Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2017, Vol. 11 Issue (5) : 2    https://doi.org/10.1007/s11783-017-0974-y
RESEARCH ARTICLE
Silicon carbide waste as a source of mixture materials for cement mortar
Zhengwu Jiang(), Qiang Ren, Haoxin Li, Qing Chen
Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, Tongji University, Shanghai 201804, China
 Download: PDF(489 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

SiC waste decreases the fluidity of fresh mortar.

Mortar with SiC waste exhibits lower strength at early ages but higher strength at later ages.

SiC waste decrease the shrinkage rate of cement mortar.

SiC waste has some impacts on the hydration of the cement-SiC waste system.

SiC waste densifies the microstructure of hardened cement paste.

This paper presents an investigation of the feasibility of recycling silicon carbide waste (SCW) as a source of mixture materials in the production of cement mortar. Mortars with SCW were prepared by replacing different amounts of cement with SCW, and the properties of the resulting mortars, such as the fluidity, strength and shrinkage, were studied in this work. Thermogravimetry-differential scanning calorimetry and scanning electron microscopy were employed to understand the reasons for the property changes of the mortars. The results indicate that SCW decreases the initial and 1-h fluidity of fresh mortar but improves the loss of fluidity. The mortar with SCW exhibits a lower strength at 3 d and 7 d but a higher strength at 28 d and 56 d compared to the control. The shrinkage rate of cement mortar with SCW shows an obvious decrease as the replacement ratio increases. In addition, the content of calcium hydroxide in hardened paste also shows that SCW has some impact on the hydration of the cement-SCW system. The microstructures of the hardened paste also show evidence for a later strength change of mortar containing SCW. This work provides a strategic reference for possibly applying SCW as a mixture material in the production of cement mortar.

Keywords Silicon carbide waste      Cement mortar      Fluidity      Strength      Shrinkage     
Corresponding Author(s): Zhengwu Jiang   
Issue Date: 25 July 2017
 Cite this article:   
Zhengwu Jiang,Qiang Ren,Haoxin Li, et al. Silicon carbide waste as a source of mixture materials for cement mortar[J]. Front. Environ. Sci. Eng., 2017, 11(5): 2.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-017-0974-y
https://academic.hep.com.cn/fese/EN/Y2017/V11/I5/2
SiO2CaOAl2O3Fe2O3MgOSO3K2OTiO2SrOMnONa2OCr2O3ZnOloss on ignition
20.7065.704.483.010.912.390.720.240.030.140.060.010.051.61
Tab.1  Chemical composition of cement (wt%)
Fig.1  Particle size distributions of LS and HS waste
Fig.2  Fluidity values of pastes with SiC waste
Fig.3  SEM images of SiC waste
Fig.4  Strength development in cement mortar with waste
Fig.5  Shrinkage development of cement mortar containing SiC waste
Fig.6  Development of the Ca(OH)2 content in cement pastes with LS waste
Fig.7  The microstructural morphology of the fractured surface paste at different ages
1 Choi J, Fthenakis V. Crystalline silicon photovoltaic recycling planning: macro and micro perspectives. Journal of Cleaner Production, 2014, 66: 443–449
https://doi.org/10.1016/j.jclepro.2013.11.022
2 Li D G, Xing P F, Zhuang Y X, Li F, Tu G F. Recovery of high purity silicon from S0G crystalline silicon cutting slurry waste. Transactions of Nonferrous Metals Society of China, 2014, 24(4): 1237–1241
https://doi.org/10.1016/S1003-6326(14)63184-8
3 He S M, Yuan S Q, Zhu L F. Research status on the recovery of wire sawing slurry of crystalline silicon. Chemical Industry and Engineering Progress, 2013, 32(4): 925–929 (in Chinese)
4 Hsu H P, Huang W P, Yang C F, Lan C W. Silicon recovery from cutting slurry by phase transfer separation. Separation and Purification Technology, 2014, 133(36): 1–7
https://doi.org/10.1016/j.seppur.2014.06.037
5 Xing P F, Zhao P Y, Guo J, Liu Y, Li F, Tu G F. Recovery of cutting slurry waste of solar-grade silicon. Materials Review, 2011, 25(1): 75–59
6 Drouiche N, Cuellar P, Kerkar F, Medjahed S, Boutouchent-Guerfi N, Hamou M O. Recovery of solar grade silicon from kerf loss slurry waste. Renewable & Sustainable Energy Reviews, 2014, 32(5): 936–943 
https://doi.org/10.1016/j.rser.2014.01.059
7 Murthy H S G K. Evolution and present status of silicon carbide slurry recovery in silicon wire sawing. Resources, Conservation and Recycling, 2015, 104: 194–205
https://doi.org/10.1016/j.resconrec.2015.08.009
8 Sergiienko S A, Pogorelov B V, Daniliuk V B. Silicon and silicon carbide powders recycling technology from wire-saw cutting waste in slicing process of silicon ingots. Separation and Purification Technology, 2014, 133(36): 16–21
https://doi.org/10.1016/j.seppur.2014.06.036
9 Chen W, Hong J, Yuan X, Liu J. Environmental impact assessment of monocrystalline silicon solar photovoltaic cell production: a case study in China. Journal of Cleaner Production, 2016, 112(6404): 1025–1032
https://doi.org/10.1016/j.jclepro.2015.08.024
10 Farzadnia N, Ali A A A, Demirboga R. Incorporation of mineral admixtures in sustainable high performance concrete. International of Sustainable Construction, 2011, 2(1): 44–56
11 Lertwattanaruk P, Makul N, Siripattarapravat C. Utilization of ground waste seashells in cement mortars for masonry and plastering. Journal of Environmental Management, 2012, 111(6): 133–141
https://doi.org/10.1016/j.jenvman.2012.06.032 pmid: 22841935
12 Nazer A, Payá J, Borrachero M V, Monzó J. Use of ancient copper slags in Portland cement and alkali activated cement matrices. Journal of Environmental Management, 2016, 167: 115–123
https://doi.org/10.1016/j.jenvman.2015.11.024 pmid: 26615227
13 Wu B R, Wang D Y, Chai X L, Takahashi F, Shimaoka T. Characterization of chlorine and heavy metals for the potential recycling of bottom ash from municipal solid waste incinerators as cement additives. Frontiers of Environmental Science & Engineering, 2016, 10(4): 08
14 Lin K L, Chang W C, Lin D F, Luo H L, Tsai M C. Effects of nano-SiO2 and different ash particle sizes on sludge ash-cement mortar. Journal of Environmental Management, 2008, 88(4): 708–714
https://doi.org/10.1016/j.jenvman.2007.03.036 pmid: 17498863
15 Sabet F A, Libre N A, Shekarchi M. Mechanical and durability properties of self-consolidating high performance concrete incorporating natural zeolite, silica fume and fly ash. Construction & Building Materials, 2013, 44: 175–184
https://doi.org/10.1016/j.conbuildmat.2013.02.069
16 Supit S W M, Shaikh F U A, Sarker P K. Effect of ultrafine fly ash on mechanical properties of high volume fly ash mortar. Construction & Building Materials, 2014, 51(2): 278–286
https://doi.org/10.1016/j.conbuildmat.2013.11.002
17 Ferraris C F, Obla K H, Hill R. The influence of mineral admixtures on the rheology of cement paste and concrete. Cement and Concrete Research, 2001, 31(2): 245–255
https://doi.org/10.1016/S0008-8846(00)00454-3
18 Uysal M, Yilmaz K. Effect of mineral admixtures on properties of self-compacting concrete. Cement and Concrete Composites, 2011, 33(7): 771–776
https://doi.org/10.1016/j.cemconcomp.2011.04.005
19 Bostanci S C, Limbachiya M, Kew H. Portland slag and composites cement concretes: engineering and durability properties. Journal of Cleaner Production, 2016, 112: 542–552
https://doi.org/10.1016/j.jclepro.2015.08.070
20 Kalla P, Rana A, Chad Y B, Misra A, Csetenyi L. Durability studies on concrete containing wollastonite. Journal of Cleaner Production, 2015, 87: 726–734
https://doi.org/10.1016/j.jclepro.2014.10.038
21 Chinese National Standard, GB/T 2419: Test method for Fluidity of Cement Mortar, 2005
22 Chinese National Standard, GB/T 17671: Method of Testing Cements-Determination of Strength, 1999
23 Chinese Building Material Industry Standard, JGJ/T 70: Standard for Test Method of Basic Properties of Construction Mortar, 2009
24 Midgley H G. The determination of calcium hydroxide in set Portland cements. Cement and Concrete Research, 1979, 9(1): 77–82
https://doi.org/10.1016/0008-8846(79)90097-8
25 Libre N A, Khoshnazar R, Shekarchi M. Relationship between fluidity and stability of self-consolidating mortar incorporating chemical and mineral admixtures. Construction & Building Materials, 2010, 24(7): 1262–1271
https://doi.org/10.1016/j.conbuildmat.2009.12.009
26 Yao L Y, Yao L H, Wang X, Yang L Q. Study of effect of fly ash on fluidity and strength of cement mortar. Coal Ash, 2013, 04: 1–3 (in Chinese)
27 Ren Q, Jiang Z W, Ma J W. Influence of mineral admixtures on the strength of magnesia phosphate cement-based rapid repair  mortar. Journal of Building Materials, 2012, 19(6): 1062–1067 (in Chinese)
28 Rao M J, Wei J P, Gao Z Y, Zhou W, Li Q L, Liu S H. Study on strength and microstructure of cement-based materials containing combination mineral admixtures. Advances in Materials Science and Engineering, 2016, 7243670
29 Li C, Zhu H B, Wu M X, Wu K F, Jiang Z W. Pozzolanic reaction of fly ash modified by fluidized bed reactor-vapor deposition. Cement and Concrete Research, 2017, 92: 98–109
https://doi.org/10.1016/j.cemconres.2016.11.016
30 Chindaprasirt P, Homwuttiwong S, Sirivivatnanon V. Influence of fly ash fineness on strength, drying shrinkage and sulfate resistance of blended cement mortar. Cement and Concrete Research, 2004, 34(7): 1087–1092
https://doi.org/10.1016/j.cemconres.2003.11.021
31 Kocak Y, Nas S. The effect of using fly ash on the strength and hydration characteristics of blended cements. Construction & Building Materials, 2014, 73: 25–32
https://doi.org/10.1016/j.conbuildmat.2014.09.048
32 Mostafa N Y, Mohsen Q, El-Hemaly S A S, El-Korashy S A, Brown P W. High replacements of reactive pozzolan in blended cements: Microstructure and mechanical properties. Cement and Concrete Composites, 2010, 32(5): 386–391
https://doi.org/10.1016/j.cemconcomp.2010.02.003
33 Deschner F, Winnefeld F, Lothenbach B, Seufert S, Schwesig P, Dittrich S, Goetz-Neunhoeffer F, Neubauer J. Hydration of Portland cement with high replacement by siliceous fly ash. Cement and Concrete Research, 2012, 42(10): 1389–1400
https://doi.org/10.1016/j.cemconres.2012.06.009
[1] Zechong Guo, Lei Gao, Ling Wang, Wenzong Liu, Aijie Wang. Enhanced methane recovery and exoelectrogen-methanogen evolution from low-strength wastewater in an up-flow biofilm reactor with conductive granular graphite fillers[J]. Front. Environ. Sci. Eng., 2018, 12(4): 13-.
[2] Xu Zhang, Baigang Ren, Shangge Li, Xiaodi Qu, Huanhuan Yang, Shiguo Xu, Zongming Ren, Qiang Kong, Cheng Wang. Is sodium percarbonate a good choice in situ remediation of deltamethrin pollution?[J]. Front. Environ. Sci. Eng., 2017, 11(3): 3-.
[3] Zulkifly JEMAAT,Josep Anton TORA,Albert BARTROLI,Julián CARRERA,Julio PEREZ. Achievement of high rate nitritation with aerobic granular sludge reactors enhanced by sludge recirculation events[J]. Front. Environ. Sci. Eng., 2015, 9(3): 528-533.
[4] Jing FENG,Yili WANG,Xueyuan JI,Dongqin YUAN,Hui LI. Performance and bioparticle growth of anaerobic baffled reactor (ABR) fed with low-strength domestic sewage[J]. Front. Environ. Sci. Eng., 2015, 9(2): 352-364.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed