Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2017, Vol. 11 Issue (6) : 11    https://doi.org/10.1007/s11783-017-0976-9
RESEARCH ARTICLE
Effects of Pd doping on N2O formation over Pt/BaO/Al2O3 during NOx storage and reduction process
Mingxin Dong1, Jun Wang1, Jinxin Zhu1, Jianqiang Wang1, Wulin Wang1, Meiqing Shen1,2,3()
1. Key Laboratory for Green Chemical Technology of State Education Ministry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
2. Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
3. State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
 Download: PDF(1018 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• The NOx reduction ability of Pt/BaO/Al2O3 can be improved by Pd doping.

• Pd-Ba interaction inhibits the NO dissociation over Pd sites.

• (Pt/BaO/Al2O3+Pd/Al2O3) exhibits superior NSR performance.

• (Pt-Pd/BaO/Al2O3+Al2O3) is proved to be an unwished Pd-modified catalyst.

• The N2O formation mechanism over Pd-modified catalyst is provided.

N2O is a powerful greenhouse gas and plays an important role in destructing the ozone layer. This present work investigated the effects of Pd doping on N2O formation over Pt/BaO/Al2O3 catalyst. Three types of catalysts, Pt/BaO/Al2O3, Pt/Pd mechanical mixing catalyst (Pt/BaO/Al2O3+Pd/Al2O3) and Pt-Pd co-impregnation catalyst (Pt-Pd/BaO/Al2O3) were prepared by incipient wetness impregnation method. These catalysts were first evaluated in NSR activity tests using H2/CO as reductants and then carefully characterized by BET, CO chemisorption, CO-DRIFTs and H2-TPR techniques. In addition, temperature programmed reactions of NO with H2/CO were conducted to obtain further information about N2O formation mechanism. Compared with Pt/BaO/Al2O3, (Pt/BaO/Al2O3+Pd/Al2O3) produced less N2O and more NH3 during NOx storage and reduction process, while an opposite trend was found over (Pt-Pd/BaO/Al2O3+Al2O3). Temperature programmed reactions of NO with H2/CO results showed that Pd/Al2O3 component in (Pt/BaO/Al2O3+Pd/Al2O3) played an important role in NO reduction to NH3, and the formed NH3 could reduce NOx to N2 leading to a decrease in N2O formation. Most of N2O formed over (Pt-Pd/BaO/Al2O3+Al2O3) was originated from Pd/BaO/Al2O3 component. H2-TPR results indicated Pd-Ba interaction resulted in more difficult-to-reduce PdOx species over Pd/BaO/Al2O3, which inhibits the NO dissociation and thus drives the selectivity to N2O in NO reduction.

Keywords NOx storage reduction      Pt/BaO/Al2O3      Pd doping      N2O formation      Optimization     
Corresponding Author(s): Meiqing Shen   
Issue Date: 01 August 2017
 Cite this article:   
Mingxin Dong,Jun Wang,Jinxin Zhu, et al. Effects of Pd doping on N2O formation over Pt/BaO/Al2O3 during NOx storage and reduction process[J]. Front. Environ. Sci. Eng., 2017, 11(6): 11.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-017-0976-9
https://academic.hep.com.cn/fese/EN/Y2017/V11/I6/11
temperature/℃catalystlean phaserich phase
N2O formed
/(mmol·gcat-1)
NSC
/(mmol·gcat-1)
NOx released
/(mmol·gcat-1)
N2O formed
/(mmol·gcat-1)
NH3 formed
/(mmol·gcat-1)
250(PtBaAl+ Al)8.78224.3039.225.3764.41
(PtBaAl+ PdAl)3.37231.1913.853.56100.87
(PtPdBaAl+ Al)8.67216.7119.8115.4551.51
300(PtBaAl+ Al)6.01305.225.464.7233.49
(PtBaAl+ PdAl)3.95326.644.664.0647.87
(PtPdBaAl+ Al)5.73286.155.9110.0123.38
Tab.1  Quantified results of NSR activity tests
Fig.1  Outlet gas evolutions during NSR activity tests. (a), (b) and (c): (PtBaAl+ Al), (PtBaAl+ PdAl) and (PtPdBaAl+ Al) at 250℃. (d), (e) and (f): (PtBaAl+ Al), (PtBaAl+ PdAl) and (PtPdBaAl+ Al) at 300℃. The lean phase gas was 600 ppm of NO/10% O2/N2 balanced; the rich phase gas was 1.3% H2/3.9% CO/N2 balanced; and two delay phases contained pure N2
catalystsnoble metal loading/%SBET/(m2·g-1)COads/(mmol·gcat-1)NM dispersion/%
PtPd
g-Al2O3141.5
BaAl109.5
PdAl0.2138.27.882.8
PdBaAl0.2107.65.466.9
PtBaAl1106.823.968.4
PtPdBaAl10.2108.626.5
Tab.2  BET surface area, amount of chemisorbed CO and noble metal dispersion (NM dispersion)
Fig.2  CO-DRIFTs infrared spectra on the catalysts
Fig.3  H2-TPR results of the catalysts
Fig.4  TPR of NO (600 ppm), H2 (1.3%) and CO (3.9%) in N2 at a ramp of 10℃·min-1 over (a) (PtBaAl+ Al), (b) (PtBaAl+ PdAl), (c) (PtPdBaAl+ Al)
Fig.5  TPR of NO (600 ppm), H2 (1.3%) and CO (3.9%) in N2 at a ramp of 10℃·min-1 over (a) PdAl, (b) PdBaAl. NO conversion, N2O selectivity and NH3 selectivity are shown in (c)
1 Zou Q, Lu K, Wu Y, Yang Y, Du Z, Hu M. Ambient photolysis frequency of NO2 determined using chemical actinometer and spectroradiometer at an urban site in Beijing. Frontiers of Environmental Science & Engineering, 2016, 10(6): 13–21
https://doi.org/10.1007/s11783-016-0885-3
2 George C, Beeldens A, Barmpas F, Doussin J F, Manganelli G, Herrmann H, Kleffmann J, Mellouki A. Impact of photocatalytic remediation of pollutants on urban air quality. Frontiers of Environmental Science & Engineering, 2016, 10(5): 0 2
https://doi.org/10.1007/s11783-016-0834-1
3 Takahashi N, Shinjoh H, Iijima T, Suzuki T, Yamazaki K, Yokota K, Suzuki H, Miyoshi N, Matsumoto S I, Tanizawa T, Tanaka T, Tateishi S, Kasahara K. The new concept 3-way catalyst for automotive lean-burn engine: NOx storage and reduction catalyst. Catalysis Today, 1996, 27(1–2): 63–69
https://doi.org/10.1016/0920-5861(95)00173-5
4 Wang X, Yu Y, He H. Effect of Co addition to Pt/Ba/Al2O3 system for NOx storage and reduction. Applied Catalysis B: Environmental, 2010, 100(1–2): 19–30
https://doi.org/10.1016/j.apcatb.2010.07.001
5 Epling W S, Campbell L E, Yezerets A, Currier N W, Parks J E II. Overview of the fundamental reactions and degradation mechanisms of NOx storage/reduction catalysts. Catalysis Reviews, 2004, 46(2): 163–245
https://doi.org/10.1081/CR-200031932
6 Liu Z, Ihl Woo S. Recent advances in catalytic DeNOx science and technology. Catalysis Reviews, 2006, 48(1): 43–89
https://doi.org/10.1080/01614940500439891
7 Zhang Y, Yu Y, He H. Oxygen vacancies on nanosized ceria govern the NOx storage capacity of NSR catalysts. Catalysis Science & Technology, 2016, 6(11): 3950–3962
https://doi.org/10.1039/C5CY01660F
8 Partridge W P, Choi J S. NH3 formation and utilization in regeneration of Pt/Ba/Al2O3 NOx storage-reduction catalyst with H2. Applied Catalysis B: Environmental, 2009, 91(1–2): 144–151
https://doi.org/10.1016/j.apcatb.2009.05.017
9 National Highway Traffic Safety Administration. Light-duty vehicle greenhouse gas emission standards and corporate average fuel economy standards: final rule. Federal Register, 2010, 40: 25323–25728
10 Mráček D, Kočí P, Marek M, Choi J S, Pihl J A, Partridge W P. Dynamics of N2 and N2O peaks during and after the regeneration of lean NOx trap. Applied Catalysis B: Environmental, 2015, 166: 509–517 doi:10.1016/j.apcatb.2014.12.00 2
11 Bártová Š, Kočí P, Mráček D, Marek M, Pihl J A, Choi J S, Toops T J, Partridge W P. New insights on N2O formation pathways during lean/rich cycling of a commercial lean NOx trap catalyst. Catalysis Today, 2014, 231: 145–154
https://doi.org/10.1016/j.cattod.2013.11.050
12 Kubiak L, Righini L, Castoldi L, Matarrese R, Forzatti P, Lietti L, Daturi M. Mechanistic aspects of N2O formation over Pt-based lean NOx trap catalysts. Topics in Catalysis, 2016, 59(10–12): 976–981
https://doi.org/10.1007/s11244-016-0577-z
13 Lietti L, Righini L, Castoldi L, Artioli N, Forzatti P. Labeled 15NO study on N2 and N2O formation over Pt-Ba/Al2O3 NSR catalysts. Topics in Catalysis, 2013, 56(1–8): 7–13
https://doi.org/10.1007/s11244-013-9920-9
14 Elizundia U, Duraiswami D, Pereda-Ayo B, López-Fonseca R, González-Velasco J R. Controlling the selectivity to N2O over Pt/Ba/Al2O3 NOx storage/reduction catalysts. Catalysis Today, 2011, 176(1): 324–327
https://doi.org/10.1016/j.cattod.2010.11.075
15 Masdrag L, Courtois X, Can F, Duprez D. Effect of reducing agent (C3H6, CO, H2) on the NOx conversion and selectivity during representative lean/rich cycles over monometallic platinum-based NSR catalysts. Influence of the support formulation. Applied Catalysis B: Environmental, 2014, 146: 12–23
https://doi.org/10.1016/j.apcatb.2013.06.006
16 Nova I, Castoldi L, Lietti L, Tronconi E, Forzatti P. How to control the selectivity in the reduction of NOx with H2 over Pt-Ba/Al2O3 Lean NOx Trap catalysts. Topics in Catalysis, 2007, 42(1): 21–25
https://doi.org/10.1007/s11244-007-0144-8
17 Lindholm A, Sjövall H, Olsson L. Reduction of NOx over a combined NSR and SCR system. Applied Catalysis B: Environmental, 2010, 98(3–4): 112–121
https://doi.org/10.1016/j.apcatb.2010.05.019
18 Bobadilla L F, Marie O, Bazin P, Daturi M. Effect of Pd addition on the efficiency of a NOx-trap catalyst: a FTIR operando study. Catalysis Today, 2013, 205: 24–33
https://doi.org/10.1016/j.cattod.2012.08.019
19 Sekiba T, Kimura S, Yamamoto H, Okada A. Development of automotive palladium three-way catalysts. Catalysis Today, 1994, 22(1): 113–126
https://doi.org/10.1016/0920-5861(94)80096-0
20 Zhang Q, Lv L, Zhu J, Wang X, Wang J, Shen M. The effect of CO on NO reduction over Pt/Pd-based NSR catalysts at low temperature. Catalysis Science & Technology, 2013, 3(4): 1069–1077
https://doi.org/10.1039/c2cy20775c
21 Zhu J, Wang J, Wang J, Lv L, Wang X, Shen M. New insights into the N2O formation mechanism over Pt-BaO/Al2O3 model catalysts using H2 as a reductant. Environmental Science & Technology, 2015, 49(1): 504–512
https://doi.org/10.1021/es5046106
22 Wang J, Wang X, Zhu J, Wang J, Shen M. Elucidating N2O formation during the cyclic NOx storage and reduction process using CO as a reductant. Environmental Science & Technology, 2015, 49(13): 7965–7973
https://doi.org/10.1021/acs.est.5b00712
23 Canton P, Fagherazzi G, Battagliarin M, Menegazzo F, Pinna F, Pernicone N. Pd/CO average chemisorption stoichiometry in highly dispersed supported Pd/ g-Al2O3 catalysts. Langmuir, 200 2, 18(17): 6530–6535
https://doi.org/10.1021/la015650a
24 Auvray X, Pingel T, Olsson E, Olsson L. The effect gas composition during thermal aging on the dispersion and NO oxidation activity over Pt/Al2O3 catalysts. Applied Catalysis B: Environmental, 2013, 129: 517–527
https://doi.org/10.1016/j.apcatb.2012.10.002
25 Carlsson P A, Österlund L, Thormählen P, Palmqvist A, Fridell E, Jansson J, Skoglundh M. A transient in situ FTIR and XANES study of CO oxidation over Pt/Al2O3 catalysts. Journal of Catalysis, 2004, 226(2): 422–434
https://doi.org/10.1016/j.jcat.2004.06.009
26 Amberntsson A, Fridell E, Skoglundh M. Influence of platinum and rhodium composition on the NOx storage and sulphur tolerance of a barium based NOx storage catalyst. Applied Catalysis B: Environmental, 2003, 46(3): 429–439
https://doi.org/10.1016/S0926-3373(03)00269-8
27 Cant N W, Liu I O, Patterson M J. The effect of proximity between Pt and BaO on uptake, release, and reduction of NOx on storage catalysts. Journal of Catalysis, 2006, 243(2): 309–317
https://doi.org/10.1016/j.jcat.2006.07.030
28 Kubiak L, Matarrese R, Castoldi L, Lietti L, Daturi M, Forzatti P. Study of N2O formation over Rh- and Pt-based LNT catalysts. Catalysts, 2016, 6(3): 36–51
https://doi.org/10.3390/catal6030036
29 Zorn K, Giorgio S, Halwax E, Henry C R, Grönbeck H, Rupprechter G. CO oxidation on technological Pd-Al2O3 catalysts: oxidation state and activity. Journal of Physical Chemistry C, 2011, 115(4): 1103–1111
https://doi.org/10.1021/jp106235x
30 Olsson L, Zhdanov V P, Kasemo B. Role of steps in the NO-CO reaction on the (1 1 1) surface of noble metals. Surface Science, 2003, 529(3): 338–348 
https://doi.org/10.1016/S0039-6028(03)00275-9
31 Hwang C P, Yeh C T. Platinum-oxide species formed by oxidation of platinum crystallites supported on alumina. Journal of Molecular Catalysis A: Chemical, 1996, 112(2): 295–30 2 
https://doi.org/10.1016/1381-1169(96)00127-6
32 Luo J Y, Meng M, Zha Y Q, Xie Y N, Hu T D, Zhang J, Liu T. A comparative study of Pt/Ba/Al2O3 and Pt/Fe-Ba/Al2O3 NSR catalysts: new insights into the interaction of Pt-Ba and the function of Fe. Applied Catalysis B: Environmental, 2008, 78(1–2): 38–52
https://doi.org/10.1016/j.apcatb.2007.08.017
33 Zhou R, Zhao B, Yue B. Effects of CeO2-ZrO2 present in Pd/Al2O3 catalysts on the redox behavior of PdOx and their combustion activity. Applied Surface Science, 2008, 254(15): 4701–4707
https://doi.org/10.1016/j.apsusc.2008.01.075
34 Pisanu A M, Gigola C E. NO decomposition and NO reduction by CO over Pd/ a-Al2O3. Applied Catalysis B: Environmental, 1999, 20(3): 179–189
https://doi.org/10.1016/S0926-3373(98)00110-6
35 Szailer T, Kwak J, Kim D, Hanson J, Peden C, Szanyi J. Reduction of stored NOx on Pt/Al2O3 and Pt/BaO/Al2O3 catalysts with H2 and CO. Journal of Catalysis, 2006, 239(1): 51–64
https://doi.org/10.1016/j.jcat.2006.01.014
[1] Yilei Lu, Yunqing Huang, Siyu Zeng, Can Wang. Scenario-based assessment and multi-objective optimization of urban development plan with carrying capacity of water system[J]. Front. Environ. Sci. Eng., 2020, 14(2): 21-.
[2] Zunaira Asif, Zhi Chen. An integrated optimization and simulation approach for air pollution control under uncertainty in open-pit metal mine[J]. Front. Environ. Sci. Eng., 2019, 13(5): 74-.
[3] Mingkai Zhang, He Jing, Yanchen Liu, Hanchang Shi. Estimation and optimization operation in dealing with inflow and infiltration of a hybrid sewerage system in limited infrastructure facility data[J]. Front. Environ. Sci. Eng., 2017, 11(2): 7-.
[4] Xuewei QI,Ke LI,Walter D. POTTER. Estimation of distribution algorithm enhanced particle swarm optimization for water distribution network optimization[J]. Front. Environ. Sci. Eng., 2016, 10(2): 341-351.
[5] Yue HUANG,Xin DONG,Siyu ZENG,Jining CHEN. An integrated model for structure optimization and technology screening of urban wastewater systems[J]. Front. Environ. Sci. Eng., 2015, 9(6): 1036-1048.
[6] Yijing CHAN,Meifong CHONG,Chunglim LAW. Optimization of thermophilic anaerobic-aerobic treatment system for Palm Oil Mill Effluent (POME)[J]. Front. Environ. Sci. Eng., 2015, 9(2): 334-351.
[7] Junying CHU, Hao WANG, Can WANG. Exploring price effects on the residential water conservation technology diffusion process: a case study of Tianjin city[J]. Front Envir Sci Eng, 2013, 7(5): 688-698.
[8] Wei LI, Xiaowen DING, Min LIU, Yuewen GUO, Lei LIU. Optimization of process parameters for mature landfill leachate pretreatment using MAP precipitation[J]. Front Envir Sci Eng, 2012, 6(6): 892-900.
[9] Shuming LIU, Wenjun LIU, Jinduan CHEN, Qi WANG. Optimal locations of monitoring stations in water distribution systems under multiple demand patterns: a flaw of demand coverage method and modification[J]. Front Envir Sci Eng, 2012, 6(2): 204-212.
[10] Mow-Soung CHENG, Jenny X. ZHEN, Leslie SHOEMAKER, . BMP decision support system for evaluating stormwater management alternatives[J]. Front.Environ.Sci.Eng., 2009, 3(4): 453-463.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed