of carbon-supported iron catalyst during the wet air oxidation of phenol: Influence on activity, selectivity and stability. Applied Catalysis B: Environmental, 2008, 81(1–2): 105–114
https://doi.org/10.1016/j.apcatb.2007.11.034
58 Oliviero L, Barbier-Jr J, Duprez D, Guerrero-Ruiz A, Bachiller-Baeza B, Rodriguez-Ramos I. Catalytic wet air oxidation of phenol and acrylic acid over Ru/C and Ru-CeO2/C catalysts. Applied Catalysis B: Environmental, 2000, 25(4): 267–275
https://doi.org/10.1016/S0926-3373(99)00141-1
59 Stuber F, Polaert I, Delmas H, Font J, Fortuny A, Fabregat A. Catalytic wet air oxidation of phenol using active carbon: performance of discontinuous and continuous reactors. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2001, 76(7): 743–751
https://doi.org/10.1002/jctb.441
60 Carriazo J, Guelou E, Barrault J, Tatibouet J M, Molina R, Moreno S. Synthesis of pillared clays containing Al, Al-Fe or Al-Ce-Fe from a bentonite: characterization and catalytic activity. Catalysis Today, 2005, 107–08: 126–132
https://doi.org/10.1016/j.cattod.2005.07.157
61 Pires C A, dos Santos A C C, Jordao E. Oxidation of phenol in aqueous solution with copper oxide catalysts supported on  g-Al2O3, pillared clay and TiO2: comparsion of the performance and costs associated with each catalyst. Brazilian Journal of Chemical Engineering, 2015, 32(4): 837–848
https://doi.org/10.1590/0104-6632.20150324s00002232
62 Ksontini N, Najjar W, Ghorbel A. Al-Fe pillared clays: synthesis, characterization and catalytic wet air oxidation activity. Journal of Physics and Chemistry of Solids, 2008, 69(5–6): 1112–1115
https://doi.org/10.1016/j.jpcs.2007.10.069
63 Kloprogge J T. Synthesis of smectites and porous pillared clay catalysts: a review. Journal of Porous Materials, 1998, 5(1): 5–41
https://doi.org/10.1023/A:1009625913781
64 Guo J, Al-Dahhan M. Activity and stability of iron-containing pillared clay catalysts for wet air oxidation of phenol. Applied Catalysis A: General, 2006, 299: 175–184
https://doi.org/10.1016/j.apcata.2005.10.039
65 Wu Q, Hu X, Yue P L, Zhao X S, Lu G Q. Copper/MCM-41 as catalyst for the wet oxidation of phenol. Applied Catalysis B: Environmental, 2001, 32(3): 151–156
https://doi.org/10.1016/S0926-3373(01)00131-X
66 Lin S S Y, Chang D J, Wang C H, Chen C C. Catalytic wet air oxidation of phenol by CeO2 catalyst—effect of reaction conditions. Water Research, 2003, 37(4): 793–800
https://doi.org/10.1016/S0043-1354(02)00422-0
67 Chen I P, Lin S S, Wang C H, Chang S H. CWAO of phenol using CeO2/ g-Al2O3 with promoter effectiveness of promoter addition and catalyst regeneration. Chemosphere, 2007, 66(1): 172–178
https://doi.org/10.1016/j.chemosphere.2006.05.023
68 Chang L Z, Chen I P, Lin S S. An assessment of the suitable operating conditions for the CeO2/ g-Al2O3 catalyzed wet air oxidation of phenol. Chemosphere, 2005, 58(4): 485–492
https://doi.org/10.1016/j.chemosphere.2004.09.011
69 Hocevar S, Krasovec U O, Orel B, Arico A S, Kim H. CWO of phenol on two differently prepared CuO-CeO2 catalysts. Applied Catalysis B: Environmental, 2000, 28(2): 113–125
https://doi.org/10.1016/S0926-3373(00)00167-3
70 Delgado J J, Chen X, Pérez-Omil J A, Rodríguez-Izquierdo J M, Cauqui M A. The effect of reaction conditions on the apparent deactivation of Ce-Zr mixed oxides for the catalytic wet oxidation of phenol. Catalysis Today, 2012, 180(1): 25–33
https://doi.org/10.1016/j.cattod.2011.03.069
71 Parvas M, Haghighi M, Allahyari S. Degradation of phenol via wet air oxidation over CuO/CeO2-ZrO2 nanocatalyst synthesized employing ultrasound energy: physicochemical characterization and catalytic performance. Environmental Technology, 2014, 35(9–12): 1140–1149
https://doi.org/10.1080/09593330.2013.863952
72 Parvas M, Haghighi M, Allahyari S. Catalytic wet air oxidation of phenol over ultrasound-assisted synthesized Ni/CeO2-ZrO2 nanocatalyst used in wastewater treatment. Arabian Journal of Chemistry, 2014
https://doi.org/10.1016/j.arabjc.2014.10.043
73 Arena F, Italiano C, Drago Ferrante G, Trunfio G, Spadaro L. A mechanistic assessment of the wet air oxidation activity of MnCeOx catalyst toward toxic and refractory organic pollutants. Applied Catalysis B: Environmental, 2014, 144: 292–299
https://doi.org/10.1016/j.apcatb.2013.07.025
74 Chen H, Sayari A, Adnot A, Larachi F. Composition-activity effects of Mn-Ce-O composites on phenol catalytic wet oxidation. Applied Catalysis B: Environmental, 2001, 32(3): 195–204
https://doi.org/10.1016/S0926-3373(01)00136-9
75 Gutiérrez M, Pina P, Torres M, Cauqui M A, Herguido J. Catalytic wet oxidation of phenol using membrane reactors: a comparative study with slurry-type reactors. Catalysis Today, 2010, 149(3–4): 326–333
https://doi.org/10.1016/j.cattod.2009.05.027
76 Aihua X, Chenglin S. Catalytic behaviour and copper leaching of Cu0.10Zn0.90Al1.90Fe0.10O4 spinel for catalytic wet air oxidation of phenol. Environmental Technology, 2012, 33(10–12): 1339–1344
77 Toledo J A, Valenzuela M A, Bosch P, Armendariz H, Montoya A, Nava N, Vazquez A. Effect of Al3+ introduction into hydrothermally prepared ZnFe2O4. Applied Catalysis A: General, 2000, 198(1–2): 235–245
https://doi.org/10.1016/S0926-860X(99)00514-1
78 Xu A, Yang M, Qiao R, Du H, Sun C. Activity and leaching features of zinc-aluminum ferrites in catalytic wet oxidation of phenol. Journal of Hazardous Materials, 2007, 147(1–2): 449–456
https://doi.org/10.1016/j.jhazmat.2007.01.026
79 Alejandre A, Medina F, Rodriguez X, Salagre P, Cesteros Y, Sueiras J E. Cu/Ni/Al layered double hydroxides as precursors of catalysts for the wet air oxidation of phenol aqueous solutions. Applied Catalysis B: Environmental, 2001, 30(1–2): 195–207
https://doi.org/10.1016/S0926-3373(00)00233-2
80 Li N, Descorme C, Besson M. Application of Ce0.33Zr0.63Pr0.04O2-supported noble metal catalysts in the catalytic wet air oxidation of 2-chlorophenol: influence of the reaction conditions. Applied Catalysis B: Environmental, 2008, 80(3–4): 237–247
https://doi.org/10.1016/j.apcatb.2007.11.031
81 Lafaye G, Barbier J Jr, Duprez D. Impact of cerium-based support oxides in catalytic wet air oxidation: conflicting role of redox and acid-base properties. Catalysis Today, 2015, 253: 89–98
https://doi.org/10.1016/j.cattod.2015.01.037
82 Chen I P, Lin S S, Wang C H, Chang L, Chang J S. Preparing and characterizing an optimal supported ceria catalyst for the catalytic wet air oxidation of phenol. Applied Catalysis B: Environmental, 2004, 50(1): 49–58
https://doi.org/10.1016/j.apcatb.2003.12.019
83 Yamaguchi T, Ikeda N, Hattori H, Tanabe K. Surface and catalytic propeties of cerium oxide. Journal of Catalysis, 1981, 67(2): 324–330
https://doi.org/10.1016/0021-9517(81)90293-1
84 Jampaiah D, Venkataswamy P, Tur K M, Ippolito S J, Bhargava S K, Reddy B M. Effect of MnOx loading on structural, surface, and catalytic properties of CeO2-MnOx mixed oxides prepared by Sol-Gel method. Zeitschrift fur Anorganische und Allgemeine Chemie, 2015, 641(6): 1141–1149
https://doi.org/10.1002/zaac.201400615
85 Wu X D, Liang Q, Weng D, Fan J, Ran R. Synthesis of CeO2-MnOx mixed oxides and catalytic performance under oxygen-rich condition. Catalysis Today, 2007, 126(3–4): 430–435
https://doi.org/10.1016/j.cattod.2007.06.014
86 Khachatryan L, Lomnicki S, Dellinger B. An expanded reaction kinetic model of the CuO surface-mediated formation of PCDD/F from pyrolysis of 2-chlorophenol. Chemosphere, 2007, 68(9): 1741–1750
https://doi.org/10.1016/j.chemosphere.2007.03.042
87 Rocha M A L, Del Ángel G, Torres-Torres G, Cervantes A, Vázquez A, Arrieta A, Beltramini J N. Effect of the Pt oxidation state and Ce3+/Ce4+ ratio on the Pt/TiO2-CeO2 catalysts in the phenol degradation by catalytic wet air oxidation (CWAO). Catalysis Today, 2015, 250: 145–154
https://doi.org/10.1016/j.cattod.2014.09.016
88 Imamura S, Fukuda I, Ishida S. Wet oxidatrion catalyzed by ruthenium supported on cerium(IV) oxides. Industrial & Engineering Chemistry Research, 1988, 27(4): 718–721
https://doi.org/10.1021/ie00076a033
89 Keav S, Espinosa de los Monteros A, Barbier J, Duprez D. Wet air oxidation of phenol over Pt and Ru catalysts supported on cerium-based oxides: resistance to fouling and kinetic modelling. Applied Catalysis B: Environmental, 2014, 150–151: 402–410
https://doi.org/10.1016/j.apcatb.2013.12.028
90 Wei H, Yan X, He S, Sun C. Catalytic wet air oxidation of pentachlorophenol over Ru/ZrO2 and Ru/ZrSiO2 catalysts. Catalysis Today, 2013, 201: 49–56
https://doi.org/10.1016/j.cattod.2012.07.004
91 Wang J, Zhu W, Yang S, Wang W, Zhou Y. Catalytic wet air oxidation of phenol with pelletized ruthenium catalysts. Applied Catalysis B: Environmental, 2008, 78(1–2): 30–37
https://doi.org/10.1016/j.apcatb.2007.08.014
92 Martín-Hernández M, Carrera J, Suárez-Ojeda M E, Besson M, Descorme C. Catalytic wet air oxidation of a high strength p-nitrophenol wastewater over Ru and Pt catalysts: influence of the reaction conditions on biodegradability enhancement. Applied Catalysis B: Environmental, 2012, 123–124: 141–150
https://doi.org/10.1016/j.apcatb.2012.04.001
93 Hamoudi S, Sayari A, Belkacemi K, Bonneviot L, Larachi F. Catalytic wet oxidation of phenol over PtxAg1-xMnO2/CeO2 catalysts. Catalysis Today, 2000, 62(4): 379–388
https://doi.org/10.1016/S0920-5861(00)00439-9
94 Massa P, Ivorra F, Haure P, Cabello F M, Fenoglio R. Catalytic wet air oxidation of phenol aqueous solutions by 1% Ru/CeO2-Al2O3 catalysts prepared by different methods. Catalysis Communications, 2007, 8(3): 424–428
https://doi.org/10.1016/j.catcom.2006.07.014
95 Yu C, Meng X, Chen G, Zhao P. Catalytic wet air oxidation of high-concentration organic pollutants by upflow packed-bed reactor using a Ru-Ce catalyst derived from a Ru3(CO)12 precursor. RSC Advances, 2016, 6(27): 22633–22638
https://doi.org/10.1039/C5RA27723J
96 Sang-Kyung K, Son-Ki I.Effects of Ce addition and Pt precursor on the activity of Pt/Al2O3 catalysts for wet oxidation of phenol, 2002: 1967–1972
97 Li N, Descorme C, Besson M. Catalytic wet air oxidation of 2-chlorophenol over Ru loaded CexZr1-xO2 solid solutions. Applied Catalysis B: Environmental, 2007, 76(1–2): 92–100
https://doi.org/10.1016/j.apcatb.2007.05.013
98 Manole C C, Julcour-Lebigue C, Wilhelm A M, Delmas H. Catalytic oxidation of 4-hydroxybenzoic acid on activated carbon in batch autoclave and fixed-bed reactors. Industrial & Engineering Chemistry Research, 2007, 46(25): 8388–8396
https://doi.org/10.1021/ie0700314
99 Iojoiu E E, Walmsley J C, Raeder H, Miachon S, Dalmon J A. Catalytic membrane structure influence on the pressure effects in an interfacial contactor catalytic membrane reactor applied to wet air oxidation. Catalysis Today, 2005, 104(2–4): 329–335
https://doi.org/10.1016/j.cattod.2005.03.056
100 Mantzavinos D, Psillakis E. Enhancement of biodegradability of industrial wastewaters by chemical oxidation pre-treatment. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2004, 79(5): 431–454
https://doi.org/10.1002/jctb.1020
101 Guisasola A, Baeza J A, Carrera J, Casas C, Lafuente J. An off-line respirometric procedure to determine inhibition and toxicity of biodegradable compounds in biomass from an industrial WWTP. Water Science and Technology, 2003, 48(11–12): 267–275
102 Mantzavinos D, Sahibzada M, Livingston A G, Metcalfe I S, Hellgardt K. Wastewater treatment: wet air oxidation as a precursor to biological treatment. Catalysis Today, 1999, 53(1): 93–106
https://doi.org/10.1016/S0920-5861(99)00105-4
103 Mantzavinos D, Hellenbrand R, Livingston A G, Metcalfe I S. Beneficial combination of wet oxidation, membrane separation and biodegradation processes for treatment of polymer processing wastewaters. Canadian Journal of Chemical Engineering, 2000, 78(2): 418–422
https://doi.org/10.1002/cjce.5450780219
104 Hellenbrand R, Mantzavinos D, Metcalfe I S, Livingston A G. Integration of wet oxidation and nanofiltration for treatment of recalcitrant organics in wastewater. Industrial & Engineering Chemistry Research, 1997, 36(12): 5054–5062
https://doi.org/10.1021/ie970417m
[1] Kangying Guo, Baoyu Gao, Jie Wang, Jingwen Pan, Qinyan Yue, Xing Xu. Flocculation behaviors of a novel papermaking sludge-based flocculant in practical printing and dyeing wastewater treatment[J]. Front. Environ. Sci. Eng., 2021, 15(5): 103-.
[2] Zhifei Ma, Huali Cao, Fengchun Lv, Yu Yang, Chen Chen, Tianxue Yang, Haixin Zheng, Daishe Wu. Preparation of nZVI embedded modified mesoporous carbon for catalytic persulfate to degradation of reactive black 5[J]. Front. Environ. Sci. Eng., 2021, 15(5): 98-.
[3] Xinshu Liu, Xiaoman Su, Sijie Tian, Yue Li, Rongfang Yuan. Mechanisms for simultaneous ozonation of sulfamethoxazole and natural organic matters in secondary effluent from sewage treatment plant[J]. Front. Environ. Sci. Eng., 2021, 15(4): 75-.
[4] Mariana Valdez-Castillo, Sonia Arriaga. Response of bioaerosol cells to photocatalytic inactivation with ZnO and TiO2 impregnated onto Perlite and Poraver carriers[J]. Front. Environ. Sci. Eng., 2021, 15(3): 43-.
[5] Dongjie Shang, Jianfei Peng, Song Guo, Zhijun Wu, Min Hu. Secondary aerosol formation in winter haze over the Beijing-Tianjin-Hebei Region, China[J]. Front. Environ. Sci. Eng., 2021, 15(2): 34-.
[6] Huibin Guo, Ning Wang, Xiang Li. Antioxidative potential of metformin: Possible protective mechanism against generating OH radicals[J]. Front. Environ. Sci. Eng., 2021, 15(2): 21-.
[7] Jinjin Fu, Quan Zhang, Baocheng Huang, Niansi Fan, Rencun Jin. A review on anammox process for the treatment of antibiotic-containing wastewater: Linking effects with corresponding mechanisms[J]. Front. Environ. Sci. Eng., 2021, 15(1): 17-.
[8] Jianzhi Huang, Huichun Zhang. Redox reactions of iron and manganese oxides in complex systems[J]. Front. Environ. Sci. Eng., 2020, 14(5): 76-.
[9] Sen Liu, Congren Yang, Wei Liu, Longsheng Yi, Wenqing Qin. A novel approach to preparing ultra-lightweight ceramsite with a large amount of fly ash[J]. Front. Environ. Sci. Eng., 2020, 14(4): 62-.
[10] Meng Zhu, Yongming Luo, Ruyi Yang, Shoubiao Zhou, Juqin Zhang, Mengyun Zhang, Peter Christie, Elizabeth L. Rylott. Diphenylarsinic acid sorption mechanisms in soils using batch experiments and EXAFS spectroscopy[J]. Front. Environ. Sci. Eng., 2020, 14(4): 58-.
[11] Siqi Li, Min Zheng, Shuang Wu, Yu Xue, Yanchen Liu, Chengwen Wang, Xia Huang. The impact of ultrasonic treatment on activity of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria in activated sludge[J]. Front. Environ. Sci. Eng., 2019, 13(6): 82-.
[12] Yu Jiang, Beidou Xi, Rui Li, Mingxiao Li, Zheng Xu, Yuning Yang, Shaobo Gao. Advances in Fe(III) bioreduction and its application prospect for groundwater remediation: A review[J]. Front. Environ. Sci. Eng., 2019, 13(6): 89-.
[13] Hang Zhang, Shuo Chen, Haiguang Zhang, Xinfei Fan, Cong Gao, Hongtao Yu, Xie Quan. Carbon nanotubes-incorporated MIL-88B-Fe as highly efficient Fenton-like catalyst for degradation of organic pollutants[J]. Front. Environ. Sci. Eng., 2019, 13(2): 18-.
[14] Yuzhou Deng, Shengpan Peng, Haidi Liu, Shuangde Li, Yunfa Chen. Mechanism of dichloromethane disproportionation over mesoporous TiO2 under low temperature[J]. Front. Environ. Sci. Eng., 2019, 13(2): 21-.
[15] Jianzhang Sun, Baoyu Gao, Yuanxia Luo, Moxi Xue, Xing Xu, Qinyan Yue, Yan Wang. Application and mechanism of polysaccharide extracted from Enteromorpha to remove nano-ZnO and humic acid in coagulation process[J]. Front. Environ. Sci. Eng., 2018, 12(3): 11-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed