Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2017, Vol. 11 Issue (5) : 6    https://doi.org/10.1007/s11783-017-0993-8
RESEARCH ARTICLE
Preparing graphene from anode graphite of spent lithium-ion batteries
Wenxuan Zhang, Zhanpeng Liu, Jing Xia, Feng Li, Wenzhi He, Guangming Li(), Juwen Huang
State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
 Download: PDF(281 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Anode graphite was found to keep the original characteristics and configuration.

Some oxygen-containing groups were embedded into the structure of anode graphite.

Anode graphite were recycled by preparing graphene with oxidation-reduction method.

Preparing graphene with anode graphite consumed less concentrated H2SO4 and KMnO4.

With extensive use of lithium ion batteries (LIBs), amounts of LIBs were discarded, giving rise to growth of resources demand and environmental risk. In view of wide usage of natural graphite and the high content (12%–21%) of anode graphite in spent LIBs, recycling anode graphite from spent LIBs cannot only alleviate the shortage of natural graphite, but also promote the sustainable development of related industries. After calcined at 600°Cfor 1 h to remove organic substances, anode graphite was used to prepare graphene by oxidation-reduction method. Effect of pH and N2H4·H2O amount on reduction of graphite oxide were probed. Structure of graphite, graphite oxide and graphene were characterized by XRD, Raman and FTIR. Graphite oxide could be completely reduced to graphene at pH 11 and 0.25 mL N2H4·H2O. Due to the presence of some oxygen-containing groups and structure defects in anode graphite, concentrated H2SO4 and KMnO4 consumptions were 40% and around 28.6% less than graphene preparation from natural graphite, respectively.

Keywords Spent LIBs      Graphite      Graphite oxide      Grapheme     
Corresponding Author(s): Guangming Li   
Issue Date: 27 September 2017
 Cite this article:   
Wenxuan Zhang,Zhanpeng Liu,Jing Xia, et al. Preparing graphene from anode graphite of spent lithium-ion batteries[J]. Front. Environ. Sci. Eng., 2017, 11(5): 6.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-017-0993-8
https://academic.hep.com.cn/fese/EN/Y2017/V11/I5/6
ComponentsMass (G)Wt.%
Casing5.6730.26
Cathode materialsa)
Al Foil
Anode materialsb)
Cu foil
Separator
Electrolyte
Total
4.78
1.29
2.72
1.52
0.67
2.09
18.74
25.51
6.88
14.51
8.11
3.58
11.15
100
Tab.1  Typical compositions of LIBs [7]
Fig.1  Gas chromatogram of organic components of graphite from spent LIBs
Fig.2  FTIR spectra of purified graphite from spent LIBs
Fig.3  (a) XRD for anode graphite and graphite oxide; (b) Raman for anode graphite and graphite oxide
NameD(cm-1)G(cm-1)Integral intensity
ShiftPeak widthShiftPeak widthID/IG
Graphite1332.0993.191573.9327.501.01
Graphite oxide1352.46166.671582.8474.312.27
Tab.2  Raman spectra parameters of anode graphite and graphite oxide
Fig.4  FTIR spectra of graphite oxide
Fig.5  Graphene oxide suspension at different pH by ultrasonic stripping
Fig.6  XRD for graphene with different N2H4·H2O dosage
Fig.7  (a) Raman shift of graphene with different N2H4•H2O dosage; (b) ID/IG ratio of graphene with different N2H4•H2O dosage
MaterialConcentrated H2SO4
(mL)
KMnO4
(g)
N2H4•H2O
(g)
Natural graphite (1g)253.50.7
Anode graphite (1g)152.51.25
Tab.3  Chemical reagent consumption of graphene preparation from anode graphite and natural graphite
1 Suzuki T, Nakamura T, Inoue Y, Niinae M, Shibata J. A hydrometallurgical process for the separation of aluminum, cobalt, copper and lithium in acidic sulfate media. Separation and Purification Technology, 2012, 98: 396–401
https://doi.org/10.1016/j.seppur.2012.06.034
2 Zou H, Gratz E, Apelian D, Wang Y. A novel method to recycle mixed cathode materials for lithium ion batteries. Green Chemistry, 2013, 15(5): 1183
https://doi.org/10.1039/c3gc40182k
3 Zeng X, Li J, Ren Y. Prediction of various discarded lithium batteries in China. IEEE International Symposium on Sustainable Systems and Technology, 2012
4 Li J, Wang G, Xu Z. Generation and detection of metal ions and volatile organic compounds (VOCs) emissions from the pretreatment processes for recycling spent lithium-ion batteries. Waste Management (New York, N.Y.), 2016, 52: 221–227
https://doi.org/10.1016/j.wasman.2016.03.011 pmid: 27021697
5 Gratz E, Sa Q, Apelian D, Wang Y. A closed loop process for recycling spent lithium ion batteries. Journal of Power Sources, 2014, 262: 255–262
https://doi.org/10.1016/j.jpowsour.2014.03.126
6 Ferreira D A, Prados L M Z, Majuste D, Mansur M B. Hydrometallurgical separation of aluminium, cobalt, copper and lithium from spent Li-ion batteries. Journal of Power Sources, 2009, 187(1): 238–246
https://doi.org/10.1016/j.jpowsour.2008.10.077
7 He L P, Sun S Y, Song X F, Yu J G. Recovery of cathode materials and Al from spent lithium-ion batteries by ultrasonic cleaning. Waste Management (New York, N.Y.), 2015, 46: 523–528
https://doi.org/10.1016/j.wasman.2015.08.035 pmid: 26323202
8 Xin Y Y, Guo X M, Chen S, Wang J, Wu F, Xin B. Bioleaching of valuable metals Li, Co, Ni and Mn from spent electric vehicle Li-ion batteries for the purpose of recovery. Journal of Cleaner Production, 2016, 116: 249–258
https://doi.org/10.1016/j.jclepro.2016.01.001
9 Wang X, Gaustad G, Babbitt C W. Targeting high value metals in lithium-ion battery recycling via shredding and size-based separation. Waste Management (New York, N.Y.), 2016, 51: 204–213
https://doi.org/10.1016/j.wasman.2015.10.026 pmid: 26577459
10 Joo S H, Shin D J, Oh C H, Wang J P, Senanayake G, Shin S M. Selective extraction and separation of nickel from cobalt, manganese and lithium in pre-treated leach liquors of ternary cathode material of spent lithium-ion batteries using synergism caused by Versatic 10 acid and LIX 84-I. Hydrometallurgy, 2016, 159: 65–74
https://doi.org/10.1016/j.hydromet.2015.10.012
11 Sun Z, Cao H, Xiao Y, Sietsma J, Jin W, Agterhuis H, Yang Y. Toward sustainability for recovery of critical metals from electronic waste: The hydrochemistry processes. ACS Sustainable Chemistry & Engineering, 2017, 5(1): 21–40
https://doi.org/10.1021/acssuschemeng.6b00841
12 Zheng X, Gao W, Zhang X, He M, Lin X, Cao H, Zhang Y, Sun Z. Spent lithium-ion battery recycling—Reductive ammonia leaching of metals from cathode scrap by sodium sulphite. Waste Management (New York, N.Y.), 2017, 60: 680–688
https://doi.org/10.1016/j.wasman.2016.12.007 pmid: 27993441
13 Moradi B, Botte G G. Recycling of graphite anodes for the next generation of lithium ion batteries. Journal of Applied Electrochemistry, 2016, 46(2): 123–148
https://doi.org/10.1007/s10800-015-0914-0
14 Sur U K, Saha A, Datta A, Ankamwar B, Surti F, Roy S D, Roy D. Synthesis and characterization of stable aqueous dispersions of graphene. Bulletin of Materials Science, 2016, 39(1): 159–165
https://doi.org/10.1007/s12034-015-0893-0
15 Singh C, Ali M A, Sumana G. Green synthesis of graphene based biomaterial using fenugreek seeds for lipid detection. ACS Sustainable Chemistry & Engineering, 2016, 4(3): 871–880
https://doi.org/10.1021/acssuschemeng.5b00923
16 Du Y L, Lei X L, Zhang F L. Analysis on the development of graphite and recommended management strategies. China Mining Magazing, 2015, 24: 28–29 (in Chinese)
17 Gao T M, Chen Q S, Yu W J, Shen L. Projection of Chinas graphite demand and development prospects. Resources Science, 2015, 37(5): 1059–1067 (in Chinese)
18 Dao T D, Jeong H M. Graphene prepared by thermal reduction–exfoliation of graphite oxide: Effect of raw graphite particle size on the properties of graphite oxide and graphene. Materials Research Bulletin, 2015, 70: 651–657
https://doi.org/10.1016/j.materresbull.2015.05.038
19 Guo Y, Li F, Zhu H, Li G, Huang J, He W. Leaching lithium from the anode electrode materials of spent lithium-ion batteries by hydrochloric acid (HCl). Waste Management (New York, N.Y.), 2016, 51: 227–233
https://doi.org/10.1016/j.wasman.2015.11.036 pmid: 26674969
20 Roy I, Sarkar G, Mondal S, Rana D, Bhattacharyya A, Saha N R, Adhikari A, Khastgir D, Chattopadhyay S, Chattopadhyay D. Synthesis and characterization of graphene from waste dry cell battery for electronic applications. RSC Advances, 2016, 6(13): 10557–10564
https://doi.org/10.1039/C5RA21112C
21 Yu H, Zhang B, Bulin C, Li R, Xing R. High-efficient synthesis of graphene oxide based on improved hummers method. Scientific Reports, 2016, 6(1): 36143
https://doi.org/10.1038/srep36143 pmid: 27808164
22 Wang R Y, Wu Z W, Qin Z F, Chen C, Zhu H, Wu J, Chen G, Fan W, Wang J. Graphene oxide: An effective acid catalyst for the synthesis of polyoxymethylene dimethyl ethers from methanol and trioxymethylene. Catalysis Science & Technology, 2016, 6(4): 993–997
https://doi.org/10.1039/C5CY01854D
23 Yusof N S, Babgi B, Alghamdi Y, Aksu M, Madhavan J, Ashokkumar M. Physical and chemical effects of acoustic cavitation in selected ultrasonic cleaning applications. Ultrasonics Sonochemistry, 2016, 29: 568–576
https://doi.org/10.1016/j.ultsonch.2015.06.013 pmid: 26142078
24 Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y, Wu Y, Nguyen S B T, Ruoff R S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 2007, 45(7): 1558–1565
https://doi.org/10.1016/j.carbon.2007.02.034
25 Rahimi R, Moshari M, Rabbani M, Azad A. Photooxidation of benzyl alcohols and photodegradation of cationic dyes by Fe3O4 sulfur/reduced graphene oxide as catalyst. RSC Advances, 2016, 6(47): 41156–41164
https://doi.org/10.1039/C6RA00137H
26 QIAO H.Study on the structural transformation and electrical properties of products formed by the oxidation-reduction of graphite. Dissertation for Doctor’s Degree. Chongqing: Southwest Univerisity, 2012
27 Li D, Müller M B, Gilje S, Kaner R B, Wallace G G. Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnology, 2008, 3(2): 101–105
https://doi.org/10.1038/nnano.2007.451 pmid: 18654470
28 Soltani T, Lee B K. Mechanism of highly efficient adsorption of 2-chlorophenol onto ultrasonic graphene materials: Comparison and equilibrium. Journal of Colloid and Interface Science, 2016, 481: 168–180
https://doi.org/10.1016/j.jcis.2016.07.049 pmid: 27474817
[1] Hossein D. Atoufi, Hasti Hasheminejad, David J. Lampert. Performance of activated carbon coated graphite bipolar electrodes on capacitive deionization method for salinity reduction[J]. Front. Environ. Sci. Eng., 2020, 14(6): 99-.
[2] LIU Zhengqian, MA Jun, ZHAO Lei. Effect of preparation parameters on catalytic properties of Pt/graphite[J]. Front.Environ.Sci.Eng., 2007, 1(4): 482-487.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed