Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2018, Vol. 12 Issue (2) : 6    https://doi.org/10.1007/s11783-017-0987-6
RESEARCH ARTICLE |
Enhanced reductive degradation of carbon tetrachloride by carbon dioxide radical anion-based sodium percarbonate/ Fe(II)/formic acid system in aqueous solution
Wenchao Jiang, Ping Tang, Shuguang Lu(), Xiang Zhang, Zhaofu Qiu, Qian Sui
State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
 Download: PDF(695 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Complete CT degradation was achieved by SPC/Fe(II)/FA system.

Formic acid established the reductive circumstance by producing CO2·.

CO2· was the dominant active species responsible for CT degradation.

CT degradation was favorable in the pH range from 3.0 to 9.0.

SPC/Fe(II)/FA system may be suitable for CT remediation in contaminated groundwater.

The performance of sodium percarbonate (SPC) activated with ferrous ion (Fe(II)) with the addition of formic acid (FA) to stimulate the degradation of carbon tetrachloride (CT) was investigated. Results showed that CT could be entirely reduced within 15 min in the system at a variety of SPC/Fe(II)/FA/CT molar ratios in experimental level. Scavenging tests indicated that carbon dioxide radical anion (CO2·) was the dominant reactive oxygen species responsible for CT degradation. CT degradation rate, to a large extent, increased with increasing dosages of chemical agents and the optimal molar ratio of SPC/Fe(II)/FA/CT was set as 60/60/60/1. The initial concentration of CT can hardly affect the CT removal, while CT degradation was favorable in the pH range of 3.0–9.0, but apparently inhibited at pH 12. Cl and HCO3 of high concentration showed negative impact on CT removal. Cl released from CT was detected and the results confirmed nearly complete mineralization of CT. CT degradation was proposed by reductive C-Cl bond splitting. This study demonstrated that SPC activated with Fe(II) with the addition of FA may be promising technique for CT remediation in contaminated groundwater.

Keywords Carbon tetrachloride      Sodium percarbonate      Formic acid      Reductive radicals      Groundwater     
Corresponding Authors: Shuguang Lu   
Issue Date: 01 September 2017
 Cite this article:   
Wenchao Jiang,Ping Tang,Shuguang Lu, et al. Enhanced reductive degradation of carbon tetrachloride by carbon dioxide radical anion-based sodium percarbonate/ Fe(II)/formic acid system in aqueous solution[J]. Front. Environ. Sci. Eng., 2018, 12(2): 6.
 URL:  
http://academic.hep.com.cn/fese/EN/10.1007/s11783-017-0987-6
http://academic.hep.com.cn/fese/EN/Y2018/V12/I2/6
Fig.1  Degradation performance of CT under Fe(II) activated SPC system with the addition of FA ([CT]0 = 0.130 mmol·L–1, [SPC] = [Fe(II)] = [FA] = 7.8 mmol·L–1)
Fig.2  Effect of CF, TBA and MV2+ on CT degradation ([CT]0 = 0.130 mmol·L–1, [SPC] = [Fe(II)] = [FA] = 7.8 mmol·L–1)
Fig.3  Influence of various SPC/Fe(II)/FA/CT molar ratio on CT removal ([CT]0 = 0.130 mmol·L–1)
Fig.4  Influence of individual chemical dosage on CT removal: (a) SPC ([CT]0 = 0.130 mmol·L–1, initial Fe(II)/FA/CT molar ratio= 60/60/1); (b) Fe(II) ([CT]0 = 0.130 mmol·L–1, initial SPC/FA/CT molar ratio= 60/60/1); (c) FA ([CT]0 = 0.130 mmol·L–1, initial SPC/Fe(II)/CT molar ratio= 60/60/1); (d) CT (initial SPC/Fe(II)/FA molar ratio= 60/60/60)
Fig.5  Influence of initial solution pH on CT removal ([CT]0 = 0.130 mmol·L–1, [SPC] = [Fe(II)] = [FA] = 7.8mmol·L–1)
pHInitial (0 min)3 min5 minFinal (15 min)
Unadjusted pH2.584.044.104.24
Adjusted pH= 33.014.965.325.75
Adjusted pH= 65.965.855.785.75
Adjusted pH= 99.028.968.958.92
Adjusted pH= 1211.8611.5611.5411.46
Tab.1  Changes of pH values during the reaction in predetermined time
Fig.6  Influence of ions on CT removal: (a) Cl- ([CT]0 = 0.130 mmol·L–1, [SPC] = [Fe(II)] = [FA] = 7.8 mmol·L–1); (b) HCO3- ([CT]0 = 0.130 mmol·L–1, [SPC] = [Fe(II)] = [FA] = 7.8 mmol·L–1); (c) NO3- ([CT]0 = 0.130 mmol·L–1, [SPC] = [Fe(II)] = [FA] = 7.8 mmol·L–1); (d) SO42– ([CT]0 = 0.130 mmol·L–1, [SPC] = [Fe(II)] = [FA] = 7.8 mmol·L–1)
Fig.7  Chloride ion released and residues of chemicals along with CT degradation (a) Cl ([CT]0 = 0.130 mmol·L–1, [SPC] = [Fe(II)] = [FA] = 7.8mmol·L–1); (b) SPC and Fe(II) ([CT]0 = 0.130 mmol·L–1, [SPC] = [Fe(II)] = [FA] = 7.8mmol·L–1)
1 Mercier M, Lans M, de Gerlache J. Mutagenicity, carcinogenicity, and teratogenicity of halogenated hydrocarbon solvents. In: Kirsch-Volders M, eds. Mutagenicity, Carcinogenicity, and Teratogenicity of Industrial Pollutants. Boston: Springer, 1984, 281–324
2 Semprini L. In situ bioremediation of chlorinated solvents. Environmental Health Perspectives, 1995, 103(Suppl 5): 101–105
https://doi.org/10.1289/ehp.95103s4101 pmid: 8565895
3 Lin Y T, Liang C. Carbon tetrachloride degradation by alkaline ascorbic acid solution. Environmental Science & Technology, 2013, 47(7): 3299–3307
https://doi.org/10.1021/es304441e pmid: 23448585
4 Fischer J R, Sweeny K H. US Patent, 3 640 821,  1972–02–08
5 Wolfe N L, Macalady D L. New perspectives in aquatic redox chemistry: abiotic transformations of pollutants in groundwater and sediments. Journal of Contaminant Hydrology, 1992, 9(1–2): 17–34 doi:10.1016/0169-7722(92)90048-J
6 Alvarado J S, Rose C, Lafreniere L. Degradation of carbon tetrachloride in the presence of zero-valent iron. Journal of Environmental Monitoring, 2010, 12(8): 1524–1530
https://doi.org/10.1039/c0em00039f pmid: 20596593
7 Kostka J E, Nealson K H. Dissolution and reduction of magnetite by bacteria. Environmental Science & Technology, 1995, 29(10): 2535–2540
https://doi.org/10.1021/es00010a012 pmid: 11539843
8 Buxton G V, Greenstock C L, Helman W P, Ross A B. Critical view of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O-) in aqueous solution. Journal of Physical and Chemical Reference Data, 1988, 17(2): 513–886
https://doi.org/10.1063/1.555805
9 Gara P, Bucharsky E, Worner M A, Martire D, Gonzalez M C. Trichloroacetic acid dehalogenation by reductive radicals. Inorganica Chimica Acta, 2007, 360(3): 1209–1216
https://doi.org/10.1016/j.ica.2006.10.019
10 Gonzalez M C, Le Roux G C, Rosso J A, Braun A M. Mineralization of CCl4 by the UVC-photolysis of hydrogen peroxide in the presence of methanol. Chemosphere, 2007, 69(8): 1238–1244
https://doi.org/10.1016/j.chemosphere.2007.05.076 pmid: 17628631
11 Xu M, Gu X, Lu S, Miao Z, Zang X, Wu X, Qiu Z, Sui Q. Degradation of carbon tetrachloride in thermally activated persulfate system in the presence of formic acid. Frontiers of Environmental Science & Engineering, 2016, 10(3): 438–446
https://doi.org/10.1007/s11783-015-0798-6
12 Walling C. Fenton’s reagent revisited. Accounts of Chemical Research, 1975, 8(4): 125–131
https://doi.org/10.1021/ar50088a003
13 Bendicho C, Calle I, Pena F, Costas M, Cabaleiro N, Lavilla I. Ultrasound-assisted pretreatment of solid samples in the context of green analytical chemistry. Trends in Analytical Chemistry, 2012, 43(8): 50–60
https://doi.org/10.1016/j.trac.2011.06.018
14 Miao Z, Gu X, Lu S, Zang X, Wu X, Xu M, Ndong L B, Qiu Z, Sui Q, Fu G Y. Perchloroethylene (PCE) oxidation by percarbonate in Fe2+-catalyzed aqueous solution: PCE performance and its removal mechanism. Chemosphere, 2015, 119: 1120–1125
https://doi.org/10.1016/j.chemosphere.2014.09.065 pmid: 25460751
15 Fu X, Gu X, Lu S, Miao Z, Xu M, Zhang X, Qiu Z, Sui Q. Benzene depletion by Fe2+-catalyzed sodium percarbonate in aqueous solution. Chemical Engineering Journal, 2015, 267: 25–33
https://doi.org/10.1016/j.cej.2014.12.104
16 Tamura H, Goto K, Yotsuyanagi T, Nagayama M. Spectrophotometric determination of iron(II) with 1,10-phenanthroline in the presence of large amounts of iron(III). Talanta, 1974, 21(4): 314–318
https://doi.org/10.1016/0039-9140(74)80012-3 pmid: 18961462
17 Cohen I R, Purcell T C, Altshuller A P. Analysis of the oxidant in photooxidation reactions. Environmental Science & Technology, 1967, 1(3): 247–252
https://doi.org/10.1021/es60003a006
18 Legrini O, Oliveros E, Braun A M. Photochemical processes for water treatment. Chemical Reviews, 1993, 93(2): 671–698
https://doi.org/10.1021/cr00018a003
19 Rosso J A, Bertolotti S G, Braun A M, Mártire D O, Gonzalez M C. Reactions of carbon dioxide radical anion with substituted benzenes. Journal of Physical Organic Chemistry, 2001, 14(5): 300–309
https://doi.org/10.1002/poc.365
20 Hayon E, Simic M. Acid-base properties of organic peroxy radicals, ·OORH, in aqueous solution. Journal of the American Chemical Society, 1973, 95(20): 6681–6684
https://doi.org/10.1021/ja00801a025
21 Teel A L, Watts R J. Degradation of carbon tetrachloride by modified Fenton’s reagent. Journal of Hazardous Materials, 2002, 94(2): 179–189
https://doi.org/10.1016/S0304-3894(02)00068-7 pmid: 12169420
22 Tachikawa T, Tojo S, Fujitsuka M, Majima T. Direct observation of the one-electron reduction of methyl viologen mediated by the CO2 radical anion during TiO2 photocatalytic reactions. Langmuir, 2004, 20(22): 9441–9444
https://doi.org/10.1021/la048100w pmid: 15491173
23 Yap C L, Gan S, Ng H K. Fenton based remediation of polycyclic aromatic hydrocarbons-contaminated soils. Chemosphere, 2011, 83(11): 1414–1430
https://doi.org/10.1016/j.chemosphere.2011.01.026 pmid: 21316731
24 Stuglik Z, Pawełzagórski Z. Pulse radiolysis of neutral iron(II) solutions: oxidation of ferrous ions by OH radicals. Radiation Physics and Chemistry, 1981, 17(4): 229–233
25 Aristova N A, Leitner N K V, Piskarev I M. Degradation of formic acid in different oxidative processes. High Energy Chemistry, 2002, 36(3): 197–202
https://doi.org/10.1023/A:1015385103605
26 Morkovnik A F, Okhlobystin O Y. Inorganic radical-ions and their organic reactions. Russian Chemical Reviews, 1979, 48(11): 1055–1075
https://doi.org/10.1070/RC1979v048n11ABEH002429
27 Connor H D, Thurman R G, Galizi M D, Mason R P. The formation of a novel free radical metabolite from CCl4 in the perfused rat liver and in vivo. Journal of Biological Chemistry, 1986, 261(10): 4542–4548
pmid: 3007463
28 Yu X Y, Barker J R. Hydrogen peroxide photolysis in acidic aqueous solutions containing chloride ions. I. Chemical mechanism. Journal of Physical Chemistry A, 2003, 107(9): 1313–1324
https://doi.org/10.1021/jp0266648
29 Hasegawa K, Neta P. Rate constants and mechanisms of reaction of chloride (·Cl2–) radicals. Journal of Physical Chemistry, 1978, 82(8): 54–857
https://doi.org/10.1021/j100497a003
30 Wu C, Linden K G. Phototransformation of selected organophosphorus pesticides: roles of hydroxyl and carbonate radicals. Water Research, 2010, 44(12): 3585–3594
https://doi.org/10.1016/j.watres.2010.04.011 pmid: 20537677
31 Zhang X, Gu X, Lu S, Miao Z, Xu M, Fu X, Qiu Z, Sui Q. Degradation of trichloroethylene in aqueous solution by calcium peroxide activated with ferrous ion. Journal of Hazardous Materials, 2015, 284: 253–260
https://doi.org/10.1016/j.jhazmat.2014.11.030 pmid: 25463240
32 Jeffers P M, Ward L M, Woytowitch L M, Wolfe N L. Homogeneous hydrolysis rate constants for selected chlorinated methanes, ethanes, ethenes, and propanes. Environmental Science & Technology, 1989, 23(8): 965–969
https://doi.org/10.1021/es00066a006
33 Kriegman-King M R, Reinhard M. Transformation of carbon tetrachloride by pyrite in aqueous solution. Environmental Science & Technology, 1994, 28(4): 692–700
https://doi.org/10.1021/es00053a025 pmid: 22196555
34 Amonette J E, Workman D J, Kennedy D W, Fruchter J S, Gorby Y A. Dechlorination of carbon tetrachloride by Fe(II) associated with goethite. Environmental Science & Technology, 2000, 34(21): 4606–4613
https://doi.org/10.1021/es9913582
35 DanielsenK M, HayesK F. pH dependence of carbon tetrachloride reductive dechlorination by magnetite.Environmental Science & Technology, 2004, 38(18): 4745–4752 
https://doi.org/10.1021/es0496874 pmid: 15487782
[1] Deyi Hou, Guanghe Li, Paul Nathanail. An emerging market for groundwater remediation in China: Policies, statistics, and future outlook[J]. Front. Environ. Sci. Eng., 2018, 12(1): 16-.
[2] Maocong Hu, Yin Liu, Zhenhua Yao, Liping Ma, Xianqin Wang. Catalytic reduction for water treatment[J]. Front. Environ. Sci. Eng., 2018, 12(1): 3-.
[3] Xubin Pan,Zhongkui Luo,Yongbo Liu. Environmental deterioration of farmlands caused by the irrational use of agricultural technologies[J]. Front. Environ. Sci. Eng., 2016, 10(4): 18-.
[4] Minhui XU,Xiaogang GU,Shuguang LU,Zhouwei MIAO,Xueke ZANG,Xiaoliang WU,Zhaofu QIU,Qian SUI. Degradation of carbon tetrachloride in thermally activated persulfate system in the presence of formic acid[J]. Front. Environ. Sci. Eng., 2016, 10(3): 438-446.
[5] Bingbing XU,Qiujin XU,Cunzhen LIANG,Li LI,Lijia JIANG. Occurrence and health risk assessment of trace heavy metals via groundwater in Shizhuyuan Polymetallic Mine in Chenzhou City, China[J]. Front. Environ. Sci. Eng., 2015, 9(3): 482-493.
[6] Haifeng JIA,Shidong LIANG,Yansong ZHANG. Assessing the impact on groundwater safety of inter-basin water transfer using a coupled modeling approach[J]. Front. Environ. Sci. Eng., 2015, 9(1): 84-95.
[7] Junlian QIAO, Zimin CUI, Yuankui SUN, Qinghai HU, Xiaohong GUAN. Simultaneous removal of arsenate and fluoride from water by Al-Fe (hydr)oxides[J]. Front Envir Sci Eng, 2014, 8(2): 169-179.
[8] Siqing XIA, Shuang SHEN, Jun LIANG, Xiaoyin XU. Study on removing selenate from groundwater by autohydrogenotrophic microorganisms[J]. Front Envir Sci Eng, 2013, 7(4): 552-558.
[9] Shu-Hong LI, Yue ZHAO, Jian CHU, Wen-Wei LI, Han-Qing YU, Gang LIU, Yang-Chao TIAN. A Pt-Bi bimetallic nanoparticle catalyst for direct electro-oxidation of formic acid in fuel cells[J]. Front Envir Sci Eng, 2013, 7(3): 388-394.
[10] Hong YAO, Shichao ZHANG, Xiaobo XUE, Jie YANG, Kelin HU, Xiaohua YU. Influence of the sewage irrigation on the agricultural soil properties in Tongliao City, China[J]. Front Envir Sci Eng, 2013, 7(2): 273-280.
[11] Lihui ZHANG, Guomin CAO, Yulei FEI, Hong DING, Mei SHENG, Yongdi LIU. Preliminary study of groundwater denitrification using a composite membrane bioreactor[J]. Front Envir Sci Eng Chin, 2011, 5(4): 604-609.
[12] Youneng TANG, Michal ZIV-EL, Chen ZHOU, Jung Hun SHIN, Chang Hoon AHN, Bruce E. RITTMANN, Kerry MEYER, Daniel CANDELARIA, David FRIESE, Ryan OVERSTREET, Rick SCOTT, . Bioreduction of nitrate in groundwater using a pilot-scale hydrogen-based membrane biofilm reactor[J]. Front.Environ.Sci.Eng., 2010, 4(3): 280-285.
[13] Jinlong ZHOU, Xinguang DONG, Yiping WANG, Guomin LI, Xiaojing GUO, . Evaluation of groundwater quality in the Xinjiang Plain Area[J]. Front.Environ.Sci.Eng., 2010, 4(2): 183-186.
[14] ZHANG Ruihua, SUN Hongwen, YIN Jin. Arsenic and chromate removal from water by iron chips-Effects of anions[J]. Front.Environ.Sci.Eng., 2008, 2(2): 203-208.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed