Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2017, Vol. 11 Issue (6) : 20    https://doi.org/10.1007/s11783-017-0975-x
RESEARCH ARTICLE
Role of membrane and compound properties in affecting the rejection of pharmaceuticals by different RO/NF membranes
Yang-ying Zhao1, Fan-xin Kong2, Zhi Wang1, Hong-wei Yang1, Xiao-mao Wang1(), Yuefeng F. Xie1,3, T. David Waite4
1. State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
2. School of Chemical Engineering, China University of Petroleum, Beijing 102249, China
3. Environmental Engineering Programs, The Pennsylvania State University, Middletown, PA 17057, USA
4. School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
 Download: PDF(674 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Rejection of pharmaceuticals (PhACs) followed the order NF90 ≈ ESPA1>NF270>HL.

Electrostatic effect had an important role in PhAC rejection by loose NF membranes.

Effect of adsorption on rejection followed the order HL>ESPA1>NF270>NF90.

High hydrogen bond formation potential of PhACs impaired the rejection by HL.

This study was conducted to assess the merits and limitations of various high-pressure membranes, tight nanofiltration (NF) membranes in particular, for the removal of trace organic compounds (TrOCs). The performance of a low-pressure reverse osmosis (LPRO) membrane (ESPA1), a tight NF membrane (NF90) and two loose NF membranes (HL and NF270) was compared for the rejection of 23 different pharmaceuticals (PhACs). Efforts were also devoted to understand the effect of adsorption on the rejection performance of each membrane. Difference in hydrogen bond formation potential (HFP) was taken into consideration. Results showed that NF90 performed similarly to ESPA1 with mean rejection higher than 95%. NF270 outperformed HL in terms of both water permeability and PhAC rejection higher than 90%. Electrostatic effects were more significant in PhAC rejection by loose NF membranes than tight NF and LPRO membranes. The adverse effect of adsorption on rejection by HL and ESPA1 was more substantial than NF270 and NF90, which could not be simply explained by the difference in membrane surface hydrophobicity, selective layer thickness or pore size. The HL membrane had a lower rejection of PhACs of higher hydrophobicity (log D>0) and higher HFP (>0.02). Nevertheless, the effects of PhAC hydrophobicity and HFP on rejection by ESPA1 could not be discerned. Poor rejection of certain PhACs could generally be explained by aspects of steric hindrance, electrostatic interactions and adsorption. High-pressure membranes like NF90 and NF270 have a high promise in TrOC removal from contaminated water.

Keywords Trace organic compounds (TrOCs)      Nanofiltration (NF)      Adsorption      Membrane properties      Water treatment     
Corresponding Author(s): Xiao-mao Wang   
Issue Date: 25 July 2017
 Cite this article:   
Yang-ying Zhao,Fan-xin Kong,Zhi Wang, et al. Role of membrane and compound properties in affecting the rejection of pharmaceuticals by different RO/NF membranes[J]. Front. Environ. Sci. Eng., 2017, 11(6): 20.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-017-0975-x
https://academic.hep.com.cn/fese/EN/Y2017/V11/I6/20
membranetypeMWCO /Dacontact angle /°zeta potential/mV (pH 7)water permeability /(m·s1·bar1)
ESPA1LPRO100–300 a)22.6-30.68.61 × 107
NF90tight NF100–200 b)37.0-36.41.63 × 106
NF270loose NF150–300 b)31.3-58.33.03 × 106
HLloose NF150–300 b)26.8-9.12.58 × 106
Tab.1  Characteristics of the tested high-pressure membranes
compoundMW /(g·mol1)pKaa)log Db) /(pH 7.4)charge/(pH 7.4)H-bond donor/acceptora)Stokes radiusc) /nm
clofibric acid214.653.37-0.88-11/30.38
naproxen230.264.190.45-11/30.40
nalidixic acid232.244.68; 5.95-0.32-11/50.46
carbamazepine236.2715.962.2801/10.39
sulfadiazine250.282.01; 6.99-0.79-12/50.40
gemfibrozil250.334.421.58-11/30.46
sulfamethoxazole253.281.97; 6.16-0.56-12/40.39
propranolol259.349.67; 14.091.15+12/30.46
metoprolol267.369.67; 14.09-0.25+12/40.47
sulfamethazine278.332.04; 6.990.3-12/50.42
diclofenac296.154.001.37-12/30.45
ranitidine314.408.08-0.63+12/50.50
norfloxacin319.335.77; 8.68-3.0002/60.47
chloramphenicol323.137.590.5203/50.45
ciprofloxacin331.345.76; 8.68-2.2302/60.47
nizatidine331.466.83-0.0502/60.50
sulpiride341.438.39; 10.24-0.99+12/50.48
ampicillin349.413.24; 7.44-2.5703/50.51
indomethacin357.793.80.75-11/40.50
cephalexin-hydrate365.493.45; 7.44-2.4403/50.47
diltiazem414.528.18; 12.862.06+10/30.57
erythromycin733.938.38; 12.441.69+15/130.83
roxithromycin837.059.08; 12.452.80+15/160.90
Tab.2  Physicochemical properties for the investigated PhACs
Fig.1  Increase of water flux with applied pressure for the four membranes
Fig.2  Rejection of (a) glucose and (b) NaCl as a function of water flux by each of the four membranes
Fig.3  Averaged rejection of (a) all selected, (b) the neutral, (c) the negatively charged and (d) the positively charged PhACs by the four membranes as a function of water flux
Fig.4  Rejection ratios of 0.5 h and 24 h filtration and model prediction by (a) HL, (b) NF270, (c) NF90 and (d) ESPA1 membranes
Fig.5  TEM images of cross-section morphology of (a) HL, (b) NF270, (c) NF90 and (d) ESPA1 membranes
Fig.6  Averaged rejection of PhACs classified by (a) log D value and (b) H-bond formation potential with filtration flux by the four membranes
1 Benotti M J, Trenholm R A, Vanderford B J, Holady J C, Stanford B D, Snyder S A. Pharmaceuticals and endocrine disrupting compounds in U.S. drinking water. Environmental Science & Technology, 2009, 43(3): 597–603
https://doi.org/10.1021/es801845a pmid: 19244989
2 Jin X, Hu J. Role of water chemistry on estrone removal by nanofiltration with the presence of hydrophobic acids. Frontiers of Environmental Science & Engineering, 2015, 9(1): 164–170
https://doi.org/10.1007/s11783-014-0747-9
3 Geise G M, Paul D R, Freeman B D. Fundamental water and salt transport properties of polymeric materials. Progress in Polymer Science, 2014, 39(1): 1–42
https://doi.org/10.1016/j.progpolymsci.2013.07.001
4 Wang X, Yang H, Li Z, Yang S, Xie Y. Pilot study for the treatment of sodium and fluoride-contaminated groundwater by using high-pressure membrane systems. Frontiers of Environmental Science & Engineering, 2015, 9(1): 155–163
https://doi.org/10.1007/s11783-014-0740-3
5 Doederer K, Farré M J, Pidou M, Weinberg H S, Gernjak W. Rejection of disinfection by-products by RO and NF membranes: influence of solute properties and operational parameters. Journal of Membrane Science, 2014, 467(1): 195–205
https://doi.org/10.1016/j.memsci.2014.05.029
6 Kimura K, Amy G, Drewes J E, Heberer T, Kim T U, Watanabe Y. Rejection of organic micropollutants (disinfection by-products, endocrine disrupting compounds, and pharmaceutically active compounds) by NF/RO membranes. Journal of Membrane Science, 2003, 227(1): 113–121
https://doi.org/10.1016/j.memsci.2003.09.005
7 Radjenović J, Petrović M, Ventura F, Barceló D. Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment. Water Research, 2008, 42(14): 3601–3610
https://doi.org/10.1016/j.watres.2008.05.020 pmid: 18656225
8 Comerton A M, Andrews R C, Bagley D M, Hao C. The rejection of endocrine disrupting and pharmaceutically active compounds by NF and RO membranes as a function of compound and water matrix properties. Journal of Membrane Science, 2008, 313(1): 323–335
https://doi.org/10.1016/j.memsci.2008.01.021
9 Bellona C, Drewes J E, Xu P, Amy G. Factors affecting the rejection of organic solutes during NF/RO treatment: a literature review. Water Research, 2004, 38(12): 2795–2809
https://doi.org/10.1016/j.watres.2004.03.034 pmid: 15223273
10 Kong F X, Yang H W, Wang X M, Xie Y F. Assessment of the hindered transport model in predicting the rejection of trace organic compounds by nanofiltration. Journal of Membrane Science, 2015, 498: 57–66
https://doi.org/10.1016/j.memsci.2015.09.062
11 Wang X, Li B, Zhang T, Li X Y. Performance of nanofiltration membrane in rejecting trace organic compounds: experiment and model prediction. Desalination, 2015, 370: 7–16
https://doi.org/10.1016/j.desal.2015.05.010
12 Dong L, Huang X, Wang Z, Yang Z, Wang X, Tang C Y. A thin-film nanocomposite nanofiltration membrane prepared on a support with in situ embedded zeolite nanoparticles. Separation and Purification Technology, 2016, 166: 230–239
https://doi.org/10.1016/j.seppur.2016.04.043
13 Verliefde A R D, Cornelissen E R, Heijman S G J, Hoek E M V, Amy G L, Van der Bruggen B, Van Dijkt J C. Influence of solute-membrane affinity on rejection of uncharged organic solutes by nanofiltration membranes. Environmental Science & Technology, 2009, 43(7): 2400–2406
https://doi.org/10.1021/es803146r pmid: 19452893
14 Mahlangu T, Schoutteten K, D’Haese A, Van den Bussche J, Vanhaecke L, Thwala J, Mamba B, Verliefde A. Role of permeate flux and specific membrane-foulant-solute affinity interactions (∆ Gslm) in transport of trace organic solutes through fouled nanofiltration (NF) membranes. Journal of Membrane Science, 2016, 518: 203–215
https://doi.org/10.1016/j.memsci.2016.06.013
15 Steinle-Darling E, Litwiller E, Reinhard M. Effects of sorption on the rejection of trace organic contaminants during nanofiltration. Environmental Science & Technology, 2010, 44(7): 2592–2598
https://doi.org/10.1021/es902846m pmid: 20218539
16 Israelachvili J N. Intermolecular and Surface Forces. San Francisco: Academic Press, 2015
17 Nghiem L D, Schäfer A I. Adsorption and transport of trace contaminant estrone in NF/RO membranes. Environmental Engineering Science, 2002, 19(6): 441–451
https://doi.org/10.1089/109287502320963427
18 Schäfer A I, Akanyeti I, Semião A J C. Micropollutant sorption to membrane polymers: a review of mechanisms for estrogens. Advances in Colloid & Interface Science, 2011, 164(S1–2): 100–117
19 Nghiem L D, Schäfer A I, Elimelech M. Removal of natural hormones by nanofiltration membranes: measurement, modeling, and mechanisms. Environmental Science & Technology, 2004, 38(6): 1888–1896
https://doi.org/10.1021/es034952r pmid: 15074703
20 Shah A D, Huang C H, Kim J H. Mechanisms of antibiotic removal by nanofiltration membranes: model development and application. Journal of Membrane Science, 2012, 389: 234–244
https://doi.org/10.1016/j.memsci.2011.10.034
21 Dolar D, Vuković A, Ašperger D, Kosutić K. Effect of water matrices on removal of veterinary pharmaceuticals by nanofiltration and reverse osmosis membranes. Journal of Environmental Sciences- China, 2011, 23(8): 1299–1307
https://doi.org/10.1016/S1001-0742(10)60545-1 pmid: 22128537
22 Hoek E M, Elimelech M. Cake-enhanced concentration polarization: a new fouling mechanism for salt-rejecting membranes. Environmental Science & Technology, 2003, 37(24): 5581–5588
https://doi.org/10.1021/es0262636 pmid: 14717167
23 Plakas K, Karabelas A, Wintgens T, Melin T. A study of selected herbicides retention by nanofiltration membranes—the role of organic fouling. Journal of Membrane Science, 2006, 284(1): 291–300
https://doi.org/10.1016/j.memsci.2006.07.054
24 Semião A J, Schäfer A I. Estrogenic micropollutant adsorption dynamics onto nanofiltration membranes. Journal of Membrane Science, 2011, 381(1): 132–141
https://doi.org/10.1016/j.memsci.2011.07.031
25 Kong F X, Yang H W, Wu Y Q, Wang X M, Xie Y F. Rejection of pharmaceuticals during forward osmosis and prediction by using the solution–diffusion model. Journal of Membrane Science, 2015, 476(476): 410–420
https://doi.org/10.1016/j.memsci.2014.11.026
26 Bowen W R, Welfoot J S. Modelling the performance of membrane nanofiltration—critical assessment and model development. Chemical Engineering Science, 2002, 57(7): 1121–1137
https://doi.org/10.1016/S0009-2509(01)00413-4
27 Kim S D, Cho J, Kim I S, Vanderford B J, Snyder S A. Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters. Water Research, 2007, 41(5): 1013–1021
https://doi.org/10.1016/j.watres.2006.06.034 pmid: 16934312
28 Ventresque C, Gisclon V, Bablon G, Chagneau G. An outstanding feat of modern technology: the Mery-sur-Oise Nanofiltration Treatment Plant (340,000 m3/d). Desalination, 2000, 131(1): 1–16
https://doi.org/10.1016/S0011-9164(00)90001-8
29 Freger V, Gilron J, Belfer S. TFC polyamide membranes modified by grafting of hydrophilic polymers: an FT-IR/AFM/TEM study. Journal of Membrane Science, 2002, 209(1): 283–292
https://doi.org/10.1016/S0376-7388(02)00356-3
30 Liang L, Zhang J, Feng P, Li C, Huang Y, Dong B, Li L, Guan X. Occurrence of bisphenol A in surface and drinking waters and its physicochemical removal technologies. Frontiers of Environmental Science & Engineering, 2015, 9(1): 16–38
https://doi.org/10.1007/s11783-014-0697-2
31 Redding A M, Cannon F S, Snyder S A, Vanderford B J. A QSAR-like analysis of the adsorption of endocrine disrupting compounds, pharmaceuticals, and personal care products on modified activated carbons. Water Research, 2009, 43(15): 3849–3861
https://doi.org/10.1016/j.watres.2009.05.026 pmid: 19592065
32 Nghiem L D, Schäfer A I, Elimelech M. Pharmaceutical retention mechanisms by nanofiltration membranes. Environmental Science & Technology, 2005, 39(19): 7698–7705
33 Yangali-Quintanilla V, Sadmani A, McConville M, Kennedy M, Amy G. Rejection of pharmaceutically active compounds and endocrine disrupting compounds by clean and fouled nanofiltration membranes. Water Research, 2009, 43(9): 2349–2362
https://doi.org/10.1016/j.watres.2009.02.027 pmid: 19303127
34 SchäferA I,  Waite T D, Fane A G. Nanofiltration: Principles and Applications. Amsterdam: Elsevier, 2005, 121–122
35 Tang C Y, Kwon Y N, Leckie J O. Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes: I. FTIR and XPS characterization of polyamide and coating layer chemistry. Desalination, 2009, 242(1–3): 149–167
https://doi.org/10.1016/j.desal.2008.04.003
[1] FSE-17077-OF-ZYY_suppl_1 Download
[1] Seyyed Salar Meshkat, Ebrahim Ghasemy, Alimorad Rashidi, Omid Tavakoli, Mehdi Esrafili. Experimental and DFT insights into nitrogen and sulfur co-doped carbon nanotubes for effective desulfurization of liquid phases: Equilibrium & kinetic study[J]. Front. Environ. Sci. Eng., 2021, 15(5): 109-.
[2] Guolong Zeng, Yiyang Liu, Xiaoguo Ma, Yinming Fan. Fabrication of magnetic multi-template molecularly imprinted polymer composite for the selective and efficient removal of tetracyclines from water[J]. Front. Environ. Sci. Eng., 2021, 15(5): 107-.
[3] Kangying Guo, Baoyu Gao, Jie Wang, Jingwen Pan, Qinyan Yue, Xing Xu. Flocculation behaviors of a novel papermaking sludge-based flocculant in practical printing and dyeing wastewater treatment[J]. Front. Environ. Sci. Eng., 2021, 15(5): 103-.
[4] Yunping Han, Lin Li, Ying Wang, Jiawei Ma, Pengyu Li, Chao Han, Junxin Liu. Composition, dispersion, and health risks of bioaerosols in wastewater treatment plants: A review[J]. Front. Environ. Sci. Eng., 2021, 15(3): 38-.
[5] Ragini Pirarath, Palani Shivashanmugam, Asad Syed, Abdallah M. Elgorban, Sambandam Anandan, Muthupandian Ashokkumar. Mercury removal from aqueous solution using petal-like MoS2 nanosheets[J]. Front. Environ. Sci. Eng., 2021, 15(1): 15-.
[6] Wenyue Li, Min Chen, Zhaoxiang Zhong, Ming Zhou, Weihong Xing. Hydroxyl radical intensified Cu2O NPs/H2O2 process in ceramic membrane reactor for degradation on DMAc wastewater from polymeric membrane manufacturer[J]. Front. Environ. Sci. Eng., 2020, 14(6): 102-.
[7] Yang Yang. Recent advances in the electrochemical oxidation water treatment: Spotlight on byproduct control[J]. Front. Environ. Sci. Eng., 2020, 14(5): 85-.
[8] Yang Deng. Low-cost adsorbents for urban stormwater pollution control[J]. Front. Environ. Sci. Eng., 2020, 14(5): 83-.
[9] Haiyan Yang, Shangping Xu, Derek E. Chitwood, Yin Wang. Ceramic water filter for point-of-use water treatment in developing countries: Principles, challenges and opportunities[J]. Front. Environ. Sci. Eng., 2020, 14(5): 79-.
[10] Jianfeng Zhou, Ting Wang, Cecilia Yu, Xing Xie. Locally enhanced electric field treatment (LEEFT) for water disinfection[J]. Front. Environ. Sci. Eng., 2020, 14(5): 78-.
[11] Jing Li, Haiqin Yu, Xue Zhang, Rixin Zhu, Liangguo Yan. Crosslinking acrylamide with EDTA-intercalated layered double hydroxide for enhanced recovery of Cr(VI) and Congo red: Adsorptive and mechanistic study[J]. Front. Environ. Sci. Eng., 2020, 14(3): 52-.
[12] Alisa Salimova, Jian’e Zuo, Fenglin Liu, Yajiao Wang, Sike Wang, Konstantin Verichev. Ammonia and phosphorus removal from agricultural runoff using cash crop waste-derived biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 48-.
[13] Ziwen Du, Chuyi Huang, Jiaqi Meng, Yaru Yuan, Ze Yin, Li Feng, Yongze Liu, Liqiu Zhang. Sorption of aromatic organophosphate flame retardants on thermally and hydrothermally produced biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 43-.
[14] Zhenyu Yang, Rong Xing, Wenjun Zhou, Lizhong Zhu. Adsorption characteristics of ciprofloxacin onto g-MoS2 coated biochar nanocomposites[J]. Front. Environ. Sci. Eng., 2020, 14(3): 41-.
[15] Tiancui Li, Yaocheng Fan, Deshou Cun, Yanran Dai, Wei Liang. Dibutyl phthalate adsorption characteristics using three common substrates in aqueous solutions[J]. Front. Environ. Sci. Eng., 2020, 14(2): 26-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed