Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2017, Vol. 11 Issue (5) : 8    https://doi.org/10.1007/s11783-017-0995-6
REVIEW ARTICLE
A critical review on the recycling of copper and precious metals from waste printed circuit boards using hydrometallurgy
Zebing Wu1, Wenyi Yuan2(), Jinhui Li3, Xiaoyan Wang1, Lili Liu3, Jingwei Wang2
1. School of Environmental and Materials Engineering, Shanghai Polytechnic University, Shanghai 201209, China
2. Shanghai Collaborative Innovation Center for WEEE Recycling, Shanghai Polytechnic University, Shanghai 201209, China
3. School of Environment, Tsinghua University, Beijing 100084, China
 Download: PDF(288 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Waste PCBs have a high content of valuable metals.

Hydrometallurgical technology has been widely used to extract valuable metal.

The recycling of waste PCBs using hydrometallurgy was critically reviewed.

Currently, increasing amounts of end-of-life (EoL) electronic products are being generated due to their reduced life spans and the unavailability of suitable recycling technologies. In particular, waste printed circuit boards (PCBs) have become of global concern with regard to environmental issues because of their high metal and toxic material contents, which are pollutants. There are many environmental threats owed to the disposal of electronic waste; off-gasses, such as dioxins, furans, polybrominated organic pollutants, and polycyclic aromatic hydrocarbons, can be generated during thermal treatments, which can cause serious health problems if effective off-gas cleaning systems are not developed and improved. Moreover, heavy metals will dissolve, and release into the ground water from the landfill sites. Such waste PCBs contain precious metals which are of monetary value. Therefore, it is beneficial to recover the metal content and protect the environment from pollution. Hydrometallurgy is a successful technique used worldwide for the recovery of precious metals (especially gold and silver) from ores, concentrates, and waste materials. It is generally preferred over other methods because it can offer high recovery rates at a relatively low cost. This article reviews the recent trends and developments with regard to the recycling of precious metals from waste PCBs through hydrometallurgical techniques, such as leaching and recovery.

Keywords Waste PCBs      Precious metals      Hydrometallurgy      Recycling      Leaching      Recovery     
Corresponding Author(s): Wenyi Yuan   
Issue Date: 31 October 2017
 Cite this article:   
Zebing Wu,Wenyi Yuan,Jinhui Li, et al. A critical review on the recycling of copper and precious metals from waste printed circuit boards using hydrometallurgy[J]. Front. Environ. Sci. Eng., 2017, 11(5): 8.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-017-0995-6
https://academic.hep.com.cn/fese/EN/Y2017/V11/I5/8
Fig.1  E-waste retrieval and recycling system in Germany
Source/Weight (%) PCB scrap PCB-MP PCB-PC
(1) (2) (3) (4) (5) (5)
Silver - 3300 g·t -1 0.10 0.21 0.054 0.16
Palladium - - 0.010 - - -
Aluminum - 4.7 5.00 0.26 - 5.7
Gold - 80 g·t -1 0.025 0.00 0.0043 0.13
Copper 25.06 26.80 16.00 34.49 39.86 20.19
Iron 0.66 5.30 5.00 10.57 - 7.33
Nickel 0.0024 0.47 1.00 2.63 0.39 0.43
Lead 0.80 - 2.00 1.87 - 5.53
Tin - 1.00 3.00 3.39 - 8.83
Zinc 0.04 1.50 1.00 5.92 0.46 4.48
Tab.1  Metal concentrations in printed circuit boards based on metal analysis
Fig.2  Flow chart showing hydrometallurgy routes for the recycling of metals from waste PCBs
Fig.3  Dissolution of gold in the cyanide solution
Source of waste Medium conditions Recovery (%) References
E-waste Cyanide leaching (pH>10 and temperature of 25℃), applied to chloride leaching tailings Ag-93%
Au-95%
Pd-99%
[ 39]
PCB of cell phones Commercial cyanide process (potassium cyanide concentration of 6%–8%, 25℃, 2–4 h, pH= 12.5, at S/L of 1/20) Au-60%-70% [ 40]
Tab.2  Studies on the recovery of precious metals from e-waste using cyanide [1]
Source of waste Used amount of chemicals Medium conditions Recovery (%) References
PCB Brønsted acidic ionic liquid particle size of 0.1–0.25 mm, 25 mL 80% (v/v) ionic liquid, 10 mL 30% H 2O2, S/L of 1/25, 70°C, 2 h 99% Cu [ 63]
PCB [BSO 4HPy]HSO4, [BSO3HMIm]HSO4 [MIm]HSO4
[BSO3HMIm]OTf [BSO3HPy]OTf
particle size of 0.1–0.25 mm,
10%–80% (v/v) ionic liquid,
30 wt.% H2O2, S/L of 1/1–1/15, 40°C–70°C, 0–2 h
100% Cu [ 64]
PCB [BSO 3HMIm]OTf [BSO3HPy]OTf particle size of 0.5–1.0 mm,
10%–80% (v/v) ionic liquid
10 mL 30% H2O2, S/L of 1/1–1/15, 40°C–70°C, 0–8 h
30% Pb [ 65]
Tab.3  Leaching of copper from waste PCBs by ionic liquid acid
Source of waste Amount of chemicals used Medium conditions Recovery (%) References
PCB In chloride medium (HCl and NaCl) oxidative leaching (HNO 3 and H2O2) 75°C 93%–95% Pd [ 39]
PCB of cell phones 1/3 (v/v) HNO 3 25 and 60°C, 2 h, S/L of 1/20 100% Ag [ 40]
Poly cracker ash of PCBs 4 M HNO 3 90°C, 1 h, stirring speed of 250 rpm 99.9% Cu, Fe, Pb, 57.01% Ni [ 61]
PCB 0.3 kmol/m 3 Cu(II)
5 kmol/m3 NH3
1 kmol/m3 (NH4)2SO4
1.5 mm particle size, 10 g PCB, 25°C, 5 h 82% Cu [ 66]
PCB 0.5–7.5 g/L Cu 2+
4.7–46.6 g/L Cl-
20°C–80°C, solids ratio (1%–15% w/v),
A/O of 2–4,2 h
>91%Cu, Ni,
Fe, Ag
[ 67]
PCB 2 M H 2SO4, in 20 ml 30% H2O2 (for 100mL solution) 30°C, 2 h 90% Au [ 68]
PCB 10% Diisoamyl sulphide (S201,>98.5%) A/O of 5, and 2 min extraction 99.5% Pd [ 69]
Tab.4  Studies regarding metal recovery with other lixiviants
Leaching methods Cyanide Aqua regia Thiourea Thiosulfate Chloride Bromide Iodide
Score 4.457 3.483 4.000 2.711 3.251 2.249 3.640
Tab.5  Final scores of various leaching methods [49]
Source of waste Used amount of chemicals Medium conditions Recovery (%) References
PCB Brønsted acidic ionic liquid particle size of 0.1–0.25 mm, 25 mL 80% (v/v) ionic liquid, 10 mL 30% H 2O2, S/L of 1/25, 70°C, 2 h 99% Cu [ 63]
PCB [BSO 4HPy]HSO4, [BSO3HMIm]HSO4 [MIm]HSO4
[BSO3HMIm]OTf [BSO3HPy]OTf
particle size of 0.1–0.25 mm,
10%–80% (v/v) ionic liquid,
30 wt.% H2O2, S/L of 1/1–1/15,
40°C–70°C, 0–2 h
100% Cu [ 64]
PCB [BSO 3HMIm]OTf [BSO3HPy]OTf particle size of 0.5–1.0 mm,
10%–80% (v/v) ionic liquid
10 mL 30% H2O2, S/L of 1/1–1/15, 40°C–70°C, 0–8 h
30% Pb [ 65]
Tab.6  Bioleaching of e-scrap based on various published reports
1 Akcil A, Erust  C, Gahan C S ,  Ozgun M ,  Sahin M ,  Tuncuk A . Precious metal recovery from waste printed circuit boards using cyanide and non-cyanide lixiviants—A review. Waste Management, 2015, 45: 258–271
https://doi.org/10.1016/j.wasman.2015.01.017 pmid: 25704926
2 Baldé C P ,  Wang F, Kuehr  R, Huisman J . The Global E-waste Monitor 2014: Quantities, Flows and Resources. Tokyo & Bonn: United Nations University, 2015
3 Guo J, Guo  J, Xu Z . Recycling of non-metallic fractions from waste printed circuit boards: A review. Journal of Hazardous Materials, 2009, 168(2–3): 567–590
https://doi.org/10.1016/j.jhazmat.2009.02.104 pmid: 19303702
4 Hischier R, Wäger  P, Gauglhofer J . Does WEEE recycling make sense from an environmental perspective? The environmental impacts of the Swiss take-back and recycling systems for waste electrical and electronic equipment (WEEE). Environment Impact Assessment, 2005, 25(5): 525–539
https://doi.org/10.1016/j.eiar.2005.04.003
5 Kahhat R, Kim  J, Xu M ,  Allenby B ,  Williams E ,  Zhang P . Exploring e-waste Management systems in the United States. Resources, Conservation and Recycling, 2008, 52(7): 955–964
https://doi.org/10.1016/j.resconrec.2008.03.002
6 Marques A C, Cabrera Marrero  J M, de Fraga Malfatti  C. A review of the recycling of non-metallic fractions of printed circuit boards. SpringerPlus, 2013, 2(1): 521
https://doi.org/10.1186/2193-1801-2-521 pmid: 24587980
7 Kowalska E, Radomska  J, Konarski P ,  Diduszko R ,  Oszczudłowski J ,  Opalińska T ,  Więch M ,  Duszyc Z . Thermogravimetric investigation of wastes from electrical and electronic equipment (WEEE). Journal of Thermal Analysis and Calorimetry, 2006, 86(1): 137–140
https://doi.org/10.1007/s10973-006-7589-z
8 Nnorom I C, Osibanjo  O. Overview of electronic waste (e-waste) Management practices and legislations, and their poor applications in the developing countries. Resources, Conservation and Recycling, 2008, 52(6): 843–858
https://doi.org/10.1016/j.resconrec.2008.01.004
9 Widmer R, Oswald-Krapf  H, Sinha-Khetriwal D ,  Schnellmann M ,  Böni H . Global persp ectives on e-waste. Environmental Impact Assessment Review, 2005, 25(5): 436–458
https://doi.org/10.1016/j.eiar.2005.04.001
10 Sinha-Khetriwal D, Kraeuchi  P, Schwaninger M . A comparison of electronic waste recycling in Switzerland and in India. Environmental Impact Assessment Review, 2005, 25(5): 492–504
https://doi.org/10.1016/j.eiar.2005.04.006
11 Vats M C, Singh  S K. Assessment of gold and silver in assorted mobile phone printed circuit boards (PCBs): Original article. Waste Management, 2015, 45: 280–288
https://doi.org/10.1016/j.wasman.2015.06.002 pmid: 26112260
12 Ghosh B, Ghosh  M K, Parhi  P, Mukherjee P S ,  Mishra B K . Waste printed circuit boards recycling: An extensive assessment of current status. Journal of Cleaner Production, 2015, 94: 5–19
https://doi.org/10.1016/j.jclepro.2015.02.024
13 Yang T, Xu  Z, Wen J K ,  Yang L M . Factors influencing bioleaching copper from waste printed circuit boards by Acidithiobacillus ferrooxidans. Hydrometallurgy, 2009, 97(1–2): 29–32 
https://doi.org/10.1016/j.hydromet.2008.12.011
14 Park Y J, Fray  D J. Recovery of high purity precious metals from printed circuit boards. Journal of Hazardous Materials, 2009, 164(2–3): 1152–1158
https://doi.org/10.1016/j.jhazmat.2008.09.043 pmid: 18980802
15 Yamane L H, de Moraes  V T, Espinosa  D C R, Tenório  J A S. Recycling of WEEE: Characterization of spent printed circuit boards from mobile phones and computers. Waste Management, 2011, 31(12): 2553–2558
https://doi.org/10.1016/j.wasman.2011.07.006 pmid: 21820883
16 Li J Y, Xu  X L, Liu W Q . Thiourea leaching gold and silver from the printed circuit boards of waste mobile phones. Waste Management, 2012, 32(6): 1209–1212 
https://doi.org/10.1016/j.wasman.2012.01.026 pmid: 22386109
17 Cui J, Zhang  L. Metallurgical recovery of metals from electronic waste: A review. Journal of Hazardous Materials, 2008, 158(2–3): 228–256
https://doi.org/10.1016/j.jhazmat.2008.02.001 pmid: 18359555
18 Das A, Vidyadhar  A, Mehrotra S P . A novel flowsheet for the recovery of metal values from waste printed circuit boards. Resources, Conservation and Recycling, 2009, 53(8): 464–469
https://doi.org/10.1016/j.resconrec.2009.03.008
19 Wang X, Gaustad  G. Prioritizing material recovery for end-of-life printed circuit boards. Waste Management, 2012, 32(10): 1903–1913
https://doi.org/10.1016/j.wasman.2012.05.005 pmid: 22677014
20 Liu P Y, Zhao  Y X, Zhu  Y Y, Qin  Z F, Ruan  X L, Zhang  Y C, Chen  B J, Li  Y, Yan S S ,  Qin X F ,  Fu S, Xu  X B. Determination of polybrominated diphenyl ethers in human semen. Environment International, 2012, 42(1): 132–137
https://doi.org/10.1016/j.envint.2011.05.011 pmid: 21664693
21 Luo C, Liu  C, Wang Y ,  Liu X, Li  F, Zhang G ,  Li X. Heavy metal contamination in soils and vegetables near an e-waste processing site, South China. Journal of Hazardous Materials, 2011, 186(1): 481–490
https://doi.org/10.1016/j.jhazmat.2010.11.024 pmid: 21144651
22 Noon M S, Lee  S J, Cooper  J S. A life cycle assessment of end-of-life computer monitor management in the Seattle metropolitan region. Resources, Conservation and Recycling, 2011, 57(4): 22–29
https://doi.org/10.1016/j.resconrec.2011.09.017
23 Tsydenova O, Bengtsson  M. Chemical hazards associated with treatment of waste electrical and electronic equipment. Waste Management, 2011, 31(1): 45–58
https://doi.org/10.1016/j.wasman.2010.08.014 pmid: 20869229
24 Bi X H, Simoneit  B R T, Wang  Z Z, Wang  X M, Sheng  G Y, Fu  J M. The major components of particles emitted during recycling of waste printed circuit boards in a typical e-waste workshop of South China. Atmospheric Environment, 2010, 44(35): 4440–4445
https://doi.org/10.1016/j.atmosenv.2010.07.040
25 Owens C V Jr, Lambright C, Bobseine  K, Ryan B ,  Gray L E  Jr,  Gullett B K ,  Wilson V S . Identification of estrogenic compounds emitted from the combustion of computer printed circuit boards in electronic waste. Environmental Science & Technology, 2007, 41(24): 8506–8511
https://doi.org/10.1021/es071425p pmid: 18200886
26 Duan H, Li  J, Liu Y ,  Yamazaki N ,  Jiang W . Characterization and inventory of PCDD/Fs and PBDD/Fs emissions from the incineration of waste printed circuit board. Environmental Science & Technology, 2011, 45(15): 6322–6328
https://doi.org/10.1021/es2007403 pmid: 21711021
27 Duan H, Li  J, Liu Y ,  Yamazaki N ,  Jiang W . Characterizing the emission of chlorinated/brominated dibenzo-p-dioxins and furans from low-temperature thermal processing of waste printed circuit board. Environmental Pollution, 2012, 161: 185–191
https://doi.org/10.1016/j.envpol.2011.10.033 pmid: 22230084
28 Hall W J, Williams  P T. Pyrolysis of brominated feedstock plastic in a fluidised bed reactor. Journal of Analytical and Applied Pyrolysis, 2006, 77(1): 75–82
https://doi.org/10.1016/j.jaap.2006.01.006
29 Wen S, Yang  F, Li J G ,  Gong Y, Zhang  X L, Hui  Y, Wu Y N ,  Zhao Y F ,  Xu Y. Polychlorinated dibenzo-p-dioxin and dibenzofurans (PCDD/Fs), polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs) monitored by tree bark in an E-waste recycling area. Chemosphere, 2009, 74(7): 981–987
https://doi.org/10.1016/j.chemosphere.2008.10.002 pmid: 19118860
30 Li J H, Duan  H B, Yu  K L, Liu  L L, Wang  S T. Characteristic of low-temperature pyrolysis of printed circuit boards subjected to various atmosphere. Resources, Conservation and Recycling, 2010, 54(11): 810–815
https://doi.org/10.1016/j.resconrec.2009.12.011
31 Long Y Y, Feng  Y J, Cai  S S, Ding  W X, Shen  D S. Flow analysis of heavy metals in a pilot-scale incinerator for residues from waste electrical and electronic equipment dismantling. Journal of Hazardous Materials, 2013, 261(20): 427–434
https://doi.org/10.1016/j.jhazmat.2013.07.070 pmid: 23973476
32 Huang K, Guo  J, Xu Z . Recycling of waste printed circuit boards: A review of current technologies and treatment status in China. Journal of Hazardous Materials, 2009, 164(2–3): 399–408
https://doi.org/10.1016/j.jhazmat.2008.08.051 pmid: 18829162
33 Ni K, Lu  Y, Wang T ,  Kannan K ,  Gosens J ,  Xu L, Li  Q, Wang L ,  Liu S. A review of human exposure to polybrominated diphenyl ethers (PBDEs) in China. International Journal of Hygiene and Environmental Health, 2013, 216(6): 607–623
https://doi.org/10.1016/j.ijheh.2013.02.002 pmid: 23491027
34 Tue N M, Takahashi  S, Subramanian A ,  Sakai S ,  Tanabe S . Environmental contamination and human exposure to dioxin-related compounds in e-waste recycling sites of developing countries. Environmental Science. Processes & Impacts, 2013, 15(7): 1326–1331
https://doi.org/10.1039/c3em00086a pmid: 23760515
35 Hilson G, Monhemius  A J. Alternatives to cyanide in the gold mining industry: what prospects for the future? Journal of Cleaner Production, 2006, 14(12–13): 1158–1167
https://doi.org/10.1016/j.jclepro.2004.09.005
36 Lu Y, Xu  Z M. Precious metals recovery from waste printed circuit boards: A review for current status and perspective. Resources, Conservation and Recycling, 2016, 113: 28–39
https://doi.org/10.1016/j.resconrec.2016.05.007
37 Parga J R, Valenzuela  J L, Francisco  C T. Pressure cyanide leaching for precious metals recovery. JOM, 2007, 59(10): 43–47
https://doi.org/10.1007/s11837-007-0130-4
38 Hill R F, Potter  N M. Dissolution of palladium and platinum from automotive catalysts. IEEE Transactions on Nuclear Science, 1979, 26(5): 4704–4706
https://doi.org/10.1109/TNS.1979.4330201
39 Quinet P, Proost  J, Van Lierde A . Recovery of precious metals from electronic scrap by hydrometallurgical processing routes. Minerals & Metallurgical Processing, 2005, 22(1): 17–22
40 Petter P M, Veit  H M, Bernardes  A M. Evaluation of gold and silver leaching from printed circuit board of cellphones. Waste Management, 2014, 34(2): 475–482
https://doi.org/10.1016/j.wasman.2013.10.032 pmid: 24332399
41 Behnamfard A, Salarirad  M M, Veglio  F. Process development for recovery of copper and precious metals from waste printed circuit boards with emphasize on palladium and gold leaching and precipitation. Waste Management, 2013, 33(11): 2354–2363
https://doi.org/10.1016/j.wasman.2013.07.017 pmid: 23927928
42 Kim E Y, Kim  M S, Lee  J C, Pandey  B D. Selective recovery of gold from waste mobile phone PCBs by hydrometallurgical process. Journal of Hazardous Materials, 2011, 198: 206–215
https://doi.org/10.1016/j.jhazmat.2011.10.034 pmid: 22040799
43 Moses L B, Petersen  F W. Flotation as a separation technique in the coal gold agglomeration process. Minerals Engineering, 2000, 13(3): 255–264
https://doi.org/10.1016/S0892-6875(00)00005-4
44 Wang H X, Sun  C B, Li  S Y, Fu  P F, Song  Y G, Li  L, Xie W Q . Study on gold concentrate leaching by iodine-iodide. International Journal of Minerals Metallurgy and Materials, 2013, 20(4): 323–328
https://doi.org/10.1007/s12613-013-0730-7
45 Xu Q, Chen  D H, Chen  L, Huang M H . Iodine leaching process for recovery of gold from waste PCB. Chinese Journal of Environmental Engineering, 2009, 3(5): 911–914 (in Chinese)
46 Xu Q, Chen  D H, Chen  L, Huang M H . Gold leaching from waste printed circuit board by iodine process. Nonferrous Metals, 2010, 62(3): 88–90 (in Chinese)
47 Baghalha M. Leaching of an oxide gold ore with chloride/hypochlorite solutions. International Journal of Mineral Processing, 2007, 82(4): 178–186
https://doi.org/10.1016/j.minpro.2006.09.001
48 Liu Y, Ruan  J L, Guo  Y W, Qiao  Q, Liu J Y ,  Zhang J Q . Comparison study of gold leaching methods of waste printed circuit boards (PCBs) from mobile phone. China Resources Comprehensive Utilization, 2013, 31(1): 38–41 (in Chinese)
49 Zhang Y H, Liu  S L, Xie  H H, Zeng  X L, Li  J H. Current status on leaching precious metals from waste printed circuit boards. Procedia Environmental Sciences, 2012, 16: 560–568
https://doi.org/10.1016/j.proenv.2012.10.077
50 Gönen N. Leaching of finely disseminated gold ore with cyanide and thiourea solutions. Hydrometallurgy, 2003, 69(1–3): 169–176
https://doi.org/10.1016/S0304-386X(03)00005-7
51 Schulze R G. New aspects in thiourea leaching of precious metals. JOM, 1984, 36(6): 62–65
https://doi.org/10.1007/BF03338478
52 Birloaga I, Vegliò  F. Study of multi-step hydrometallurgical methods to extract the valuable content of gold, silver and copper from waste printed circuit boards. Journal of Environmental Chemical Engineering, 2016, 4(1): 20–29
https://doi.org/10.1016/j.jece.2015.11.021
53 Senanayake G. Analysis of React ion kinetics, speciation and mechanism of gold leaching and thiosulfate oxidation by ammoniacal copper(II) solutions. Hydrometallurgy, 2004, 75(1–4): 55–75
https://doi.org/10.1016/j.hydromet.2004.06.004
54 Aylmore M G, Muir  D M. Thiosulfate leaching of gold––A review. Minerals Engineering, 2001, 14(2): 135–174
https://doi.org/10.1016/S0892-6875(00)00172-2
55 Ha V H, Lee  J C, Huynh  T H, Jeong  J, Pandey B D . Optimizing the thiosulfate leaching of gold from printed circuit boards of discarded mobile phone. Hydrometallurgy, 2014, 149: 118–126
https://doi.org/10.1016/j.hydromet.2014.07.007
56 Ficeriová J ,  Baláž P ,  Gock E. Leaching of gold, silver and accompanying metals from circuit boards (PCBs) waste. Acta Montanistica Slovaca, 2011, 16(2): 128
57 Sheng P P, Etsell  T H. Recovery of gold from computer circuit board scrap using aqua regia. Waste Management & Research, 2007, 25(4): 380–383
https://doi.org/10.1177/0734242X07076946 pmid: 17874665
58 Dong T G, Hua  Y X, Zhang  Q B, Zhou  D G. Leaching of chalcopyrite with Brønsted acidic ionic liquid. Hydrometallurgy, 2009, 99(1–2): 33–38
https://doi.org/10.1016/j.hydromet.2009.06.001
59 Fraga-Dubreuil J, Bazureau  J P. Grafted ionic liquid-phase-supported synthesis of small organic molecules. Tetrahedron Letters, 2001, 42(35): 6097–6100
https://doi.org/10.1016/S0040-4039(01)01190-X
60 Berenblyum A S ,  Katsman E A ,  Karasev Y Z . The nature of catalytic activity and deactivation of chloroaluminate ionic liquid. Applied Catalysis A, General, 2006, 315(1): 128–134
https://doi.org/10.1016/j.apcata.2006.09.013
61 Kumari A, Jha  M K, Singh  R P. Recovery of metals from pyrolysed PCBs by hydro-metallurgical techniques. Hydrometallurgy, 2016, 165(Part 1): 97–105
https://doi.org/10.1016/j.hydromet.2015.10.020
62 Ma B M, Zhang  M, He C J ,  Sun J F . New binary ionic liquid system for the preparation of chitosan/cellulose composite fibers. Carbohydrate Polymers, 2012, 88(1): 347–351
https://doi.org/10.1016/j.carbpol.2011.12.020 pmid: 23465940
63 Huang J, Chen  M, Chen H ,  Chen S, Sun  Q. Leaching behavior of copper from waste printed circuit boards with Brønsted acidic ionic liquid. Waste Management, 2014, 34(2): 483–488
https://doi.org/10.1016/j.wasman.2013.10.027 pmid: 24246577
64 Chen M, Huang  J, Ogunseitan O A ,  Zhu N, Wang  Y M. Comparative study on copper leaching from waste printed circuit boards by typical ionic liquid acids. Waste Management, 2015, 41: 142–147
https://doi.org/10.1016/j.wasman.2015.03.037 pmid: 25869844
65 Chen M J, Zhang  S, Huang J X ,  Chen H Y . Lead during the leaching process of copper from waste printed circuit boards by five typical ionic liquid acids. Journal of Cleaner Production, 2015, 95: 142–147
https://doi.org/10.1016/j.jclepro.2015.02.045
66 Koyama K, Tanaka  M, Lee J C . Copper leaching behavior from waste printed circuit board in ammoniacal alkaline solution. Materials Transactions, 2006, 47(7): 1788–1792
https://doi.org/10.2320/matertrans.47.1788
67 Yazici E Y, Deveci  H. Extraction of metals from waste printed circuit boards (WPCBs) in H2SO4-CuSO4-NaCl solutions. Hydrometallurgy, 2013, 139(3): 30–38
https://doi.org/10.1016/j.hydromet.2013.06.018
68 Birloaga I, De Michelis  I, Ferella F ,  Buzatu M ,  Vegliò F . Study on the influence of various factors in the hydrometallurgical processing of waste printed circuit boards for copper and gold recovery. Waste Management, 2013, 33(4): 935–941
69 Zhang Z, Zhang  F S. Selective recovery of palladium from waste printed circuit boards by a novel non-acid process. Journal of Hazardous Materials, 2014, 279(1): 46–51
pmid: 25037000
70 Brierley J A, Brierley  C L. Present and future commercial applications of biohydrometallurgy. Hydrometallurgy, 2001, 59(2–3): 233–239
https://doi.org/10.1016/S0304-386X(00)00162-6
71 Wang J, Bai  J, Xu J ,  Liang B . Bioleaching of metals from printed wire boards by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans and their mixture. Journal of Hazardous Materials, 2009, 172(2–3): 1100–1105
https://doi.org/10.1016/j.jhazmat.2009.07.102 pmid: 19699031
72 Liang G, Tang  J, Liu W ,  Zhou Q. Optimizing mixed culture of two acidophiles to improve copper recovery from printed circuit boards (PCBs). Journal of Hazardous Materials, 2013, 250– 251(2): 238–245
https://doi.org/10.1016/j.jhazmat.2013.01.077 pmid: 23454463
73 Arshadi M, Mousavi  S M, Rasoulnia  P. Enhancement of simultaneous gold and copper recovery from discarded mobile phone PCBs using Bacillus megaterium: RSM based optimization of effective factors and evaluation of their interactions. Waste Management, 2016, 57: 158–167
https://doi.org/10.1016/j.wasman.2016.05.012 pmid: 27264460
74 Choi M S, Cho  K S, Kim  D S, Kim  D J. Microbial recovery of copper from printed circuit boards of waste computer by Acidithiobacillus ferrooxidans. Part A, 2004, 39(11–12): 2973–2982 
https://doi.org/10.1081/LESA-200034763 pmid: 15533017
75 Brandl H, Lehmann  S, Faramarzi M A ,  Martinelli D . Biomobilization of silver, gold, and platinum from solid waste materials by HCN-forming microorganisms. Hydrometallurgy, 2008, 94(1): 14–17
https://doi.org/10.1016/j.hydromet.2008.05.016
76 Xiang Y, Wu  P, Zhu N ,  Zhang T ,  Liu W, Wu  J, Li P . Bioleaching of copper from waste printed circuit boards by bacterial consortium enriched from acid mine drainage. Journal of Hazardous Materials, 2010, 184(1–3): 812–818
https://doi.org/10.1016/j.jhazmat.2010.08.113 pmid: 20869807
77 Ilyas S, Ruan  C, Bhatti H N ,  Ghauri M A ,  Anwar M A . Column bioleaching of metals from electronic scrap. Hydrometallurgy, 2010, 101(3): 135–140
https://doi.org/10.1016/j.hydromet.2009.12.007
78 Chi T D, Lee  J C, Pandey  B D, Yoo  K, Jeong J . Bioleaching of gold and copper from waste mobile phone PCBs by using a cyanogenic bacterium. Minerals Engineering, 2011, 24(11): 1219–1222
https://doi.org/ 10.1016/j.mineng.2011.05.009
79 Zhu N, Xiang  Y, Zhang T ,  Wu P, Dang  Z, Li P ,  Wu J. Bioleaching of metal concentrates of waste printed circuit boards by mixed culture of acidophilic bacteria. Journal of Hazardous Materials, 2011, 192(2): 614–619
https://doi.org/10.1016/j.jhazmat.2011.05.062 pmid: 21683521
80 Bas A D, Deveci  H, Yazici E Y . Bioleaching of copper from low grade scrap TV circuit boards using mesophilic bacteria. Hydrometallurgy, 2013, 138(6): 65–70
https://doi.org/10.1016/j.hydromet.2013.06.015
81 Hong Y, Valix  M. Bioleaching of electronic waste using acidophilic sulfur oxidising bacteria. Journal of Cleaner Production, 2014, 65(65): 465–472
https://doi.org/10.1016/j.jclepro.2013.08.043
82 Ruan J, Zhu  X, Qian Y ,  Hu J. A new strain for recovering precious metals from waste printed circuit boards. Waste Management, 2014, 34(5): 901–907
https://doi.org/10.1016/j.wasman.2014.02.014 pmid: 24630215
83 Işıldar A ,  van de Vossenberg J ,  Rene E R ,  van Hullebusch E D ,  Lens P N L . Two-step bioleaching of copper and gold from discarded printed circuit boards (PCB). Waste Management, 2016, 57: 149–157
https://doi.org/10.1016/j.wasman.2015.11.033 pmid: 26704063
84 Sanyal S, Ke  Q D, Zhang  Y, Ngo T ,  Carrell J ,  Zhang H C ,  Dai L L . Understanding and optimizing delamination/recycling of printed circuit boards using a supercritical carbon dioxide process. Journal of Cleaner Production, 2013, 41(41): 174–178
https://doi.org/10.1016/j.jclepro.2012.10.011
85 Calgaro C O, Schlemmer  D F, da Silva  M D C R, Maziero  E V, Tanabe  E H, Bertuol  D A. Fast copper extraction from printed circuit boards using supercritical carbon dioxide. Waste Management, 2015, 45: 289–297
https://doi.org/10.1016/j.wasman.2015.05.017 pmid: 26022338
86 Xiu F R, Zhang  F S. Materials recovery from waste printed circuit boards by supercritical methanol. Journal of Hazardous Materials, 2010, 178(1-3): 628–634
https://doi.org/10.1016/j.jhazmat.2010.01.131 pmid: 20206443
87 Xiu F R, Qi  Y, Zhang F S . Recovery of metals from waste printed circuit boards by supercritical water pre-treatment combined with acid leaching process. Waste Management, 2013, 33(5): 1251–1257
https://doi.org/10.1016/j.wasman.2013.01.023 pmid: 23474342
88 Xiu F R, Qi  Y, Zhang F S . Leaching of Au, Ag, and Pd from waste printed circuit boards of mobile phone by iodide lixiviant after supercritical water pre-treatment. Waste Management, 2015, 41: 134–141
https://doi.org/10.1016/j.wasman.2015.02.020 pmid: 25802060
89 Fleming C A, McMullen  J, Thomas K G ,  Wells J A . Recent advances in the development of an alternative to the cyanidation process: Thiosulfate leaching and resin in pulp. Minerals & Metallurgical Processing, 2003, 20(1): 1–9
90 Zhang H G, Ritchie  I M, La Brooy  S R. The adsorption of gold thiourea complex onto activated carbon. Hydrometallurgy, 2004, 72(3–4): 291–301
https://doi.org/10.1016/S0304-386X(03)00182-8
91 Jeffrey M I, Brunt  S D. The quantification of thiosulfate and polythionates in gold leach solutions and on anion exchange resins. Hydrometallurgy, 2007, 89(1): 52–60
https://doi.org/10.1016/j.hydromet.2007.05.004
92 Grosse A C, Dicinoski  G W, Shaw  M J, Haddad  P R. Leaching and recovery of gold using ammoniacal thiosulfate leach liquors (a review). Hydrometallurgy, 2003, 69(1): 1–21
https://doi.org/10.1016/S0304-386X(02)00169-X
93 Nicol M J, O’Malley  G. Recovering gold from thiosulfate leach pulps via ion exchange. JOM, 2002, 54(10): 44–46
https://doi.org/10.1007/BF02709221
94 Zhang H G, Dreisinger  D B. The recovery of gold from ammoniacal thiosulfate solutions containing copper using ion exchange resin column. Hydrometallurgy, 2004, 72(3): 225–234
https://doi.org/10.1016/S0304-386X(03)00183-X
95 Thomas K, Fleming  C, Marchbank A ,  Dreisinger D . Gold recovery from refractory carbonaceous ores by pressure oxidation, thiosulfate leaching and resin-in-pulp adsorption. US Patent, 5785736,  1998–7-28
96 Fogarasi S, Imre-Lucaci  F, Egedy A ,  Imre-Lucaci Á ,  Ilea P. Eco-friendly copper recovery process from waste printed circuit boards using Fe3+/Fe2+ redox system. Waste Management, 2015, 40: 136–143
https://doi.org/10.1016/j.wasman.2015.02.030 pmid: 25816768
97 Masavetas I, Moutsatsou  A, Nikolaou E ,  Spanou S ,  Zoikis-Karathanasis A ,  Pavlatou E A ,  Spyrellis N . Production of copper powder from printed circuit boards by electrodeposition. Global NEST Journal, 2009, 11(2): 241–247
98 Lekka M, Masavetas  I, Benedetti A V ,  Moutsatsou A ,  Fedrizzi L . Gold recovery from waste electrical and electronic equipment by electrodeposition: A feasibility study. Hydrometalluryg, 2015, 157: 97–106
https://doi.org/10.1016/j.hydromet.2015.07.017
99 Lister T E, Wang  P, Anderko A . Recovery of critical and value metals from mobile electronics enabled by electrochemical processing. Hydrometallurgy, 2014, 149: 228–237
https://doi.org/10.1016/j.hydromet.2014.08.011
[1] Ting Chen, Yingying Zhao, Xiaopeng Qiu, Xiaoyan Zhu, Xiaojie Liu, Jun Yin, Dongsheng Shen, Huajun Feng. Economics analysis of food waste treatment in China and its influencing factors[J]. Front. Environ. Sci. Eng., 2021, 15(2): 33-.
[2] Guoliang Zhang, Liang Zhang, Xiaoyu Han, Shujun Zhang, Yongzhen Peng. Start-up of PN-anammox system under low inoculation quantity and its restoration after low-loading rate shock[J]. Front. Environ. Sci. Eng., 2021, 15(2): 32-.
[3] Kuo Fang, Fei Peng, Hui Gong, Huanzhen Zhang, Kaijun Wang. Ammonia removal from low-strength municipal wastewater by powdered resin combined with simultaneous recovery as struvite[J]. Front. Environ. Sci. Eng., 2021, 15(1): 8-.
[4] Xiling Li, Tianwei Hao, Yuxin Tang, Guanghao Chen. A “Seawater-in-Sludge” approach for capacitive biochar production via the alkaline and alkaline earth metals activation[J]. Front. Environ. Sci. Eng., 2021, 15(1): 3-.
[5] Wenbing Tan, Dongyu Cui, Xiaohui Zhang, Beidou Xi. Region-gridding recycling of bulk organic waste: Emerging views based on coordinated urban and rural development[J]. Front. Environ. Sci. Eng., 2020, 14(6): 112-.
[6] Lingchen Kong, Xitong Liu. Emerging electrochemical processes for materials recovery from wastewater: Mechanisms and prospects[J]. Front. Environ. Sci. Eng., 2020, 14(5): 90-.
[7] Yang Deng. Low-cost adsorbents for urban stormwater pollution control[J]. Front. Environ. Sci. Eng., 2020, 14(5): 83-.
[8] Linlin Cai, Xiangyang Sun, Dan Hao, Suyan Li, Xiaoqiang Gong, Hao Ding, Kefei Yu. Sugarcane bagasse amendment improves the quality of green waste vermicompost and the growth of Eisenia fetida[J]. Front. Environ. Sci. Eng., 2020, 14(4): 61-.
[9] Jianguo Liu, Shuyao Yu, Yixuan Shang. Toward separation at source: Evolution of Municipal Solid Waste management in China[J]. Front. Environ. Sci. Eng., 2020, 14(2): 36-.
[10] Wenchao Xue, May Zaw, Xiaochan An, Yunxia Hu, Allan Sriratana Tabucanon. Sea salt bittern-driven forward osmosis for nutrient recovery from black water: A dual waste-to-resource innovation via the osmotic membrane process[J]. Front. Environ. Sci. Eng., 2020, 14(2): 32-.
[11] Biswajit Debnath, Ranjana Chowdhury, Sadhan Kumar Ghosh. Sustainability of metal recovery from E-waste[J]. Front. Environ. Sci. Eng., 2018, 12(6): 2-.
[12] Yi Chen, Shilong He, Mengmeng Zhou, Tingting Pan, Yujia Xu, Yingxin Gao, Hengkang Wang. Feasibility assessment of up-flow anaerobic sludge blanket treatment of sulfamethoxazole pharmaceutical wastewater[J]. Front. Environ. Sci. Eng., 2018, 12(5): 13-.
[13] Weihua Zhao, Meixiang Wang, Jianwei Li, Yu Huang, Baikun Li, Cong Pan, Xiyao Li, Yongzhen Peng. Optimization of denitrifying phosphorus removal in a pre-denitrification anaerobic/anoxic/post-aeration+ nitrification sequence batch reactor (pre-A2NSBR) system: Nitrate recycling, carbon/nitrogen ratio and carbon source type[J]. Front. Environ. Sci. Eng., 2018, 12(5): 8-.
[14] Lin Lin, Ying-yu Li, Xiao-yan Li. Acidogenic sludge fermentation to recover soluble organics as the carbon source for denitrification in wastewater treatment: Comparison of sludge types[J]. Front. Environ. Sci. Eng., 2018, 12(4): 3-.
[15] Akshay Jain, Zhen He. “NEW” resource recovery from wastewater using bioelectrochemical systems: Moving forward with functions[J]. Front. Environ. Sci. Eng., 2018, 12(4): 1-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed