Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2018, Vol. 12 Issue (2) : 2    https://doi.org/10.1007/s11783-017-0979-6
RESEARCH ARTICLE
Novel approach to control adsorbent aggregation: iron fixed bentonite-fly ash for Lead (Pb) and Cadmium (Cd) removal from aqueous media
Teza Mwamulima1, Xiaolin Zhang2, Yongmei Wang1, Shaoxian Song2, Changsheng Peng1()
1. The Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
2. School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
 Download: PDF(555 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A novel approach was used to control zero valent iron aggregation and separation problems by fixing zero valent iron (ZVI) on low cost bentonite-fly ash (BFA) pellets to produce ZVI-BFA.

ZVI-BFA pellets have good size, don’t disintegrate and can easily be separated from water when exhausted.

Removal kinetics followed the pseudo second order kinetic model.

Combined physical and chemical processes are the characteristic removal mechanisms of Pb2+ and Cd2+ by ZVI-BFA.

In the present study, a novel approach was used to control zero valent iron aggregation and separation problems by fixing zero valent iron (ZVI) on bentonite-fly ash pellets. For this purpose, porous low cost bentonite-fly ash (BFA) pellets with size of 2.00 cm in length and 0.35 cm in diameter were prepared and fixed with ZVI to manufacture zero valent iron bentonite-fly ash (ZVI-BFA) pellets. Importantly, unlike powdered adsorbents, ZVI-BFA can easily be separated from final effluents when exhausted without any disintegration. The performance of the developed novel adsorbent was investigated for the removal of Pb2+ and Cd2+ from aqueous media. At 100 mg·L1 and 1 g adsorbent, a maximum of 89.5% of Cd2+ and 95.6% of Pb2+ was removed by ZVI-BFA as compared to 56% and 95% removal by BFA. At 200 mg·L1, Cd2+ and Pb2+ removal by ZVI-BFA was 56% and 99.8% respectively as compared to only 28% and 96% by BFA. Further, the removal kinetics was best fitted for pseudo-second order model. The study provides the basis for improving the removal capacity of porous materials by iron fixation while taking separation ability into consideration.

Keywords Zero valent iron      Bentonite      Fly ash      Heavy metals removal      Synthesis     
Corresponding Author(s): Changsheng Peng   
Issue Date: 01 August 2017
 Cite this article:   
Teza Mwamulima,Xiaolin Zhang,Yongmei Wang, et al. Novel approach to control adsorbent aggregation: iron fixed bentonite-fly ash for Lead (Pb) and Cadmium (Cd) removal from aqueous media[J]. Front. Environ. Sci. Eng., 2018, 12(2): 2.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-017-0979-6
https://academic.hep.com.cn/fese/EN/Y2018/V12/I2/2
Fig.1  Effect of (a) shaking time of Fe3+ with BFA, (b) mass ratio of Fe3+: BFA, (c) molar ratio of Fe3+: BH4- and (d) shaking time of Fe3+ with BH4- on the amount of iron on BFA
Fig.2  (a)-(b) SEM of BFA and (c)-(d) SEM of ZVI-BFA
Fig.3  (a) EDX spectrum of BFA and (b) EDX spectrum results of ZVI-BFA
Fig.4  Pseudo-second order kinetics model fitting of (a) Pb2+ and (b) Cd2+ removal on BFA and ZVI-BFA at 100 mg·L-1 and 200 mg·L-1 (c) removal of mixed Cd2+ and Pb2+ aqueous solution at 100 mg·L-1 each and influence of pH on (d) Pb2+ removal and (e) Cd2+ removal by ZVI-BFA
Cd2+Pb2+
BFA
100
(mg·L-1)
BFA
200
(mg·L-1)
ZVI-BFA
100
(mg·L-1)
ZVI-BFA
200
(mg·L-1)
BFA
100
(mg·L-1)
BFA
200
(mg·L-1)
ZVI-BFA
100
(mg·L-1)
ZVI-BFA
200
(mg·L-1)
pseudo-first order
qe(exp.)(mg·g-1)5.3665.5968.94610.7289.50019.0329.619.97
qe(mg·g-1)1.8051.6892.5512.2472.3870.9612.0020.794
Kp1(min-1)-0.008-0.011-0.012-0.0170.016-0.016-0.004-0.004
R0.6700.6620.6220.6250.8990.9780.2610.240
pseudo-second order
qe (mg·g-1)5.7140.8519.00910.5269.6218.879.62020.00
Kp2(min-1)0.0110.4530.0660.0580.1000.017-1.2020.865
Vo(mg·(g·min-1)-1)0.3680.3285.3766.3699.2596.135-111.111344.83
R0.8550.6340.9990.9720.9990.9960.9991.000
intraparticle diffusion
kint(mg·g-1·min1/2)0.5730.6300.8951.0790.4091.7290.0540.156
R0.9680.9270.7120.6100.9730.9760.4550.830
Tab.1  Kinetic models fitting results for Cd2+ and Pb2+ removal by BFA and ZVI-BFA at 100 and 200 mg·L-1
Fig.5  Removal of Cd2+ by BFA and ZVI-BFA at (a) 100 mg·L-1 and (b) 200 mg·L-1 and removal of Pb2+ by BFA and ZVI-BFA at (c) 100 mg·L-1 and (d) 200 mg·L-1
Fig.6  Isotherm linear fitting results showing (a) Pb2+ Freundlich linear fitting (b) Cd2+ Freundlich linear fitting and (c) Cd2+ Langmuir linear fitting and Influence initial concentration on (d) Pb2+ removal and Cd2+ removal by ZVI-BFA
Fig.7  Schematic representation for the proposed removal mechanisms of Pb2+ and Cd2+ by (a) BFA and (b) ZVI-BFA
1 IPCS. Cadmium, cadmium chloride, cadmium oxide, cadmium sulphide, cadmium acetate, cadmium sulphate. Geneva, World Health Organization, International Programme on Chemical Safety (International Chemical Safety Cards 0020, 0116, 0117, 0404, 1075 and 1318. Available online at  (accessed  January 15, 2017)
2 Hizal J, Apak R. Modeling of copper(II) and lead(II) adsorption on kaolinite-based clay minerals individually and in the presence of humic acid. Journal of Colloid and Interface Science, 2006, 295(1): 1–13
https://doi.org/10.1016/j.jcis.2005.08.005 pmid: 16168423
3 WHO. Guidelines for Drinking-water Quality. First addendum to third edition. 2006. Available online at:  (accessed  December 4, 2016).
4 Wei Y T, Wu S C, Yang S W, Che C H, Lien H L, Huang D H. Biodegradable surfactant stabilized nanoscale zero-valent iron for in situ treatment of vinyl chloride and 1,2-dichloroethane. Journal of Hazardous Materials, 2012, 211– 212: 373–380 PMID:22118849 
https://doi.org/10.1016/j.jhazmat.2011.11.018
5 Shi L N, Lin Y M, Zhang X, Chen Z. Synthesis, characterization and kinetics of bentonite supported nZVI for the removal of Cr(VI) from aqueous solution. Chemical Engineering Journal, 2011a, 171(2): 612–617
https://doi.org/10.1016/j.cej.2011.04.038
6 Shi Z, Nurmi J T, Tratnyek P G. Effects of nano zero-valent iron on oxidation-reduction potential. Environmental Science & Technology, 2011b, 45(4): 1586–1592
https://doi.org/10.1021/es103185t pmid: 21204580
7 Sunkara B, Zhan J, Kolesnichenko I, Wang Y, He J, Holland J E, McPherson G L, John V T. Modifying metal nanoparticle placement on carbon supports using an aerosol-based process, with application to the environmental remediation of chlorinated hydrocarbons. Langmuir, 2011, 27(12): 7854–7859
https://doi.org/10.1021/la200657m pmid: 21612244
8 Chen Z X, Jin X Y, Chen Z, Megharaj M, Naidu R. Removal of methyl orange from aqueous solution using bentonite-supported nanoscale zero-valent iron. Journal of Colloid and Interface Science, 2011, 363(2): 601–607
https://doi.org/10.1016/j.jcis.2011.07.057 pmid: 21864843
9 Arancibia-Miranda N, Baltazar S E, García A, Muñoz-Lira D, Sepúlveda P, Rubio M A, Altbir D. Nanoscale zero valent supported by Zeolite and Montmorillonite: template effect of the removal of lead ion from an aqueous solution. Journal of Hazardous Materials, 2016, 301: 371–380
https://doi.org/10.1016/j.jhazmat.2015.09.007 pmid: 26384998
10 Wu L, Liao L, Lv G, Qin F. Stability and pH-independence of nano-zero-valent iron intercalated montmorillonite and its application on Cr(VI) removal. Journal of Contaminant Hydrology, 2015, 179: 1–9
https://doi.org/10.1016/j.jconhyd.2015.05.001 pmid: 26011800
11 Potuzak M. Potassium Dichromate Potentiometric Titration of Iron in Natural Magmas. LMU Intrainstitute Manual, 2001.
12 Ho Y S, McKay G. A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Safety and Environmental Protection, 1998a, 76(4): 332–340
https://doi.org/10.1205/095758298529696
13 Ho Y S, McKay G. Sorption of dye from aqueous solution by peat. Chemical Engineering Journal, 1998b, 70(2): 115–124
https://doi.org/10.1016/S0923-0467(98)00076-1
14 Alkan M, Demirbaş Ö, Doğan M. Adsorption kinetics and thermodynamics of an anionic dye onto sepiolite. Microporous and Mesoporous Materials, 2007, 101(3): 388–396
https://doi.org/10.1016/j.micromeso.2006.12.007
15 Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 1918, 40(9): 1361–1403
https://doi.org/10.1021/ja02242a004
16 Freundlich H M F. Über die adsorption in lösungen. Journal of Physical Chemistry, 1906, 57: 385–470
17 Kong X, Han Z, Zhang W, Song L, Li H. Synthesis of zeolite-supported microscale zero-valent iron for the removal of Cr6+ and Cd2+ from aqueous solution. Journal of Environmental Management, 2016, 169: 84–90
https://doi.org/10.1016/j.jenvman.2015.12.022 pmid: 26731307
18 Wang L K, Hung Y T, Shammas N K. Physicochemical Treatment Processes.Totowa, NJ: Humana Press, 2005.
19 Alloway B J. Sources of Heavy Metals and Metalloids in Soils. In: Heavy metals in soils. Netherlands: Springer, 2013, 11–50
20 Srivastava P, Singh B, Angove M. Competitive adsorption behavior of heavy metals on kaolinite. Journal of Colloid and Interface Science, 2005, 290(1): 28–38
https://doi.org/10.1016/j.jcis.2005.04.036 pmid: 15935360
21 Zhang X, Lin S, Lu X Q, Chen Z L. Removal of Pb(II) from water using synthesized kaolin supported nanoscale zero-valent iron. Chemical Engineering Journal, 2010, 163(3): 243–248
https://doi.org/10.1016/j.cej.2010.07.056
22 Soleymanzadeh M, Arshadi M, Salvacion J W L, SalimiVahid F. A new and effective nanobiocomposite for sequestration of Cd(II) ions: nanoscale zerovalent iron supported on sineguelas seed waste. Chemical Engineering Research & Design, 2015, 93: 696–709
https://doi.org/10.1016/j.cherd.2014.06.006
23 Kim S A, Kamala-Kannan S, Lee K J, Park Y J, Shea P J, Lee W H, Kim H M, Oh B T. Removal of Pb(II) from aqueous solution by a zeolite–nanoscale zero-valent iron composite. Chemical Engineering Journal, 2013, 217: 54–60 doi:10.1016/j.cej.2012.11.097
24 Fan T, Liu Y, Feng B, Zeng G, Yang C, Zhou M, Zhou H, Tan Z, Wang X. Biosorption of cadmium(II), zinc(II) and lead(II) by Penicillium simplicissimum: isotherms, kinetics and thermodynamics. Journal of Hazardous Materials, 2008, 160(2–3): 655–661 PMID:18455299 
https://doi.org/10.1016/j.jhazmat.2008.03.038
25 Huang Y, Yang C, Sun Z, Zeng G, He H. Removal of cadmium and lead from aqueous solutions using nitrilotriacetic acid anhydride modified ligno-cellulosic material. RSC Advances, 2015, 5(15): 11475–11484
https://doi.org/10.1039/C4RA14859B
26 Cheng Y, Yang C, He H, Zeng G, Zhao K, Yan Z. Biosorption of Pb(II) ions from aqueous solutions by waste biomass from biotrickling filters: kinetics, isotherms, and thermodynamics. Journal of Environmental Engineering, 2015, 142(9): C4015001
https://doi.org/10.1061/(ASCE)EE.1943-7870.0000956
27 Attari M, Bukhari S S, Kazemian H, Rohani S. A low-cost adsorbent from coal fly ash for mercury removal from industrial wastewater. Journal of Environmental Chemical Engineering, 2017, 5(1): 391–399
https://doi.org/10.1016/j.jece.2016.12.014
28 Li X Q, Zhang W X. Sequestration of metal cations with zerovalent iron nanoparticles a study with high resolution X-ray photoelectron spectroscopy (HR-XPS). Journal of Physical Chemistry C, 2007, 111(19): 6939–6946
https://doi.org/10.1021/jp0702189
29 Yan L G, Xu Y Y, Yu H Q, Xin X D, Wei Q, Du B. Adsorption of phosphate from aqueous solution by hydroxy-aluminum, hydroxy-iron and hydroxy-iron-aluminum pillared bentonites. Journal of Hazardous Materials, 2010, 179(1–3): 244–250
https://doi.org/10.1016/j.jhazmat.2010.02.086 pmid: 20334967
30 Zhang Y, Li Y, Dai C, Zhou X, Zhang W. Sequestration of Cd(II) with nanoscale zero-valent iron (nZVI): characterization and test in a two-stage system. Chemical Engineering Journal, 2014, 244: 218–226
https://doi.org/10.1016/j.cej.2014.01.061
31 Boparai H K, Joseph M, O’Carroll D M. Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. Journal of Hazardous Materials, 2011, 186(1): 458–465
https://doi.org/10.1016/j.jhazmat.2010.11.029 pmid: 21130566
32 O’Carroll D, Sleep B, Krol M, Boparai H, Kocur C. Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Advances in Water Resources, 2013, 51: 104–122
https://doi.org/10.1016/j.advwatres.2012.02.005
33 Calderon B, Fullana A. Heavy metal release due to aging effect during zero valent iron nanoparticles remediation. Water Research, 2015, 83: 1–9 PMID:26115512 
https://doi.org/10.1016/j.watres.2015.06.004
34 Otte K, Schmahl W W, Pentcheva R. Density functional theory study of water adsorption on FeOOH surfaces. Surface Science, 2012, 606(21): 1623–1632
https://doi.org/10.1016/j.susc.2012.07.009
35 Noubactep C. Characterizing the discoloration of methylene blue in Fe0/H2O systems. Journal of Hazardous Materials, 2009, 166(1): 79–87
https://doi.org/10.1016/j.jhazmat.2008.11.001 pmid: 19070425
[1] FSE-17074-OF-MT_suppl_1 Download
[1] Sanjena Narayanasamydamodaran, Jian’e Zuo, Haiteng Ren, Nawnit Kumar. Scrap Iron Filings assisted nitrate and phosphate removal in low C/N waters using mixed microbial culture[J]. Front. Environ. Sci. Eng., 2021, 15(4): 66-.
[2] Yingdan Zhang, Na Liu, Wei Wang, Jianteng Sun, Lizhong Zhu. Photosynthesis and related metabolic mechanism of promoted rice (Oryza sativa L.) growth by TiO2 nanoparticles[J]. Front. Environ. Sci. Eng., 2020, 14(6): 103-.
[3] Sen Liu, Congren Yang, Wei Liu, Longsheng Yi, Wenqing Qin. A novel approach to preparing ultra-lightweight ceramsite with a large amount of fly ash[J]. Front. Environ. Sci. Eng., 2020, 14(4): 62-.
[4] Lei Zheng, Xingbao Gao, Wei Wang, Zifu Li, Lingling Zhang, Shikun Cheng. Utilization of MSWI fly ash as partial cement or sand substitute with focus on cementing efficiency and health risk assessment[J]. Front. Environ. Sci. Eng., 2020, 14(1): 5-.
[5] Ling-Li Li, Yin-Hua Cui, Jie-Jie Chen, Han-Qing Yu. Roles of glutathione and L-cysteine in the biomimetic green synthesis of CdSe quantum dots[J]. Front. Environ. Sci. Eng., 2017, 11(6): 7-.
[6] Marika Benedetti, Lorenzo Cafiero, Doina De Angelis, Alessandro Dell’Era, Mauro Pasquali, Stefano Stendardo, Riccardo Tuffi, Stefano Vecchio Ciprioti. Pyrolysis of WEEE plastics using catalysts produced from fly ash of coal gasification[J]. Front. Environ. Sci. Eng., 2017, 11(5): 11-.
[7] Xiaolong CHU,Guoqiang SHAN,Chun CHANG,Yu FU,Longfei YUE,Lingyan ZHU. Effective degradation of tetracycline by mesoporous Bi2WO6 under visible light irradiation[J]. Front. Environ. Sci. Eng., 2016, 10(2): 211-218.
[8] Yan SHAO,Haobo HOU,Guangxing WANG,Sha WAN,Min ZHOU. Characteristics of the stabilized/solidified municipal solid wastes incineration fly ash and the leaching behavior of Cr and Pb[J]. Front. Environ. Sci. Eng., 2016, 10(1): 192-200.
[9] Jialu SHI,Shengnan YI,Chao LONG,Aimin LI. Effect of Fe loading quantity on reduction reactivity of nano zero-valent iron supported on chelating resin[J]. Front. Environ. Sci. Eng., 2015, 9(5): 840-849.
[10] Yanlai HAN,Michael D. Y. YANG,Weixian ZHANG,Weile YAN. Optimizing synthesis conditions of nanoscale zero-valent iron (nZVI) through aqueous reactivity assessment[J]. Front. Environ. Sci. Eng., 2015, 9(5): 813-822.
[11] Bhagwanjee JHA,Nevin KOSHY,Devendra Narain SINGH. Establishing two-stage interaction between fly ash and NaOH by X-ray and infrared analyses[J]. Front. Environ. Sci. Eng., 2015, 9(2): 216-221.
[12] Yanqing YU, Xiaoliang LI, Xiaolan ZOU, Xiaobin ZHU. Effect of seawater salinity on the synthesis of zeolite from coal fly ash[J]. Front Envir Sci Eng, 2014, 8(1): 54-61.
[13] Jinlong XIE, Yuyan HU, Dezhen CHEN, Bin ZHOU, . Hydrothermal treatment of MSWI fly ash for simultaneous dioxins decomposition and heavy metal stabilization[J]. Front.Environ.Sci.Eng., 2010, 4(1): 108-115.
[14] LIANG Shunwen, JIANG Jianguo, ZHANG Yan, XU Xin. Leaching characteristics of heavy metals during cement stabilization of fly ash from municipal solid waste incinerators[J]. Front.Environ.Sci.Eng., 2008, 2(3): 358-363.
[15] LUO Weiguo, WANG Shihe, HUANG Juan, YAN Lu, HUANG Jun. Impact of photosynthesis and transpiration on nitrogen removal in constructed wetlands[J]. Front.Environ.Sci.Eng., 2007, 1(3): 316-319.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed