Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2018, Vol. 12 Issue (1) : 2    https://doi.org/10.1007/s11783-017-0971-1
RESEARCH ARTICLE
Wastewater treatment by catalytic wet air oxidation process over Al-Fe pillared clays synthesized using microwave irradiation
Halima Sassi1,2, Gwendoline Lafaye1(), Hédi Ben Amor2, Abdelaziz Gannouni2, Mohamed Razak Jeday2, Jacques Barbier-Jr1
1. Institute of Chemistry of Poitiers, University of Poitiers, 86073 Poitiers Cedex 9, France
2. Research Unit of Energy and Environment Gabes, National Engineering School of Gabes (ENIG), 6029 Zrig, Gabes, Tunisia
 Download: PDF(197 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Tunisian clay has been successfully pillared with Al and Fe by microwave irradiation.

Microwave method reduces considerably the synthesis time and the water consumption.

AlFe-pillared clays are highly stable in the severe operating conditions of CWAO.

Oxidation takes place through a heterogeneous mechanism.

Microwave pillared-clays are good candidate for CWAO industrial water treatment.

Microwave irradiation has been used to prepare Al, Fe-pillared clays from a natural Tunisian smectite from the El Hicha deposit (province of Gabes). Chemical analysis, XRD spectra and surface properties evidenced the success of pillaring process. The obtained solids present higher surface area and pore volume than conventionally prepared Al-Fe pillared clays. The main advantages of the microwave methodology are the considerable reduction of the synthesis time and the consumption of water. The microwave-derived Al-Fe pillared clays have been tested for catalytic wet air oxidation (CWAO) of phenol in a stirred tank at 160°C and 20 bar of pure oxygen pressure. These materials are efficient for CWAO of phenol and are highly stable despite the severe operating conditions (acidic media, high pressure, high temperature). The catalyst deactivation was also significantly hindered when compared to conventionally prepared clays. Al-Fe pillared clays prepared by microwave methodology are promising as catalysts for CWAO industrial water treatment.

Keywords Water      Catalytic wet air oxidation      Pillared clays      Microwave      Phenol     
Corresponding Author(s): Gwendoline Lafaye   
Issue Date: 23 June 2017
 Cite this article:   
Halima Sassi,Gwendoline Lafaye,Hédi Ben Amor, et al. Wastewater treatment by catalytic wet air oxidation process over Al-Fe pillared clays synthesized using microwave irradiation[J]. Front. Environ. Sci. Eng., 2018, 12(1): 2.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-017-0971-1
https://academic.hep.com.cn/fese/EN/Y2018/V12/I1/2
preparation
method
catalyst nomenclatureaging of
pillaring solution
intercalation processcalcination
(pillars formation)
conventionalPIL-AlFe1
PIL-AlFe20
24 h at room temperature24 h at room temperature500℃ (2℃·min-1)
for 3 h
microwavePIL-AlFe1M
PIL-AlFe20M
microwave
5 min, P = 200 W
microwave
5 min, P = 200 W
microwave
10 min, P = 300 W
Tab.1  Conditions for preparation of Al-Fe pillared clays
samplecontent/(wt.%)d001SBET/(m2·g-1)Vp total/(cm3·g-1)
AlFe
natural clay6.13.29.93740.100
PIL-AlFe1M21.53.618.952240.180
PIL-AlFe20M17.26.618.131760.133
PIL-AlFe112.84.317.081430.140
PIL-AlFe2011.28.016.651280.171
Tab.2  Aluminum and iron contents, basal spacing and specific surface area of the modified clay and of the calcined natural clay for comparison
Fig.1  X-ray diffraction patterns of the modified clay by microwave and conventional methods
Fig.2  (a) Phenol conversion and (b) abatement of total organic carbon (DTOC) over the calcined natural clay (X, continuous line) and over PIL catalysts prepared by a conventional method (empty marks, dotted lines) and by a microwave method (black marks, continuous lines)
sampleFe leaching/ppma)Fe leaching/%b)
natural clay0.00.0
PIL-AlFe1M0.60.4
PIL-AlFe20M0.70.3
PIL-AlFe13.21.9
PIL-AlFe202.00.6
Tab.3  Stability toward iron leaching under CWAO process of the modified clay and of the calcined natural clay for comparison
catalystphenol conversion/%DTOC/%d001surface area/
(m2·g-1)
Vp total/
(cm3·g-1)
PIL-AlFe20M
fresh92.673.618.131760.133
after run 193.274.018.021730.127
PIL-AlFe20
fresh94.476.016.651280.171
after run 195.377.516.591230.164
Tab.4  Phenol conversion and TOC abatement (DTOC) after 180 min of CWAO of phenol over fresh and reused PIL-AlFe20M and PIL-AlFe20 and the structural and textural properties of these catalysts
1 Kim  K H, Ihm  S K. Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters: a review.  Journal of Hazardous Materials, 2011, 186(1): 16–34
https://doi.org/10.1016/j.jhazmat.2010.11.011 pmid: 21122984
2 Centi  G, Perathoner  S. Catalysis by layered materials: a review.  Microporous and Mesoporous Materials, 2008, 107(1–2): 3–15 
https://doi.org/10.1016/j.micromeso.2007.03.011
3 Hajjaji  W, Pullar  R C, Labrincha  J A, Rocha  F. Aqueous acid orange 7 dye removal by clay and red mud mixes.  Applied Clay Science, 2016, 126: 197–206 
https://doi.org/10.1016/j.clay.2016.03.016
4 Khankhasaeva  S Ts, Dambueva  D V, Dashinamzhilova  E Ts, Gil  A, Vicente  M A, Timofeeva  M N. Fenton degradation of sulfanilamide in the presence of Al,Fe-pillared clay: catalytic behavior and identification of the intermediates.  Journal of Hazardous Materials, 2015, 293: 21–29
https://doi.org/10.1016/j.jhazmat.2015.03.038 pmid: 25819990
5 Bel Hadjltaief  H, Ben Zina  M, Galvez  M E, Da Costa  P. Photo-Fenton oxidation of phenol over a Cu-doped Fe-pillared clay.  Comptes Rendus. Chimie, 2015, 18(10): 1161–1169 
https://doi.org/10.1016/j.crci.2015.08.004
6 Ausavasukhi  A, Sooknoi  T. Catalytic activity enhancement by thermal treatment and re-swelling process of natural containing iron-clay for Fenton oxidation.  Journal of Colloid and Interface Science, 2014, 436: 37–40
https://doi.org/10.1016/j.jcis.2014.08.028 pmid: 25265583
7 Herney-Ramírez  J, Vicente  M A, Madeira  L M. Heterogeneous photo-Fenton oxidation with pillared clay-based catalysts for wastewater treatment: a review.  Applied Catalysis B: Environmental, 2010, 98(1–2): 10–26 
https://doi.org/10.1016/j.apcatb.2010.05.004
8 Xu  A, Yang  M, Yao  H, Du  H, Sun  C. Rectorite as catalyst for wet air oxidation of phenol.  Applied Clay Science, 2009, 43(3–4): 435–438
https://doi.org/10.1016/j.clay.2008.10.003
9 Ksontini  N, Najjar  W, Ghorbel  A. Al–Fe pillared clays: synthesis, characterization and catalytic wet air oxidation activity.  Journal of Physics and Chemistry of Solids, 2008, 69(5–6): 1112–1115 
https://doi.org/10.1016/j.jpcs.2007.10.069
10 Guo  J, Al-Dahhan  M. Activity and stability of iron-containing pillared clay catalysts for wet air oxidation of phenol.  Applied Catalysis A, General, 2006, 299: 175–184 
https://doi.org/10.1016/j.apcata.2005.10.039
11 Guo  J, Al-Dahhan  M. Catalytic wet air oxidation of phenol in concurrent downflow and upflow packed-bed reactors over pillared clay catalyst.  Chemical Engineering Science, 2005, 60(3): 735–746 
https://doi.org/10.1016/j.ces.2004.08.043
12 Guo  J, Al-Dahhan  M. Catalytic wet oxidation of phenol by hydrogen peroxide over pillared clay catalyst.  Industrial & Engineering Chemistry Research, 2003, 42(12): 2450–2460 
https://doi.org/10.1021/ie020344t
13 Sassi  H, Lafaye  G, Ben Amor  H, Gannouni  A, Jeday  M R, Barbier-Jr  J.Catalytic wet air oxidation of phenol over a Tunisian clay modified by Al and Fe. Applied Catalysis B: Environmental, 2017 (in Revision)
14 Mishra  A, Mehta  A, Sharma  M, Basu  S. Enhanced heterogeneous photodegradation of VOC and dye using microwave synthesized TiO2/clay nanocomposites: a comparison study of different type of clays.  Journal of Alloys and Compounds, 2017, 694: 574–580 
https://doi.org/10.1016/j.jallcom.2016.10.036
15 Olaya  A, Moreno  S, Molina  R. Synthesis of pillared clays with Al13-Fe and Al13-Fe-Ce polymers in solid state assisted by microwave and ultrasound: characterization and catalytic activity.  Applied Catalysis A, General, 2009, 370(1–2): 7–15 
https://doi.org/10.1016/j.apcata.2009.08.018
16 Martínez-Ortiz M J, Fetter  G, Dominguez  J M, Melo-Banda  J A, Ramos-Gomez  R. Catalytic hydrotreating of heavy vacuum gas oil on Al- and Ti-pillared clays prepared by conventional and microwave irradiation methods.  Microporous and Mesoporous Materials, 2003, 58(2): 73–80 
https://doi.org/10.1016/S1387-1811(02)00592-9
17 Fetter  G, Hernandez  V, Rodriguez  V, Valenzuela  M A, Lara  V H, Bosch  P. Effect of microwave irradiation time on the synthesis of zirconia-pillared clays.  Materials Letters, 2003, 57(5–6): 1220–1223
https://doi.org/10.1016/S0167-577X(02)00961-8
18 Fetter  G, Heredia  G, Velazquez  L A, Maubert  A M, Bosch  P. Synthesis of aluminum-pillared montmorillonites using highly concentrated clay suspensions.  Applied Catalysis A, General, 1997, 162(1–2): 41–45 
https://doi.org/10.1016/S0926-860X(97)00081-1
19 Fetter  G, Heredia  G, Maubert  A M, Bosch  P. Synthesis of Al-intercalated montmorillonites using microwave irradiation.  Journal of Materials Chemistry, 1996, 6(11): 1857–1858 
https://doi.org/10.1039/jm9960601857
20 Warrier  K G K, Mukundan  P, Ghosh  S K, Sivakumar  S, Damodaran  A D. Microwave drying of boehmite sol intercalated smectites.  Journal of Materials Science, 1994, 29(13): 3415–3418 
https://doi.org/10.1007/BF00352042
21 Fatimah  I, Wijaya  K, Narsito . Microwave assisted preparation of TiO2/Al-pillared saponite for photocatalytic phenol photo-oxidation in aqueous solution.  Arabian Journal of Chemistry, 2015, 8(2): 228–232 
https://doi.org/10.1016/j.arabjc.2011.08.004
22 de Andrés  A M, Merino  J, Galvan  J C, Ruiz-Hitzky  E. Synthesis of pillared clays assisted by microwaves.  Materials Research Bulletin, 1999, 34(4): 641–651 
https://doi.org/10.1016/S0025-5408(99)00053-7
23 Olaya  A, Blanco  G, Bernal  S, Moreno  S, Molina  R. Synthesis of pillared clays with Al-Fe and Al-Fe-Ce starting from concentrated suspensions of clay using microwaves or ultrasound, and their catalytic activity in the phenol oxidation reaction.  Applied Catalysis B: Environmental, 2009, 93(1–2): 56–65 
https://doi.org/10.1016/j.apcatb.2009.09.012
24 Mikulová  J, Rossignol  S, Barbier  J Jr, Mesnard  D, Kappenstein  C, Duprez  D. Ruthenium and platinum catalysts supported on Ce, Zr, Pr-O mixed oxides prepared by soft chemistry for acetic acid wet air oxidation.  Applied Catalysis B: Environmental, 2007, 72(1–2): 1–10 
https://doi.org/10.1016/j.apcatb.2006.10.002
25 Li  H, Li  Y, Xiang  L, Huang  Q, Qiu  J, Zhang  H, Sivaiah  M V, Baron  F, Barrault  J, Petit  S, Valange  S. Heterogeneous photo-Fenton decolorization of Orange II over Al-pillared Fe-smectite: response surface approach, degradation pathway, and toxicity evaluation.  Journal of Hazardous Materials, 2015, 287: 32–41
https://doi.org/10.1016/j.jhazmat.2015.01.023 pmid: 25621831
26 Carriazo  J, Guélou  E, Barrault  J, Tatibouët  J M, Molina  R, Moreno  S. Catalytic wet peroxide oxidation of phenol by pillared clays containing Al-Ce-Fe.  Water Research, 2005, 39(16): 3891–3899
https://doi.org/10.1016/j.watres.2005.06.034 pmid: 16111735
27 Gil  A, Korili  S A, Trujillano  R, Vicente  M A. A review on characterization of pillared clays by specific techniques.  Applied Clay Science, 2011, 53(2): 97–105
https://doi.org/10.1016/j.clay.2010.09.018
28 Vicente M A, Rives V, Trujillano R, Gil A, Korili S A. Comment on “iron oxide-pillared clay catalyzed the synthesis of acetonides from epoxides”, by P. Trikittiwong, N. Sukpirom, S. Shimazu, W. Chavasiri, Catalysis Communications 54 (2014) 104–107 (doi: 10.1016/j.catcom.2014.05.002). Catalysis Communications, 2015, 61: 121–122
29 Zhou  S, Zhang  C, Hu  X, Wang  Y, Xu  R, Xia  C, Zhang  H, Song  Z. Catalytic wet peroxide oxidation of 4-chlorophenol over Al-Fe-, Al-Cu-, and Al-Fe-Cu-pillared clays: sensitivity, kinetics and mechanism.  Applied Clay Science, 2014, 95: 275–283 
https://doi.org/10.1016/j.clay.2014.04.024
30 Luo  M, Bowden  D, Brimblecombe  P. Catalytic property of Fe-Al pillared clay for Fenton oxidation of phenol by H2O2.  Applied Catalysis B: Environmental, 2009, 85(3–4): 201–206
https://doi.org/10.1016/j.apcatb.2008.07.013
31 Caudo  S, Centi  G, Genovese  C, Perathoner  S. Copper- and iron-pillared clay catalysts for the WHPCO of model and real wastewater streams from olive oil milling production.  Applied Catalysis B: Environmental, 2007, 70(1–4): 437–446 
https://doi.org/10.1016/j.apcatb.2006.01.031
32 Sanabria  N R, Ávila  P, Yates  M, Rasmussen  S B, Molina  R, Moreno  S. Mechanical and textural properties of extruded materials manufactured with AlFe and AlCeFe pillared bentonites.  Applied Clay Science, 2010, 47(3–4): 283–289 
https://doi.org/10.1016/j.clay.2009.11.029
33 Carriazo  J G, Martinez  L M, Odriozola  J A, Moreno  S, Molina  R, Centeno  M A. Gold supported on Fe, Ce, and Al pillared bentonites for CO oxidation reaction.  Applied Catalysis B: Environmental, 2007, 72(1–2): 157–165 
https://doi.org/10.1016/j.apcatb.2006.10.018
34 Galeano  L A, Gil  A, Vicente  M A. Effect of the atomic active metal ratio in Al/Fe-, Al/Cu- and Al/(Fe–Cu)-intercalating solutions on the physicochemical properties and catalytic activity of pillared clays in the CWPO of methyl orange.  Applied Catalysis B: Environmental, 2010, 100(1–2): 271–281 
https://doi.org/10.1016/j.apcatb.2010.08.003
35 Carriazo  J, Guélou  E, Barrault  J, Tatibouët  J M, Molina  R, Moreno  S. Synthesis of pillared clays containing Al, Al-Fe or Al-Ce-Fe from a bentonite: characterization and catalytic activity.  Catalysis Today, 2005, 107–108: 126–132 
https://doi.org/10.1016/j.cattod.2005.07.157
[1] Tao Liu, Yudong Song, Zhiqiang Shen, Yuexi Zhou. Inhibition character of crotonaldehyde manufacture wastewater on biological acidification[J]. Front. Environ. Sci. Eng., 2021, 15(6): 119-.
[2] Majid Mustafa, Huijiao Wang, Richard H. Lindberg, Jerker Fick, Yujue Wang, Mats Tysklind. Identification of resistant pharmaceuticals in ozonation using QSAR modeling and their fate in electro-peroxone process[J]. Front. Environ. Sci. Eng., 2021, 15(5): 106-.
[3] Ziyue Yin, Qing Lin, Shaohui Xu. Using hydrochemical signatures to characterize the long-period evolution of groundwater information in the Dagu River Basin, China[J]. Front. Environ. Sci. Eng., 2021, 15(5): 105-.
[4] Yuan Meng, Weiyi Liu, Heidelore Fiedler, Jinlan Zhang, Xinrui Wei, Xiaohui Liu, Meng Peng, Tingting Zhang. Fate and risk assessment of emerging contaminants in reclaimed water production processes[J]. Front. Environ. Sci. Eng., 2021, 15(5): 104-.
[5] Kangying Guo, Baoyu Gao, Jie Wang, Jingwen Pan, Qinyan Yue, Xing Xu. Flocculation behaviors of a novel papermaking sludge-based flocculant in practical printing and dyeing wastewater treatment[J]. Front. Environ. Sci. Eng., 2021, 15(5): 103-.
[6] Byungjin Lee, Eun Seo Jo, Dong-Wha Park, Jinsub Choi. Submerged arc plasma system combined with ozone oxidation for the treatment of wastewater containing non-degradable organic compounds[J]. Front. Environ. Sci. Eng., 2021, 15(5): 90-.
[7] Mengzhi Ji, Zichen Liu, Kaili Sun, Zhongfang Li, Xiangyu Fan, Qiang Li. Bacteriophages in water pollution control: Advantages and limitations[J]. Front. Environ. Sci. Eng., 2021, 15(5): 84-.
[8] Haoran Feng, Min Liu, Wei Zeng, Ying Chen. Optimization of the O3/H2O2 process with response surface methodology for pretreatment of mother liquor of gas field wastewater[J]. Front. Environ. Sci. Eng., 2021, 15(4): 78-.
[9] Danyang Liu, Johny Cabrera, Lijuan Zhong, Wenjing Wang, Dingyuan Duan, Xiaomao Wang, Shuming Liu, Yuefeng F. Xie. Using loose nanofiltration membrane for lake water treatment: A pilot study[J]. Front. Environ. Sci. Eng., 2021, 15(4): 69-.
[10] Hefu Pu, Aamir Khan Mastoi, Xunlong Chen, Dingbao Song, Jinwei Qiu, Peng Yang. An integrated method for the rapid dewatering and solidification/stabilization of dredged contaminated sediment with a high water content[J]. Front. Environ. Sci. Eng., 2021, 15(4): 67-.
[11] Shanshan Zhao, Zhu Tao, Liwei Chen, Muqiao Han, Bin Zhao, Xuelin Tian, Liang Wang, Fangang Meng. An antifouling catechol/chitosan-modified polyvinylidene fluoride membrane for sustainable oil-in-water emulsions separation[J]. Front. Environ. Sci. Eng., 2021, 15(4): 63-.
[12] Zhiling Wu, Xianchun Tang, Hongbin Chen. Seasonal and treatment-process variations in invertebrates in drinking water treatment plants[J]. Front. Environ. Sci. Eng., 2021, 15(4): 62-.
[13] Safaa M. Ezzat, Mohammed T. Mohammed T.. Treating wastewater under zero waste principle using wetland mesocosms[J]. Front. Environ. Sci. Eng., 2021, 15(4): 59-.
[14] Tianhao Xi, Xiaodan Li, Qihui Zhang, Ning Liu, Shu Niu, Zhaojun Dong, Cong Lyu. Enhanced catalytic oxidation of 2,4-dichlorophenol via singlet oxygen dominated peroxymonosulfate activation on CoOOH@Bi2O3 composite[J]. Front. Environ. Sci. Eng., 2021, 15(4): 55-.
[15] Yunping Han, Lin Li, Ying Wang, Jiawei Ma, Pengyu Li, Chao Han, Junxin Liu. Composition, dispersion, and health risks of bioaerosols in wastewater treatment plants: A review[J]. Front. Environ. Sci. Eng., 2021, 15(3): 38-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed