Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2017, Vol. 11 Issue (5) : 13    https://doi.org/10.1007/s11783-017-1000-0
RESEARCH ARTICLE |
Improvement potential of today’s WEEE recycling performance: The case of LCD TVs in Belgium
Paul Vanegas1,2(), Jef R. Peeters1, Dirk Cattrysse1, Wim Dewulf1, Joost R. Duflou1
1. KU Leuven, Department of Mechanical Engineering, Centre for Industrial Management, BE-3001 Leuven, Belgium
2. Faculty of Engineering, University of Cuenca, Cuenca, Azuay 010101, Ecuador
 Download: PDF(2645 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A methodology to assess WEEE recycling performance is presented.

MFA and Economic and Environmental evaluations are performed for LCD TVs in Belgium.

Ferrous metals and aluminium have high recycling rates.

Recycling of precious metals and plastics can improve substantially.

Waste of electrical and electronic equipment (WEEE) constitutes one of the most relevant waste streams because of the quantity and presence of valuable materials. However, there is limited knowledge on the resource potential of urban mining WEEE, as data on material composition, and the efficiency of current recycling treatments are still scarce. In this article, an evaluation of the recycling performance at a national level for one of the fastest growing e-waste streams: LCD TVs is carried out through the following four steps. Firstly, material characterisation is performed by means of sampling of the waste stream. Secondly, a material flow analysis is conducted by evaluating the separation performance of a recycling plant in Belgium. Thirdly, the recovered economic value and avoided environmental impact (EI) of the analysed recycling system is assessed. Finally, the potential of urban mining for Belgium is forecasted. The analysis shows that while recycling performance for ferrous metals and aluminium are relatively high; there is substantial room to better close the material loops for precious metals (PM) and plastics. PMs and plastics account for 66 % of the economic value in LCD TVs and 57% of the EI. With the current, commonly applied recycling technology only one-third of the PM and housing plastics are recycled; meaning that for these materials, at a national level for Belgium, there is a potential for improvement that represents 3.3 million euros in 2016 and 6.8 million euros in 2025.

Keywords Recycling      Waste of electrical and electronic equipment (WEEE)      Material flow analysis      LCD TVs      Precious metals      Plastics     
Corresponding Authors: Paul Vanegas   
Issue Date: 10 November 2017
 Cite this article:   
Paul Vanegas,Jef R. Peeters,Dirk Cattrysse, et al. Improvement potential of today’s WEEE recycling performance: The case of LCD TVs in Belgium[J]. Front. Environ. Sci. Eng., 2017, 11(5): 13.
 URL:  
http://academic.hep.com.cn/fese/EN/10.1007/s11783-017-1000-0
http://academic.hep.com.cn/fese/EN/Y2017/V11/I5/13
Fig.1  Layers of an LCD TV [29]
Fig.2  Schematic view of recycling processes analysed
Fig.3  Average material composition of 110 LCD TVs
Fig.4  Material input and distribution to end-processing
MaterialInput (kg) per 1 tonne of LCDsER (%)
Ferrous (Fe)35495
Aluminium (Al)7987
Housing Plastics20329
Internal Plastics1060
PWBs8930
Wires1383
LCD Module1060
Other520
Total100048
Tab.1  Effective mass based material recycling rate for LCD TVs
Fig.5  Total and recovered EI and value of LCD components
MaterialNetEG (mPt/kg)REG (mPt/kg)REI (mPt/kg)
Ferrous (Fe)267.633163.4
Aluminium (Al)9471100153
HIPS349.737929.3
ABS+ PC529.755929.3
ABS375.740529.3
ABS+ PMMA557.2586.529.3
PC634.766429.3
PMMA738.776829.3
PET494.752429.3
Ag156 007157 000993
Au13 742 10013 800 00057 900
Pd10 069 60010 100 00030 400
Cu955395607
Tab.2  NetEG, REG and REI of materials
Fig.6  Valuable metals: Recycled with shredder based treatment vs Potential
Fig.7  Plastics: Recycled with shredder based treatment vs Potential
Fig.8  Plastics: Recycled with shredder based treatment vs Potential
1 Cohen D. Earth's natural wealth: An audit. New Scientist Magazine, 2007, 2605, 34–41
2 European-Commission. Roadmap to a Resource Efficient Europe. Brussels, 2011
3 Allwood J M, Cullen J M, Carruth M A, Cooper D R, McBrien M, Milford R L. Sustainable Materials: With Both Eyes Open. Cambridge: UIT Cambridge Limited, 2012
4 Ashby MF. Materials and the Environment: Eco-Informed Material Choice. New York: Elsevier, 2012
5 Union CotE. The fall in demand for recycled materials. 2009 [Available from: http://register.consilium.europa.eu/doc/srv?l=EN&f=ST%206918%202009%20INIT 
6 Eurostat. Sectorial analysis of the number of persons employed by enterprise size class, non-financial business economy, EU-28 2015 [ updated 27/11/2015. Available from: .
7 Dahmus J B, Gutowski T G. What gets recycled:  An information theory based model for product recycling. Environmental Science & Technology, 2007, 41(21): 7543–50
8 Ongondo F O, Williams I D, Cherrett T J. How are WEEE doing? A global review of the management of electrical and electronic wastes. Waste Management, 2011, 31(4): 714–30
9 Zeng X, Li J. Measuring the recyclability of e-waste: An innovative method and its implications. Journal of Cleaner Production, 2016, 131: 156–62
10 Plepys A, editor. Implications of globalisation and new product policies for the suppliers from developing countries. Electronics and the Environment, 2002 IEEE International Symposium on, 2002, 202–208
11 J.A.S W. A review of electronics demanufacturing processes. Resources, Conservation and Recycling, 2006, 47(3): 195–208
12 Widmer R, Oswald-Krapf H, Sinha-Khetriwal D, Schnellmann M, Böni H. Global perspectives on e-waste. Environmental Impact Assessment Review. 2005, 25(5): 436–58
13 Sepúlveda A, Schluep M, Renaud FG, Streicher M, Kuehr R, Hagelüken C. A review of the environmental fate and effects of hazardous substances released from electrical and electronic equipments during recycling: Examples from China and India. Environmental Impact Assessment Review, 2010, 30(1): 28–41
14 Peeters J R, Vanegas P, Duflou J R, Mizuno T, Fukushige S, Umeda Y. Effects of boundary conditions on the end-of-life treatment of LCD TVs. CIRP Annals—Manufacturing Technology, 2013, 62(1): 35–38
15 European-Parliament. DIRECTIVE 2002/96/EC of the European Parliament and of the Council of 27 January 2003 on Waste Electrical and Electronic Equipment (WEEE), 2003, 24
16 Council-of-the-European-Union. 2008/0241 (COD) Proposal for a Directive of the European Parliament and of the Council on Waste Electrical and Electronic Equipment (WEEE) (Recast), 2011, 104
17 Nelen D, Manshoven S, Peeters J R, Vanegas P, D'Haese N, Vrancken K. A multidimensional indicator set to assess the benefits of WEEE material recycling. Journal of Cleaner Production, 2014, 83(10): 305–316
18 Van Eygen E, De Meester S, Tran H P, Dewulf J. Resource savings by urban mining: The case of desktop and laptop computers in Belgium. Resources, Conservation and Recycling, 2016, 107: 53–64
19 Zeng X, Gong R, Chen W-Q, Li J. Uncovering the Recycling Potential of “New” WEEE in China. Environmental Science & Technology. 2016, 50(3):1347–1358
20 Schluep M, Hageluken C, Kuehr R, Magalini F, Maurer C, Meskers C. Recycling- from E-Waste to Resources. United Nations Environment Programme (UNEP), 2009
21 Parajuly K, Habib K, Liu G. Waste electrical and electronic equipment (WEEE) in Denmark: Flows, quantities and management. Resources, Conservation and Recycling. 2017, 123, 85–92
22 Peeters J R, Vanegas P, Kellens K, Wang F, Huisman J, Dewulf W. Forecasting waste compositions: A case study on plastic waste of electronic display housings. Waste Management, 2015, 46: 28–39
23 Salhofer S, Spitzbart M, Maurer K. Recycling of LCD Screens in Europe- State of the Art and Challenges. In: Hesselbach J, Herrmann C, eds. Glocalized Solutions for Sustainability in Manufacturing. Berlin Heidelberg: Springer, 2011, 454–458
24 Cucchiella F, D’Adamo I, Lenny Koh SC, Rosa P. Recycling of WEEEs: An economic assessment of present and future e-waste streams. Renewable and Sustainable Energy Reviews. 2015, 51(Supplement C): 263–272
25 Huisman J, Magalini F, Kuehr R, Maurer C, Delgado E, Artim E. 2008 Review of Directive 2002/96 on Waste Electrical and Electronic Equipment (WEEE). United Nations University, 2007
26 DisplaySearch. 2012
28 McDonnell T J, Williams K S. The location and character of mercury in waste LCD backlights. 2010, 
29 Ryan A, O'Donoghue L, Lewis H. Characterising components of liquid crystal displays to facilitate disassembly. Journal of Cleaner Production. 2011, 19(9–10): 1066–1071
30 Peeters JR, Vanegas P, Tange L, Van Houwelingen J, Duflou J R. Closed loop recycling of plastics containing flame retardants. Resources, Conservation and Recycling. 2014, 84(10): 35–43
31 Standarization CECfE. Audio, video and similar electronic apparatus. Safety requirements, 2008
32 Seung-Jin L, Noon M, Cooper J S. Toward the Estimation of Liquid Crystal Display Materials for Waste Management and Other Assessments. Components, Packaging and Manufacturing Technology, IEEE Transactions on, 2011, 1(6): 934–950
33 Xiuli Q, Williams J A S, Grant E R. Viable plastics recycling from end-of-life electronics. Electronics Packaging Manufacturing, IEEE Transactions on, 2006, 29(1): 25–31
34 Malcolm Richard G, Mario M, Javier T, Susana T. Optimization of the recovery of plastics for recycling by density media separation cyclones. Resources, Conservation and Recycling, 2011, 55(4): 472–482
35 Directive 2012/19/EU
36 OVAM. 2011
37 Peeters J R, Vanegas P, Mouton C, Dewulf W, Duflou J R. Tool Design for Electronic Product Dismantling. Procedia CIRP. 2016, 48: 466–471
38 Buchinger E, Fegerl H, Fugger E, Verheul H, Tukker A, Kuntze U. Regulation and Innovation in the Recycling Industry. European Commission DG JRC; 2000. Contract No.: EUR 19623 EN
39 Chancerel P, Meskers CEM, Hagelüken C, Rotter VS. Assessment of Precious Metal Flows During Preprocessing of Waste Electrical and Electronic Equipment. Journal of Industrial Ecology, 2009, 13(5): 791–810
40 Vanegas P, Peeters J R, Dewulf W, Cattrysse D, Duflou J R. Improving resource efficiency through recycling modelling: A case study for LCD TVs. Procedia CIRP, 2015, 26: 601–606
41 Wolf M I. Modeling and Desing of Material Separation Systems with Applications to Recycling: Massachusetts Institute of Technology, 2011
42 Cryan J, Freegard K, Morrish L, Myles N. Demonstration of Flat Panel Display Recycling Technologies. WRAP, 2010
43 Gutowski T, Dahmus J, Albino D, Branham M. Bayesian Material Separation Model with Applications to Recycling. IEEE International Symposium on Electronics and the Environment, Orlando, Florida, USA, 2007
44 Wolf MI, Colledani M, Gershwin S, Gutowski T. Modeling and Design of Multi-stage Separation Systems. International Symposium on Sustainable Systems and Technology. Washington D. C.: IEEE, 2010
45 Chancerel P, Bolland T, Rotter VS. Status of pre-processing of waste electrical and electronic equipment in Germany and its influence on the recovery of gold. Waste Management & Research. 2011, 29(3): 309–317
46 Bigum M, Brogaard L, Christensen TH. Metal recovery from high-grade WEEE: A life cycle assessment. Journal of Hazardous Materials. 2012, 207–208(10): 8–14
47 Vanegas P, Peeters J R, Plessers F, Cattrysse D, Duflou J R. Synergizing Industrialized and Developing Countries to Improve Resource Recovery for E-waste: Case study Belgium–Kenya. Procedia CIRP. 2014, 15: 283–288
48 Peeters J R, Vanegas P, Dewulf W, Duflou J R. Economic and environmental evaluation of desig for demanufacturing. Submitted to Journal of Cleaner Production, 2016
49 Mathieux F, Brissaud D. End-of-life product-specific material flow analysis. Application to aluminum coming from end-of-life commercial vehicles in Europe. Resources, Conservation and Recycling, 2010, 55(2):92–105
50 Parajuly K, Habib K, Cimpan C, Liu G, Wenzel H. End-of-life resource recovery from emerging electronic products—A case study of robotic vacuum cleaners. Journal of Cleaner Production, 2016, 137: 652–666
51 Habib K, Parajuly K, Wenzel H. Tracking the Flow of Resources in Electronic Waste—The Case of End-of-Life Computer Hard Disk Drives. Environmental Science & Technology, 2015, 49(20): 12441–12449
52 Directive 2012/19/EU of the European Parliament and of the Council of 4 July 2012 on waste electrical and electronic equipment (WEEE), 2012
53 Wäger P A. Scarce metals—Applications, supply risks and need for action. Notizie di Politeia. 2011, XXVII(104):57–66
54 Huisman J, Stevels ALN. Eco-efficiency of take-back and recycling, a comprehensive approach. IEEE Transactions on Electronics Packaging Manufacturing, 2006, 129(2): 83–90
55 Friege H. Review of material recovery from used electric and electronic equipment—Alternative options for resource conservation. Waste Management & Research, 2012, 30(9): 3–16
56 Hagelüken C, Meskers C E M. Complex Life Cycles of Precious and Special Metals. Linkages of Sustainability, Strüngmann Forum Report. 4. Cambridge: MIT Press, 2010, 163–197
57 Villalba G, Segarra M, Fernández A I, Chimenos J M, Espiell F. A proposal for quantifying the recyclability of materials. Resources, Conservation and Recycling, 2002, 37(1): 39–53
58 Atlee J, Kirchain R. Operational Sustainability metrics assessing metric effectiveness in the context of electronics-recycling systems. Environmental Science & Technology, 2006, 40(14): 4506–4513
59 Gregory J, Fredholm S, Kirchain R. Is economic value an effective proxy for embodied energy and environmental impact in material systems? Sustainable Systems and Technology, 2009 ISSST '09 IEEE International Symposium on, 2009, 18–20
60 Törn M H, Laaksonen J E, Kaila J. End-of-Life Strategy—From Weight to Value. Design for Innovative Value Towards a Sustainable Society. In: Matsumoto M, Umeda Y, Masui K, Fukushige S, eds. Netherlands: Springer, 2012, 521–524
61 Joint_Reserch_Centre. ILCD Handbook—General guide for Life Cycle Assessment—Detailaed guidance. First ed. European Commission, 2010, 414
62 Huisman J, Balde K. (W)EEE Mass Balance and Market Structure in Belgium. Final report commissioned by Recupel. United Nations University, 2013
63 Wang F, Huisman A J, Stevels CP, Baldé. Enhancing e-waste estimates: Improving data quality by multivariate Input–Output Analysis. Waste Management, 2013, 33(11): 2397–2407
64 Huisman J, van der Maesen M, Eijsbouts R J J, Wang F, Baldé C P, Wielenga C A. The Dutch WEEE Flows. United Nations University, 2012
65 Manhart A. International Cooperation for metal recycling from waste electrical and electronic equipment. Journal of Industrial Ecology, 2011, 15(1): 13–30
66 Chancerel P, Meskers C E M, Hagelüken C, Rotter V S. Assessment of precious metal flows during preprocessing of waste electrical and electronic equipment. Journal of Industrial Ecology, 2009, 13(5): 791–810
67 Hopewell J, Dvorak R, Kosior E. Plastics recycling: Challenges and opportunities. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 2009, 364(1526): 2115–2126
68 WEEE Directive 2012/19/EU (recast), EU, 2012
[1] FSE-17108-OF-VP_suppl_1 Download
[1] Weihua Zhao, Meixiang Wang, Jianwei Li, Yu Huang, Baikun Li, Cong Pan, Xiyao Li, Yongzhen Peng. Optimization of denitrifying phosphorus removal in a pre-denitrification anaerobic/anoxic/post-aeration+ nitrification sequence batch reactor (pre-A2NSBR) system: Nitrate recycling, carbon/nitrogen ratio and carbon source type[J]. Front. Environ. Sci. Eng., 2018, 12(5): 8-.
[2] Hyunhee Kim, Yong-Chul Jang, Yeonjung Hwang, Youngjae Ko, Hyunmyeong Yun. End-of-life batteries management and material flow analysis in South Korea[J]. Front. Environ. Sci. Eng., 2018, 12(3): 3-.
[3] Mengmeng Wang, Quanyin Tan, Joseph F. Chiang, Jinhui Li. Recovery of rare and precious metals from urban mines—A review[J]. Front. Environ. Sci. Eng., 2017, 11(5): 1-.
[4] Abhishek Kumar, Veena Choudhary, Rita Khanna, Romina Cayumil, Muhammad Ikram-ul-Haq, Veena Sahajwalla, Shiva Kumar I. Angadi, Ganapathy E. Paruthy, Partha S. Mukherjee, Miles Park. Recycling polymeric waste from electronic and automotive sectors into value added products[J]. Front. Environ. Sci. Eng., 2017, 11(5): 4-.
[5] Evangelia C. Vouvoudi, Aristea T. Rousi, Dimitris S. Achilias. Thermal degradation characteristics and products obtained after pyrolysis of specific polymers found in Waste Electrical and Electronic Equipment[J]. Front. Environ. Sci. Eng., 2017, 11(5): 9-.
[6] Zebing Wu, Wenyi Yuan, Jinhui Li, Xiaoyan Wang, Lili Liu, Jingwei Wang. A critical review on the recycling of copper and precious metals from waste printed circuit boards using hydrometallurgy[J]. Front. Environ. Sci. Eng., 2017, 11(5): 8-.
[7] John C. Radcliffe, Declan Page, Bruce Naumann, Peter Dillon. Fifty Years of Water Sensitive Urban Design, Salisbury, South Australia[J]. Front. Environ. Sci. Eng., 2017, 11(4): 7-.
[8] Wei-Min Wu,Jun Yang,Craig S. Criddle. Microplastics pollution and reduction strategies[J]. Front. Environ. Sci. Eng., 2017, 11(1): 6-.
[9] Liangliang WEI,Kun WANG,Xiangjuan KONG,Guangyi LIU,Shuang CUI,Qingliang ZHAO,Fuyi CUI. Application of ultra-sonication, acid precipitation and membrane filtration for co-recovery of protein and humic acid from sewage sludge[J]. Front. Environ. Sci. Eng., 2016, 10(2): 327-335.
[10] Hua GUO,Tianzhu ZHANG. Sinks of steel in China–addition to in-use stock, export and loss[J]. Front. Environ. Sci. Eng., 2016, 10(1): 141-149.
[11] Dongdong MA,Hongwen GAO. Reuse of heavy metal-accumulating Cynondon dactylon in remediation of water contaminated by heavy metals[J]. Front. Environ. Sci. Eng., 2014, 8(6): 952-959.
[12] Xianlai ZENG,Jinhui LI. Spent rechargeable lithium batteries in e-waste: composition and its implications[J]. Front.Environ.Sci.Eng., 2014, 8(5): 792-796.
[13] Lili QU,Tianzhu ZHANG,Wei LU. Assessing the potential of crop residue recycling in China and technology options based on a bottom-up model[J]. Front.Environ.Sci.Eng., 2014, 8(4): 570-579.
[14] Amin Mohammad Mehdi,Bina Bijan,Majd Amir Masoud Samani,Pourzamani Hamidreza. Benzene removal by nano magnetic particles under continuous condition from aqueous solutions[J]. Front.Environ.Sci.Eng., 2014, 8(3): 345-356.
[15] Sai LIANG, Tianzhu ZHANG, Xiaoping JIA. Clustering economic sectors in China on a life cycle basis to achieve environmental sustainability[J]. Front Envir Sci Eng, 2013, 7(1): 97-108.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed