Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2017, Vol. 11 Issue (5) : 11    https://doi.org/10.1007/s11783-017-0998-3
RESEARCH ARTICLE
Pyrolysis of WEEE plastics using catalysts produced from fly ash of coal gasification
Marika Benedetti1, Lorenzo Cafiero1, Doina De Angelis1, Alessandro Dell’Era2, Mauro Pasquali2, Stefano Stendardo3, Riccardo Tuffi1(), Stefano Vecchio Ciprioti2()
1. Department for Sustainability, ENEA – Casaccia Research Center, Via Anguillarese 301, S. Maria di Galeria, Rome, Italy
2. Department of SBAI, Sapienza University of Rome, Via del Castro Laurenziano 7, 00161 Rome, Italy
3. Department of Energy Technologies, ENEA – Casaccia Research Center, Via Anguillarese 301, S. Maria di Galeria, Rome, Italy
 Download: PDF(305 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The effect of fly ash derived catalysts on pyrolysis of WEEE plastics was investigated.

A waste stream is recovered as a valuable resource for a new process.

Refused derived catalysts reduce the environmental impact and production costs.

Higher yields of light oil are obtained using fly ash derived catalysts.

Fly ash derived catalysts boost cracking effect and increase monoaromatics content in the oil.

Catalytic pyrolysis of thermoplastics extracted from waste electrical and electronic equipment (WEEE) was investigated using various fly ash-derived catalysts. The catalysts were prepared from fly ash by a simple method that basically includes a mechanical treatment followed by an acid or a basic activation. The synthesized catalysts were characterized using various analytical techniques. The results showed that not treated fly ash (FA) is characterized by good crystallinity, which in turn is lowered by mechanical and chemical treatment (fly ash after mechanical and acid activation, FAMA) and suppressed almost entirely down to let fly ash become completely amorphous (fly ash after mechanical and basic activation FAMB). Simultaneously, the surface area resulted increased. Subsequently, FA, FAMB and FAMA were used in the pyrolysis of a WEEE plastic sample at 400°C and their performance were compared with thermal pyrolysis at the same temperature. The catalysts principally improve the light oil yield: from 59wt.% with thermal pyrolysis to 83 wt.% using FAMB. The formation of styrene in the oil is also increased: from 243 mg/g with thermal pyrolysis to 453 mg/g using FAMB. As a result, FAMB proved to be the best catalyst, thus producing also the lowest and the highest amount of char and gas, respectively.

Keywords Waste electrical and electronic equipment (WEEE) plastic mixture      Pyrolysis      Catalyst      Fly ash      Oil     
Corresponding Author(s): Riccardo Tuffi,Stefano Vecchio Ciprioti   
Issue Date: 31 October 2017
 Cite this article:   
Marika Benedetti,Lorenzo Cafiero,Doina De Angelis, et al. Pyrolysis of WEEE plastics using catalysts produced from fly ash of coal gasification[J]. Front. Environ. Sci. Eng., 2017, 11(5): 11.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-017-0998-3
https://academic.hep.com.cn/fese/EN/Y2017/V11/I5/11
Plastic Composition
(wt.%)
ABSHIPSPBT
64.0±0.1
(from external housing)
33.0±0.1
(from external housing)
3.0±0.1
(from printed circuit board)
Elemental Analysis
(wt.%)
CHNSOClBr
85.3±0.77.8±0.13.4±0.1n.d.0.98±0.040.02±0.010.13±0.03
Proximate Analysis
(wt.%)
MoistureVolatile matterFixed CarbonAsh
0.27±0.197.0±0.91.7±0.21.9±0.2
Low Heating Value
(MJ/kg)
37.7±0.2
Tab.1  Plastic composition, elemental analysis, proximate analysis and energetic content of Real WEEE
Fig.1  Schematic flow diagram of the treatments of fly ash used as catalysts in the pyrolysis of WEEE plastics
Fig.2  The XRD analysis of original FA(sample 1), FAMA(sample 2) and FAMB(sample 3)
Fig.3  SEM images of a) FA, b) FAMA and c) FAMB
ExperimentLight oil (wt.%)Heavy oil (wt.%)Char (wt.%)Gas (wt.%)
Thermal59±228±213±12±1
FA67±219±212.2±0.52±1
FAMA73±26±219±22.5±0.5
FAMB83±32±111.4±0.54±2
Tab.2  Thermal and catalytic pyrolysis yields
RT (min)AttributionFormulaThermalFAFAMAFAMB
2.12BenzeneC6H60.20.20.20.2
2.442-PentanoneC5H10O0.20.20.20.2
3.56TolueneC7H86.84.44.74.2
5.2EthylbenzeneC8H109.38.54.63.9
5.78StyreneC8H837.344.252.859.2
6.34Benzene, (1-methylethyl)-C9H122.13.21.40.6
7.66a-MethylstyreneC9H107.711.58.49.6
17.03BenzenebutanenitrileC10H11N11.05.16.16.7
24.79Benzene, 1,1'-(1,3-propanediyl)bis-C15H166.44.56.04.2
26.23Benzene, 1,1'-(2-butene-1,4-diyl)bis-C16H160.41.21.42.7
26.35Benzene, 1,1'-(1,2-dimethyl-1,2-ethanediyl)bis-C16H180.50.60.30.3
27.95Benzene, 1,1'-(3-methyl-1-propene-1,3-diyl)bis-C16H160.30.30.30.5
33.81Naphthalene, 1-(phenylmethyl)-C17H140.70.50.40.5
Tab.3  Detected compounds by GC-MS in the produced light oils, with relative area≥0.1% and similarity≥90%
Fig.4  Yield of benzene, toluene, ethylbenzene and styrene and of their sum, on the weight of Real WEEE pyrolyzed with or without catalyst
ExperimentH2
(%v)
CO
(%v)
CH4
(%v)
CO2
(%v)
C2H4
(%v)
C2H6
(%v)
C3H6
(%v)
C3H8
(%v)
C4H8
(%v)
C4H10
(%v)
LHV
(MJ/kg)a
Thermaln.d.18±322±136±49±16.9±0.43.6±0.21.5±0.23±20.2±0.137
FAn.d.15±211±163±36.2±0.32.2±0.11.4±0.10.4±0.10.6±0.1n.d.31
FAMAn.d.28±310±257±14±2n.d.1.2±0.10.3±0.10.7±0.2n.d.22
FAMB35±412±18±338±53.9±0.2n.d.1.6±0.20.5±0.10.5±0.1n.d.38
Tab.4  Gas composition and energy content of gaseous mixtures
1 Baldé C P, Wang F, Kuehr R, Huisman J. The Global E-Waste Monitor – 2014. United Nations University, IAS – SCYCLE, Bonn, Germany, 2015
2 Directive 2012/19/EU of the European Parliament and of the Council of 4 July 2012 on waste electrical and electronic equipment (WEEE)
3 Sodhi M S, Reimer B. Models for recycling electronics end-of-life products. OR-Spektrum, 2001, 23(1): 97–115
https://doi.org/10.1007/PL00013347
4 Widmer R, Oswald-Krapf H, Sinha-Khetriwal D, Schnellmann M, Böni H. Global perspectives on e-waste. Environmental Impact Assessment Review, 2005, 25(5): 436–458
https://doi.org/10.1016/j.eiar.2005.04.001
5 Eurostat. 2014Waste electrical and electronic equipment (WEEE) by waste operations. Available online at . (accessed May 15, 2017)
6 Dimitrakakis E, Janz A, Bilitewski B, Gidarakos E. Small WEEE: Determining recyclables and hazardous substances in plastics. Journal of Hazardous Materials, 2009, 161(2–3): 913–919
https://doi.org/10.1016/j.jhazmat.2008.04.054 pmid: 18513864
7 Panda A K, Singh R K, Mishra D K. Thermolysis of waste plastics to liquid fuel A suitable method for plastic waste management and manufacture of value added products—A world prospective. Renewable & Sustainable Energy Reviews, 2010, 14(1): 233–248
https://doi.org/10.1016/j.rser.2009.07.005
8 Vasile C, Brebu M A, Karayildrim T, Yanik J, Darie H. Feedstock recycling from plastic and thermoset fractions of used computer(I): Pyrolysis. Journal of Material Cycles and Waste Management, 2006, 8(2): 99–108
https://doi.org/10.1007/s10163-006-0151-z
9 He M, Xiao B, Liu S, Hu Z, Guo X, Luo S, Yang F. Syngas production from pyrolysis of municipal solid waste (MSW) with dolomite as downstream catalysts. Journal of Analytical and Applied Pyrolysis, 2010, 87(2): 181–187
https://doi.org/10.1016/j.jaap.2009.11.005
10 De Marco I, Caballero B, Torres A, Laresgoiti M F, Chomòn M J, Cabrero M A. Recycling polymeric wastes by means of pyrolysis. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2002, 77(7): 817–824
https://doi.org/10.1002/jctb.636
11 Miandad R, Barakat M A, Aburiazaiza A S, Rehan M, Nizami A S. Catalytic pyrolysis of plastic waste: A review. Process Safety and Environmental Protection, 2016, 102: 822–838
https://doi.org/10.1016/j.psep.2016.06.022
12 Al-Salem S M, Antelava A, Constantinou A, Manos G, Dutta A. A review on thermal and catalytic pyrolysis of plastic solid waste (PSW). Journal of Environmental Management, 2017, 197: 177–198
https://doi.org/10.1016/j.jenvman.2017.03.084 pmid: 28384612
13 Aguado J, Serrano D P, San Miguel G, Castro M C, Madrid S. Feedstock recycling of polyethylene in a two-step thermo-catalytic reaction system. Journal of Analytical and Applied Pyrolysis, 2007, 79(1-2): 415–423
https://doi.org/10.1016/j.jaap.2006.11.008
14 Park D W, Hwang E Y, Kim J R, Choi J K, Kim Y A, Woo H C. Catalytic degradation of polyethylene over solid acid catalysts. Polymer Degradation & Stability, 1999, 65(2): 193–198
https://doi.org/10.1016/S0141-3910(99)00004-X
15 Santella C, Cafiero L, De Angelis D, La Marca F, Tuffi R, Vecchio Ciprioti S. Thermal and catalytic pyrolysis of a mixture of plastics from small waste electrical and electronic equipment (WEEE). Waste Management (New York, N.Y.), 2016, 54: 143–152
https://doi.org/10.1016/j.wasman.2016.05.005 pmid: 27184448
16 Ojha K, Pradhan N C. Treated fly ash: A potential catalyst for catalytic cracking. Indian Journal of Engineering and Materials Sciences, 2001, 8(2): 100–103
17 Na J G, Jeong B H, Chung S H, Kim S S. Pyrolysis of low-density polyethylene using synthetic catalysts produced from fly ash. Journal of Material Cycles and Waste Management, 2006, 8(2): 126–132
https://doi.org/10.1007/s10163-006-0156-7
18 Wang S. Application of solid ash based catalysts in heterogeneous catalysis. Environmental Science & Technology, 2008, 42(19): 7055–7063
https://doi.org/10.1021/es801312m pmid: 18939526
19 Kim S S, Kim J H, Chung S H. A study on the application of fly ash-derived zeolite materials for pyrolysis of polypropylene. Journal of Industrial and Engineering Chemistry, 2003, 9(3): 287–293
20 Cafiero L, Castoldi E, Tuffi R, Vecchio Ciprioti S. Identification and characterization of plastics from small appliances and kinetic analysis of their thermally activated pyrolysis. Polymer Degradation & Stability, 2014, 109: 307–318
https://doi.org/10.1016/j.polymdegradstab.2014.08.001
21 Cafiero L, Fabbri D, Trinca E, Tuffi R, Vecchio Ciprioti S. Thermal and spectroscopic (TG/DCS-FTIR) characterization of mixed plastics for materials and energy recovery under pyrolytic conditions. Journal of Thermal Analysis and Calorimetry, 2015, 121(3): 1111–1119
https://doi.org/10.1007/s10973-015-4799-2
22 Stendardo S, Foscolo P U, Nobili M, Scaccia S. High quality syngas production via steam-oxygen blown bubbling fluidised bed gasifier. Energy, 2016, 03(103): 697–708
https://doi.org/10.1016/j.energy.2016.03.011
23 Sharma A, Srivastava K, Devra V, Rani A. Modification in properties of fly ash through mechanical and chemical activation. American Chemical Sciences Journal, 2012, 2(4): 177–187
24 Koehl G, Keller N, Garin F, Keller V. A tool for direct quantitative measurement of surface Bronsted acid sites of solids by H/D exchange using D2O. Applied Catalysis A, General, 2005, 289(1): 37–43 
https://doi.org/10.1016/j.apcata.2005.04.013
25 Hall W J, Williams P T. Fast pyrolysis of halogenated plastics recovered from waste computers. Energy & Fuels, 2006, 20(4): 1536–1549
https://doi.org/10.1021/ef060088n
26 Miskolczi N, Hall W J, Angyal A, Bartha L, Williams P T. Production of oil with low organobromine content from the pyrolysis of flame retarded HIPS and ABS plastics. Journal of Analytical and Applied Pyrolysis, 2008, 83(1): 115–123
https://doi.org/10.1016/j.jaap.2008.06.010
27 Sakata Y, Uddin M, Muto A. Degradation of polyethylene and polypropylene into fuel oil by using solid acid and non-acid catalysts. Journal of Analytical and Applied Pyrolysis, 1999, 51(1-2): 135–155
https://doi.org/10.1016/S0165-2370(99)00013-3
28 Caballero B M, de Marco I, Adrados A, López-Urionabarrenechea A, Solar J, Gastelu N. Possibilities and limits of pyrolysis for recycling plastic rich waste streams rejected from phones recycling plants. Waste Management (New York, N.Y.), 2016, 57: 226–234
https://doi.org/10.1016/j.wasman.2016.01.002 pmid: 26783101
29 Giavarini C. Guida allo studio dei processi di raffinazione e petrolchimici. Roma: Siderea, 2006.
30 Audisio G, Bertini F, Beltrame P L, Carniti P. Catalytic degradation of polymers: Part III—Degradation of polystyrene. Polymer Degradation & Stability, 1990, 29(2): 191–200
https://doi.org/10.1016/0141-3910(90)90030-B
31 Zhang Z, Hirose T, Nishio S, Morioka Y, Azuma N, Ueno A, Ohkita H, Okada M. Chemical recycling of waste polystyrene acids and bases into styrene over solid acids and bases. Industrial & Engineering Chemistry Research, 1995, 34(12): 4514–4519
https://doi.org/10.1021/ie00039a044
32 Ukei H, Hirose T, Horikawa S, Takei Y, Taka M, Azume N, Ueno A. Catalytic degradation of polystyrene into styrene and a design of recyclable polystyrene with dispersed catalysts. Catalysis Today, 2000, 62(1): 67–75
https://doi.org/10.1016/S0920-5861(00)00409-0
33 Serrano D P, Aguado J, Escola J M. Catalytic conversion of polystyrene over HMCM-41, HZSM-5 and amorphous SiO2–Al2O3: Comparison with thermal cracking. Applied Catalysis B: Environmental, 2000, 25(2–3): 181–189
https://doi.org/10.1016/S0926-3373(99)00130-7
34 Tae J, Jang B, Kim J, Kim I, Park D. Catalytic degradation of polystyrene using acid-treated halloysite clays. Solid State Ionics, 2004, 172(1–4): 129–133
https://doi.org/10.1016/j.ssi.2004.05.013
35 Guadagni A. Prontuario Dell’ingegnere. 3rd ed. Milano: Hoepli, 2010
[1] FSE-17103-OF-BM_suppl_1 Download
[1] Shiguan Yang, Xinrui Fan, Ji Liu, Wei Zhao, Bin Hu, Qiang Lu. Mechanism insight into the formation of H2S from thiophene pyrolysis: A theoretical study[J]. Front. Environ. Sci. Eng., 2021, 15(6): 120-.
[2] Chengjie Xue, Juan Wu, Kuang Wang, Yunqiang Yi, Zhanqiang Fang, Wen Cheng, Jianzhang Fang. Effects of different types of biochar on the properties and reactivity of nano zero-valent iron in soil remediation[J]. Front. Environ. Sci. Eng., 2021, 15(5): 101-.
[3] Violeta Makareviciene, Egle Sendzikiene, Ieva Gaide. Application of heterogeneous catalysis to biodiesel synthesis using microalgae oil[J]. Front. Environ. Sci. Eng., 2021, 15(5): 97-.
[4] Qiuzhun Chen, Xiang Zhang, Bing Li, Shengli Niu, Gaiju Zhao, Dong Wang, Yue Peng, Junhua Li, Chunmei Lu, John Crittenden. Insight into the promotion mechanism of activated carbon on the monolithic honeycomb red mud catalyst for selective catalytic reduction of NOx[J]. Front. Environ. Sci. Eng., 2021, 15(5): 92-.
[5] Kehui Liu, Jie Xu, Chenglong Dai, Chunming Li, Yi Li, Jiangming Ma, Fangming Yu. Exogenously applied oxalic acid assists in the phytoremediation of Mn by Polygonum pubescens Blume cultivated in three Mn-contaminated soils[J]. Front. Environ. Sci. Eng., 2021, 15(5): 86-.
[6] Junlian Qiao, Yang Liu, Hongyi Yang, Xiaohong Guan, Yuankui Sun. Remediation of arsenic contaminated soil by sulfidated zero-valent iron[J]. Front. Environ. Sci. Eng., 2021, 15(5): 83-.
[7] Ting Wang, Renxian Zhou. PM-support interfacial effect and oxygen mobility in Pt, Pd or Rh-loaded (Ce,Zr,La)O2 catalysts[J]. Front. Environ. Sci. Eng., 2021, 15(4): 76-.
[8] Chenchen Li, Lijie Yan, Yiming Li, Dan Zhang, Mutai Bao, Limei Dong. TiO2@palygorskite composite for the efficient remediation of oil spills via a dispersion-photodegradation synergy[J]. Front. Environ. Sci. Eng., 2021, 15(4): 72-.
[9] Xinyi Liu, Caichao Wan, Xianjun Li, Song Wei, Luyu Zhang, Wenyan Tian, Ken-Tye Yong, Yiqiang Wu, Jian Li. Sustainable wood-based nanotechnologies for photocatalytic degradation of organic contaminants in aquatic environment[J]. Front. Environ. Sci. Eng., 2021, 15(4): 54-.
[10] Shanshan Zhao, Zhu Tao, Liwei Chen, Muqiao Han, Bin Zhao, Xuelin Tian, Liang Wang, Fangang Meng. An antifouling catechol/chitosan-modified polyvinylidene fluoride membrane for sustainable oil-in-water emulsions separation[J]. Front. Environ. Sci. Eng., 2021, 15(4): 63-.
[11] Haiyan Mou, Wenchao Liu, Lili Zhao, Wenqing Chen, Tianqi Ao. Stabilization of hexavalent chromium with pretreatment and high temperature sintering in highly contaminated soil[J]. Front. Environ. Sci. Eng., 2021, 15(4): 61-.
[12] Mariana Valdez-Castillo, Sonia Arriaga. Response of bioaerosol cells to photocatalytic inactivation with ZnO and TiO2 impregnated onto Perlite and Poraver carriers[J]. Front. Environ. Sci. Eng., 2021, 15(3): 43-.
[13] Chen Wang, Jun Wang, Jianqiang Wang, Meiqing Shen. Promotional effect of ion-exchanged K on the low-temperature hydrothermal stability of Cu/SAPO-34 and its synergic application with Fe/Beta catalysts[J]. Front. Environ. Sci. Eng., 2021, 15(2): 30-.
[14] Shanwei Ma, Hang Li, Guan Zhang, Tahir Iqbal, Kai Li, Qiang Lu. Catalytic fast pyrolysis of walnut shell for alkylphenols production with nitrogen-doped activated carbon catalyst[J]. Front. Environ. Sci. Eng., 2021, 15(2): 25-.
[15] Weichuan Qiao, Rong Li, Tianhao Tang, Achuo Anitta Zuh. Removal, distribution and plant uptake of perfluorooctane sulfonate (PFOS) in a simulated constructed wetland system[J]. Front. Environ. Sci. Eng., 2021, 15(2): 20-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed